
Polyspace® Code Prover™
Reference

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Code Prover™ Reference
© COPYRIGHT 2013–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2013 Online Only Revised for Version 9.0 (Release 2013b)
March 2014 Online Only Revised for Version 9.1 (Release 2014a)
October 2014 Online Only Revised for Version 9.2 (Release 2014b)
March 2015 Online Only Revised for Version 9.3 (Release 2015a)
September 2015 Online Only Revised for Version 9.4 (Release 2015b)
March 2016 Online Only Revised for Version 9.5 (Release 2016a)
September 2016 Online Only Revised for Version 9.6 (Release 2016b)
March 2017 Online Only Revised for Version 9.7 (Release 2017a)
September 2017 Online Only Revised for Version 9.8 (Release 2017b)
March 2018 Online Only Revised for Version 9.9 (Release 2018a)
September 2018 Online Only Revised for Version 9.10 (Release 2018b)
March 2019 Online Only Revised for Version 10.0 (Release 2019a)
September 2019 Online Only Revised for Version 10.1 (Release 2019b)
March 2020 Online Only Revised for Version 10.2 (Release 2020a)
September 2020 Online Only Revised for Version 10.3 (Release 2020b)
March 2021 Online Only Revised for Version 10.4 (Release 2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Analysis Options
1

Analysis Options, Command-Line Only
2

Run-Time Checks
3

Approximations Used During Verification
4

Why Polyspace Verification Uses Approximations . 4-2

Sources of Orange Checks . 4-3
Constrain Orange Sources . 4-4

Assumptions About Variable Ranges . 4-6

Assumptions About Stubbed Functions . 4-7
Function Return Value . 4-7
Function Arguments That are Pointers . 4-9
Global Variables . 4-11

Assumptions About main Function . 4-13
main Function as Top of Call Hierarchy . 4-13
main Function Arguments . 4-13

Assumptions About Global Variable Initialization 4-15
Global Variable Initialization When main Function Exists 4-15
Global Variable Initialization When main Function Does Not Exist 4-15
How Code Prover Implements Assumption About Global Variable

Initialization . 4-16
What Initialization Means for Complex Data Types 4-17

Assumptions About Volatile Variables . 4-19

iii

Contents

Assumptions About Variable and Function Definitions and Declarations
. 4-21
Definition . 4-21
Declaration . 4-21

Assumptions About Implicit Data Type Conversions 4-22
Implicit Conversion When Operands Have Same Data Type 4-22
Implicit Conversion When Operands Have Different Data Types 4-23

Assumptions About memset and memcpy . 4-24
Polyspace Specifications for memcpy . 4-24
Polyspace Specifications for memset . 4-25

Assumptions About #pragma Directives . 4-28

Assumptions About Standard Library Float Routines 4-30

Assumptions About Unions . 4-31

Assumptions About Variables Cast as Void Pointers 4-32

Assumptions About Assembly Code . 4-33
Recognized Inline Assemblers . 4-33
Single Function Containing Assembly Code . 4-35
Multiple Functions Containing Assembly Code . 4-35
Local Variables in Functions with Assembly Code 4-36

Determination of Program Stack Usage . 4-37
Investigate Possible Stack Overflow . 4-37
Stack Usage Not Computed . 4-39
Stack Usage Assumptions . 4-40

Limitations of Polyspace Verification . 4-41

iv Contents

Functions, Classes, Methods, Properties, and Apps
5

MISRA C 2012
6

MISRA C++: 2008
7

Code Metrics
8

Custom Coding Rules
9

Group 1: Files . 9-2

Group 2: Preprocessing . 9-3

Group 3: Type definitions . 9-4

Group 4: Structures . 9-5

Group 5: Classes (C++) . 9-6

Group 6: Enumerations . 9-7

Group 7: Functions . 9-8

Group 8: Constants . 9-9

Group 9: Variables . 9-10

Group 10: Name spaces (C++) . 9-11

Group 11: Class templates (C++) . 9-12

Group 12: Function templates (C++) . 9-13

Group 20: Style . 9-14

v

Global Variables
10

Report Components
11

Configuration Parameters
12

Settings from (C) . 12-2
Settings . 12-2
Dependency . 12-2
Command-Line Information . 12-2

Settings from (C++) . 12-4
Settings . 12-4
Dependency . 12-4
Command-Line Information . 12-4

Use custom project file . 12-6
Settings . 12-6
Dependency . 12-6
Command-Line Information . 12-6

Project configuration . 12-7
Settings . 12-7
Dependency . 12-7
Command-Line Information . 12-7

Enable additional file list . 12-8
Settings . 12-8
Command-Line Information . 12-8

Stub lookup tables . 12-9
Settings . 12-9
Tips . 12-9
Command-Line Information . 12-9

Input . 12-11
Settings . 12-11
Command-Line Information . 12-11

Tunable parameters . 12-12
Settings . 12-12
Command-Line Information . 12-12

Output . 12-13
Settings . 12-13

vi Contents

Command-Line Information . 12-13

Model reference verification depth . 12-14
Settings . 12-14
Command-Line Information . 12-14

Model by model verification . 12-15
Settings . 12-15
Command-Line Information . 12-15

Output folder . 12-16
Settings . 12-16
Command-Line Information . 12-16

Make output folder name unique by adding a suffix 12-17
Settings . 12-17
Command-Line Information . 12-17

Add results to current Simulink project . 12-18
Settings . 12-18
Dependencies . 12-18
Command-Line Information . 12-18

Open results automatically after verification . 12-19
Settings . 12-19
Command-Line Information . 12-19

Check configuration before verification . 12-20
Settings . 12-20
Command-Line Information . 12-20

Verify all S-function occurrences . 12-21
Settings . 12-21
Command-Line Information . 12-21

vii

Analysis Options

1

Source code language (-lang)
Specify language of source files

Description
Specify the language of your source files. Before specifying other configuration options, choose this
option because other options change depending on your language selection.

If you add files during project setup, the language selection can change from the default.

Files Added Source Code Language
Only files with extension .c C
Only files with extension .cpp or .cc CPP
Files with extension .c, .cpp, and .cc C-CPP

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. See “Dependencies” on page 1-2 for ways in which the source code language can
be automatically determined.

Command line and options file: Use the option -lang. See “Command-Line Information” on page
1-3.

Settings
Default: Based on file extensions.

C
If your project contains only C files, choose this setting. This value restricts the verification to C
language conventions. All files are interpreted as C files, regardless of their file extension.

CPP
If your project contains only C++ files, choose this setting. This value restricts the verification to
C++ language conventions. All files are interpreted as C++ files, regardless of their file
extension.

C-CPP
If your project contains C and C++ source files, choose this setting. This value allows for C and C
++ language conventions. .c files are interpreted as C files. Other file extensions are interpreted
as C++ files.

Dependencies
• The language option allows and disallows many options and option values. Some options change

depending on your language selection. For more information, see the individual analysis option
pages.

1 Analysis Options

1-2

• If you create a Polyspace project or options file from your build system using the polyspace-
configure command or polyspaceConfigure function, the value of this option is determined
by the file extensions.

For a project with both .c and .cpp files, the language option C-CPP is used. During the analysis,
each file is compiled based on the language standard determined by the file extensions. After the
compilation, Polyspace verifies such mixed projects as C++ projects.

Command-Line Information
Parameter: -lang
Value: c | cpp| c-cpp
Default: Based on file extensions
Example (Bug Finder): polyspace-bug-finder -lang c-cpp -sources
"file1.c,file2.cpp"
Example (Code Prover): polyspace-code-prover -lang cpp -sources
"file1.cpp,file2.cpp"
Example (Bug Finder): polyspace-bug-finder -lang c -sources "file1.c,file2.c"
Example (Code Prover): polyspace-code-prover -lang c -sources "file1.c,file2.c"
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
"file1.c,file2.c"
Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
"file1.c,file2.c"

See Also
C standard version (-c-version) | C++ standard version (-cpp-version)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

 Source code language (-lang)

1-3

C standard version (-c-version)
Specify C language standard followed in source code

Description
Specify the C language standard that you follow in your source code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. See “Dependencies” on page 1-5 for other options that you must enable.

Command line and options file: Use the option -c-version. See “Command-Line Information” on
page 1-5.

Why Use This Option

Use this option so that Polyspace can allow features specific to a C standard version during
compilation. For instance, if you compile with GCC using the flag -ansi or -std=c90, specify c90
for this option. If you are not sure of the language standard, specify defined-by-compiler.

For instance, suppose you use the boolean data type _Bool in your code. This type is defined in the
C99 standard but unknown in prior standards such as C90. If the Polyspace compilation follows the
C90 standard, you can see compilation errors.

Some MISRA C® rules are different based on whether you use the C90 or C99 standard. For instance,
MISRA C C:2012 Rule 5.2 requires that identifiers in the same scope and name space shall be
distinct. If you use the C90 standard, different identifiers that have the same first 31 characters
violate this rule. If you use the C99 standard, the number of characters increase to 63.

Settings
Default: defined-by-compiler

defined-by-compiler
The analysis uses a standard based on your specification for Compiler (-compiler).

See “C/C++ Language Standard Used in Polyspace Analysis”.

c90
The analysis uses the C90 Standard (ISO®/IEC 9899:1990).

c99
The analysis uses the C99 Standard (ISO/IEC 9899:1999).

c11
The analysis uses the C11 Standard (ISO/IEC 9899:2011).

1 Analysis Options

1-4

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-CPP.
• If you create a project or options file from your build system using the polyspace-configure

command or polyspaceConfigure function, the value of this option is automatically determined
from your build system.

If the build system uses different standards for different files, the subsequent Polyspace analysis
can emulate your build system and use different standards for compiling those files. If you open
such a project in the Polyspace user interface, the option value is shown as defined-by-
compiler. However, instead of one standard, Polyspace uses the hidden option -options-for-
sources to associate different standards with different files.

Command-Line Information
Parameter: -c-version
Value: defined-by-compiler | c90 | c99 | c11
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -lang c -sources "file1.c,file2.c" -
c-version c90
Example (Code Prover): polyspace-code-prover -lang c -sources "file1.c,file2.c"
-c-version c90
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
"file1.c,file2.c" -c-version c90
Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
"file1.c,file2.c" -c-version c90

See Also
C++ standard version (-cpp-version) | Source code language (-lang)

Topics
“Specify Polyspace Analysis Options”
“C/C++ Language Standard Used in Polyspace Analysis”
“C11 Language Elements Supported in Polyspace”

 C standard version (-c-version)

1-5

C++ standard version (-cpp-version)
Specify C++ language standard followed in source code

Description
Specify the C++ language standard that you follow in your source code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. See “Dependencies” on page 1-7 for other options that you must enable.

Command line and options file: Use the option -cpp-version. See “Command-Line Information”
on page 1-7.

Why Use This Option

Use this option so that Polyspace can allow features from a specific version of the C++ language
standard during compilation. For instance, if you compile with GCC using the flag -std=c++11 or -
std=gnu++11, specify cpp11 for this option. If you are not sure of the language standard, specify
defined-by-compiler.

For instance, suppose you use range-based for loops. This type of for loop is defined in the C++11
standard but unrecognized in prior standards such as C++03. If the Polyspace compilation uses the C
++03 standard, you can see compilation errors.

To check if your compiler allows features specific to a standard, compile code with macros specific to
the standard using compiler settings that you typically use. For instance, to check for C++11-specific
features, compile this code. The code contains a C++11-specific keyword nullptr. If the macro
__cplusplus is not 201103L (indicating C++11), this keyword is used and causes a compilation
error.

#if defined(__cplusplus) && __cplusplus >= 201103L
 /* C++11 compiler */
#else
 void* ptr = nullptr;
#endif

If the code compiles, use cpp11 for this option.

Settings
Default: defined-by-compiler

defined-by-compiler
The analysis uses a standard based on your specification for Compiler (-compiler).

See “C/C++ Language Standard Used in Polyspace Analysis”.

cpp03
The analysis uses the C++03 Standard (ISO/IEC 14882:2003).

1 Analysis Options

1-6

cpp11
The analysis uses the C++11 Standard (ISO/IEC 14882:2011).

cpp14
The analysis uses the C++14 Standard (ISO/IEC 14882:2014).

cpp17
The analysis uses the C++17 Standard (ISO/IEC 14882:2017).

Dependencies
• This option is available only if you set Source code language (-lang) to CPP or C-CPP.
• If you create a project or options file from your build system using the polyspace-configure

command or polyspaceConfigure function, the value of this option is automatically determined
from your build system.

If the build system uses different standards for different files, the subsequent Polyspace analysis
can emulate your build system and use different standards for compiling those files. If you open
such a project in the Polyspace user interface, the option value is shown as defined-by-
compiler. However, instead of one standard, Polyspace uses multiple standards for compiling the
files. The analysis uses the hidden option -options-for-sources to associate different
standards with different files.

Command-Line Information
Parameter: -cpp-version
Value: defined-by-compiler | cpp03 | cpp11 | cpp14 | cpp17
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -lang c -sources "file1.c,file2.c" -
cpp-version cpp11
Example (Code Prover): polyspace-code-prover -lang c -sources "file1.c,file2.c"
-cpp-version cpp11
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
"file1.c,file2.c" -cpp-version cpp11
Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
"file1.c,file2.c" -cpp-version cpp11

See Also
C standard version (-c-version) | Source code language (-lang)

Topics
“Specify Polyspace Analysis Options”
“C/C++ Language Standard Used in Polyspace Analysis”
“C++11 Language Elements Supported in Polyspace”
“C++14 Language Elements Supported in Polyspace”
“C++17 Language Elements Supported in Polyspace”

 C++ standard version (-cpp-version)

1-7

Target processor type (-target)
Specify size of data types and endianness by selecting a predefined target processor

Description
Specify the processor on which you deploy your code.

The target processor determines the sizes of fundamental data types and the endianness of the target
machine. You can analyze code intended for an unlisted processor type by using one of the other
processor types, if they share common data properties.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. To see the sizes of types, click the Edit button to the right of the Target processor
type drop-down list.

For some compilers, in the user interface, you see only the processors allowed for that compiler. For
these compilers, you also cannot see the data type sizes in the user interface. See the links in the
table below for the data type sizes.

Command line and options file: Use the option -target. See “Command-Line Information” on
page 1-10.

Why Use This Option

You specify a target processor so that some of the Polyspace run-time checks are tailored to the data
type sizes and other properties of that processor.

For instance, a variable can overflow for smaller values on a 32-bit processor such as i386 compared
to a 64-bit processor such as x86_64. If you select x86_64 for your Polyspace analysis, but deploy your
code to the i386 processor, your Polyspace results are not always applicable.

Once you select a target processor, you can specify if the default sign of char is signed or unsigned.
To determine which signedness to specify, compile this code using the compiler settings that you
typically use:

#include <limits.h>
int array[(char)UCHAR_MAX]; /* If char is signed, the array size is -1

If the code compiles, the default sign of char is unsigned. For instance, on a GCC compiler, the code
compiles with the -fsigned-char flag and fails to compile with the -funsigned-char flag.

Settings
Default: i386

This table shows the size of each fundamental data type that Polyspace considers. For some targets,
you can modify the default size by clicking the Edit button to the right of the Target processor type
drop-down list. The optional values for those targets are shown in [brackets] in the table.

1 Analysis Options

1-8

Target cha
r

short int lon
g

long
long

floa
t

double long
doublea

ptr Default
sign of
char

endian Align
ment

i386 8 16 32 32 64 32 64 96 32 signed Little 32
sparc 8 16 32 32 64 32 64 128 32 signed Big 64
m68kb 8 16 32 32 64 32 64 96 32 signed Big 64
powerpc 8 16 32 32 64 32 64 128 32 unsigned Big 64
c-167 8 16 16 32 32 32 64 64 16 signed Little 64
tms320c3x 32 32 32 32 64 32 32 64 32 signed Little 32
sharc21x61 32 32 32 32 64 32 32 [64] 32 [64] 32 signed Little 32
necv850 8 16 32 32 32 32 32 64 32 signed Little 32

[16, 8]
hc08c 8 16 16

[32]
32 32 32 32 [64] 32 [64] 16d unsigned Big 32

[16]
hc12 8 16 16

[32]
32 32 32 32 [64] 32 [64] 326 signed Big 32

[16]
mpc5xx 8 16 32 32 64 32 32 [64] 32 [64] 32 signed Big 32

[16]
c18 8 16 16 32

[24]
e

32 32 32 32 16
[24]

signed Little 8

x86_64 8 16 32 64
[32]f

64 32 64 128 64 signed Little 64
[32]

mcpu...
(Advanced)g

8
[16]

8 [16] 16
[32]

32 32
[64]

32 32 [64] 32 [64] 16
[32]

signed Little 32
[16, 8]

Targets for
ARM® v5
compiler

See ARM v5 Compiler (-compiler armcc).

Targets for
ARM v6
compiler

See ARM v6 Compiler (-compiler armclang).

Targets for
NPX
CodeWarrior®

compiler

See NXP CodeWarrior Compiler (-compiler codewarrior).

Targets for
Cosmic
compiler

See Cosmic Compiler (-compiler cosmic).

Targets for
Diab compiler

See Diab Compiler (-compiler diab).

Targets for
Green Hills®

compiler

See Green Hills Compiler (-compiler greenhills).

 Target processor type (-target)

1-9

Target cha
r

short int lon
g

long
long

floa
t

double long
doublea

ptr Default
sign of
char

endian Align
ment

Targets for IAR
Embedded
Workbench
compiler

See IAR Embedded Workbench Compiler (-compiler iar-ew).

Targets for
MPLAB XC8 C
compiler

See MPLAB XC8 C Compiler (-compiler microchip)

Targets for
Renesas®

compiler

See Renesas Compiler (-compiler renesas).

Targets for
TASKING
compiler

See TASKING Compiler (-compiler tasking).

Targets for
Texas
Instruments™
compiler

See Texas Instruments Compiler (-compiler ti).

a. For targets where the size of long double is greater than 64 bits, the size used for computations is not always the same as the size
listed in this table. The exceptions are:

• For targets i386, x86_64 and m68k, 80 bits are used for computations, following the practice in common compilers.
• For the target tms320c3x, 40 bits are used for computation, following the TMS320C3x specifications.
• If you use a Visual compiler, the size of long double used for computations is the same as size of double, following the
specification of Visual C++® compilers.

b. The M68k family (68000, 68020, and so on) includes the “ColdFire” processor
c. Non-ANSI C specified keywords and compiler implementation-dependent pragmas and interrupt facilities are not taken into account

by this support
d. All kinds of pointers (near or far pointer) have 2 bytes (hc08) or 4 bytes (hc12) of width physically.
e. The c18 target supports the type short long as 24 bits in size.
f. Use option -long-is-32bits to support Microsoft® C/C++ Win64 target.
g. mcpu is a reconfigurable Micro Controller/Processor Unit target. You can use this type to configure one or more generic targets. For

more information, see Generic target options.

Tips
If your processor is not listed, use a similar processor that shares the same characteristics, or create
an mcpu generic target processor. See Generic target options.

You can also create a custom target by explicitly stating sizes of fundamental types and so on with the
option -custom-target.

Command-Line Information
Parameter: -target
Value: i386 | sparc | m68k | powerpc | c-167 | tms320c3x | sharc21x61 | necv850
| hc08 | hc12 | mpc5xx | c18 | x86_64 | mcpu
Default: i386
Example (Bug Finder): polyspace-bug-finder -target m68k
Example (Code Prover): polyspace-code-prover -target m68k

1 Analysis Options

1-10

Example (Bug Finder Server): polyspace-bug-finder-server -target m68k
Example (Code Prover Server): polyspace-code-prover-server -target m68k

You can override the default values for some targets by using specific command-line options. See the
section Command-Line Options in Generic target options.

See Also
Polyspace Analysis Options
-custom-target

Polyspace Results
Higher Estimate of Local Variable Size | Lower Estimate of Local Variable Size

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

 Target processor type (-target)

1-11

Generic target options
Specify size of data types and endianness by creating your own target processor

Description
If a target processor is not directly supported by Polyspace, you can create your own target. You
specify the target mcpu representing a generic "Micro Controller/Processor Unit" and then explicitly
specify sizes of fundamental data types, endianness and other characteristics.

Settings
In the user interface of the Polyspace desktop products, the Generic target options dialog box
opens when you set the Target processor type to mcpu. The Target processor type option is
available on the Target & Compiler node in the Configuration pane.

Use the dialog box to specify the name of a new mcpu target, for example My_target. That new
target is added to the Target processor type option list.

Default characteristics of a new target: listed as type [size]

• char [8]
• short [16]
• int [16]
• long [32]

1 Analysis Options

1-12

• long long [32]
• float [32]
• double [32]
• long double [32]
• pointer [16]
• alignment [32]
• char is signed
• endianness is little-endian

Dependency
A custom target can only be created when Target processor type (-target) is set to mcpu.

A custom target is not available when Compiler (-compiler) is set to one of the visual* options.

Command-Line Options
When using the command line, use -target mcpu along with these target specification options.

Option Description Available
With

Example

-little-endian Little-endian
architectures are Less
Significant byte First
(LSF). For example:
i386.

Specifies that the less
significant byte of a
short integer (e.g.
0x00FF) is stored at
the first byte (0xFF)
and the most
significant byte (0x00)
at the second byte.

mcpu polyspace-code-prover -lang c
-target mcpu -little-endian

 Generic target options

1-13

Option Description Available
With

Example

-big-endian Big-endian
architectures are Most
Significant byte First
(MSF). For example:
SPARC, m68k.

Specifies that the most
significant byte of a
short integer (e.g.
0x00FF) is stored at
the first byte (0x00)
and the less significant
byte (0xFF) at the
second byte.

mcpu polyspace-code-prover -target
mcpu -big-endian

-default-sign-of-char
[signed | unsigned]

Specify default sign of
char.

signed: Specifies that
char is signed,
overriding target’s
default.

unsigned: Specifies
that char is unsigned,
overriding target’s
default.

All targets polyspace-code-prover -
default-sign-of-char unsigned
-target mcpu

-char-is-16bits char defined as 16 bits
and all objects have a
minimum alignment of
16 bits

Incompatible with -
short-is-8bits and
-align 8

mcpu polyspace-code-prover -target
mcpu -char-is-16bits

-short-is-8bits Define short as 8 bits,
regardless of sign

mcpu polyspace-code-prover -target
mcpu -short-is-8bits

-int-is-32bits Define int as 32 bits,
regardless of sign.
Alignment is also set to
32 bits.

mcpu, hc08,
hc12, mpc5xx

polyspace-code-prover -target
mcpu -int-is-32bits

-long-is-32bits Define long as 32 bits,
regardless of sign.
Alignment is also set to
32 bits.

If your project sets int
to 64 bits, you cannot
use this option.

All targets polyspace-code-prover -target
mcpu -long-is-32bits

1 Analysis Options

1-14

Option Description Available
With

Example

-long-long-is-64bits Define long long as
64 bits, regardless of
sign. Alignment is also
set to 64 bits.

mcpu polyspace-code-prover -target
mcpu -long-long-is-64bits

-double-is-64bits Define double and
long double as 64
bits, regardless of sign.

mcpu,
sharc21x61,
hc08, hc12,
mpc5xx

polyspace-code-prover -target
mcpu -double-is-64bits

-pointer-is-24bits Define pointer as 24
bits, regardless of sign.

c18 polyspace-code-prover -target
c18-pointer-is-24bits

-pointer-is-32bits Define pointer as 32
bits, regardless of sign.

mcpu polyspace-code-prover -target
mcpu -pointer-is-32bits

-align [32|16|8] Specifies the largest
alignment of struct or
array objects to the 32,
16 or 8 bit boundaries.

Consequently, the array
or struct storage is
strictly determined by
the size of the
individual data objects
without member and
end padding.

mcpu, hc08,
hc12,
mpc5xx.

Other than
mcpu, all
targets
support only
16 or 32 bits.

polyspace-code-prover -target
mcpu -align 16

See also:

• Management of wchar_t (-wchar-t-type-is)
• Management of size_t (-size-t-type-is)
• Enum type definition (-enum-type-definition)

You can also use the option -custom-target to specify sizes in bytes of fundamental data types,
signedness of plain char, alignment of structures and underlying types of standard typedef-s such
as size_t, wchar_t and ptrdiff_t.

Examples
GCC Toolchains

If you use any of these GCC toolchains for your software development, you can setup your Polyspace
analysis so that your code will compile with Polyspace:

• ARM Ltd's GNU Arm Embedded Toolchain
• HighTec EDV-Systeme
• Linaro® GNU cross-toolchain
• MENTOR® Embedded Sourcery CodeBench

 Generic target options

1-15

• QNX® Software Development Platform
• Rowley Associates' CrossWorks
• STMicroelectronics® TrueSTUDIO® for STM32
• Texas Instruments Code Composer Studio™
• Wind River® GNU Compiler

Use polyspace-configure to trace your build system and extract information about your compiler
configuration. The command creates a Polyspace project. To generate an options file that you then
pass to Polyspace at the command line, run polyspace-configure with -output-options-file.

Alternatively, if you prefer to set the details of your compiler configuration manually:

• Select the gnu#.x compiler that corresponds to your compiler version for Compiler (-
compiler).

• Specify your target by using the “Command-Line Options” on page 1-13. For an example of targets
you can specify, see “Targets for GCC Based Compilers” on page 1-16.

• Specify your compiler macro definitions with Preprocessor definitions (-D).

Targets for GCC Based Compilers

If you select one of the gnu#.x compilers for Compiler (-compiler), you can specify one of the
supported target processor types. See Target processor type (-target). If a target processor
type is not directly listed as supported, you can create the target by using this option.

For instance, you can create these targets:

• Tricore: Use these options:

-target mcpu
-int-is-32bits
-long-long-is-64bits
-double-is-64bits
-pointer-is-32bits
-enum-type-definition auto-signed-first
-wchar-t-type-is signed-int

• PowerPC: Use these options:

-target mcpu
-int-is-32bits
-long-long-is-64bits
-double-is-64bits
-pointer-is-32bits
-wchar-t-type-is signed-int

• ARM: Use these options:

-target mcpu
-int-is-32bits
-long-long-is-64bits
-double-is-64bits
-pointer-is-32bits
-enum-type-definition auto-signed-first
-wchar-t-type-is unsigned-int

• MSP430: Use these options:

1 Analysis Options

1-16

-target mcpu
-long-long-is-64bits
-double-is-64bits
-wchar-t-type-is signed-long
-align 16

Emulate Microchip MPLAB XC16 and XC32 Compilers

If you build your source code using Microchip MPLAB XC16 or XC32 compilers, you can set up your
Polyspace analysis so that your code will compile with Polyspace. Enter these options at the command
line or specify them in the Configuration pane of the Polyspace desktop user interface.

Compile
r

Target
Processor
Families

Options

MPLAB
XC16

PIC24

dsPIC

-compiler gnu4.6
-to compile
-D__XC__
-D__XC16__
-target=mcpu
-wchar-t-type-is
 unsigned-int
-align 16
-long-long-is-64bits

MPLAB
XC32

PIC32 -compiler gnu4.8
-custom-target true,8,2,4,-1,4,8,4,4,8,4,8,1,
 big,unsigned_long,long,int
-D__PIC32M
-D__PIC32MX
-D__PIC32MX__
-D__XC32
-D__XC32__
-D__XC
-D__XC__
-D__mips=32
-D__mips__
-D_mips

-compiler gnu4.8
-custom-target
 true,8,2,4,-1,4,8,4,
 4,8,4,8,1,big,unsigned_long,long,int
-D__PIC32M
-D__PIC32MX
-D__PIC32MX__
-D__XC32
-D__XC32__
-D__XC
-D__XC__
-D__mips=32
-D__mips__
-D_mips

The set of macros specified with the option Preprocessor definitions (-D) is a minimal set.
Specify additional macros as needed to ensure your code compiles with Polyspace.

 Generic target options

1-17

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

See Also
Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

1 Analysis Options

1-18

Compiler (-compiler)
Specify the compiler that you use to build your source code

Description
Specify the compiler that you use to build your source code.

Polyspace fully supports the most common compilers used to develop embedded applications. See the
list below. For these compilers, you can run analysis simply by specifying your compiler and target
processor. For other compilers, specify generic as compiler name. If you face compilation errors,
explicitly define compiler-specific extensions to work around the errors.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -compiler. See “Command-Line Information” on
page 1-25.

Why Use This Option

Polyspace uses this information to interpret syntax that is not part of the C/C++ Standard, but comes
from language extensions.

For example, the option allows additional language keywords, such as sfr, sbit, and bit. If you do
not specify your compiler, these additional keywords can cause compilation errors during Polyspace
analysis.

Polyspace does not actually invoke your compiler for compilation. In particular:

• You cannot specify compiler flags directly in the Polyspace analysis. To emulate your compiler
flags, trace your build command or manually specify equivalent Polyspace analysis options. See
“Specify Target Environment and Compiler Behavior”.

• Code Prover has a linking policy that is stricter than regular compilers. For instance, if your
compiler allows declaration mismatches with specific compiler options, you cannot emulate this
linking policy in Code Prover. See “Troubleshoot Compilation and Linking Errors”.

Settings
Default: generic

generic
Analysis allows only standard syntax.

The language standard is determined by your choice for the following options:

• C standard version (-c-version)
• C++ standard version (-cpp-version)

If you do not specify a standard explicitly, the standard depends on your choice of compiler.

 Compiler (-compiler)

1-19

gnu3.4
Analysis allows GCC 3.4 syntax.

gnu4.6
Analysis allows GCC 4.6 syntax.

gnu4.7
Analysis allows GCC 4.7 syntax.

For unsupported GCC extensions, see “Limitations” on page 1-23.
gnu4.8

Analysis allows GCC 4.8 syntax.

For unsupported GCC extensions, see “Limitations” on page 1-23.
gnu4.9

Analysis allows GCC 4.9 syntax.

For unsupported GCC extensions, see “Limitations” on page 1-23.
gnu5.x

Analysis allows GCC 5.x syntax. For a list of available GCC 5.x releases, see GCC releases.

If you select gnu5.x, the option Target processor type (-target) shows only a subset of
targets that are allowed for a GCC based compiler. For other targets, use the option Generic
target options.

For unsupported GCC extensions, see “Limitations” on page 1-23.
gnu6.x

Analysis allows GCC 6.x syntax. For a list of available GCC 6.x releases, see GCC releases.

If you select gnu6.x, the option Target processor type (-target) shows only a subset of
targets that are allowed for a GCC based compiler. For other targets, use the option Generic
target options.

For unsupported GCC extensions, see “Limitations” on page 1-23.
gnu7.x

Analysis allows GCC 7.x syntax. For a list of available GCC 7.x releases, see GCC releases.

If you select gnu7.x, the option Target processor type (-target) shows only a subset of
targets that are allowed for a GCC based compiler. For other targets, use the option Generic
target options.

For unsupported GCC extensions, see “Limitations” on page 1-23.
gnu8.x

Analysis allows GCC 8.x syntax. For a list of available GCC 8.x releases, see GCC releases.

If you select gnu8.x, the option Target processor type (-target) shows only a subset of
targets that are allowed for a GCC based compiler. For other targets, use the option Generic
target options.

For unsupported GCC extensions, see “Limitations” on page 1-23.

1 Analysis Options

1-20

https://gcc.gnu.org/releases.html
https://gcc.gnu.org/releases.html
https://gcc.gnu.org/releases.html
https://gcc.gnu.org/releases.html

clang3.x
Analysis allows Clang 3.5, 3.6, 3.7, 3.8, and 3.9 syntax.

clang4.x
Analysis allows Clang 4.0.0, and 4.0.1 syntax.

clang5.x
Analysis allows Clang 5.0.0, 5.0.1, and 5.0.2 syntax.

visual9.0
Analysis allows Microsoft Visual C++ 2008 syntax.

visual10.0
Analysis allows Microsoft Visual C++ 2010 syntax.

This option implicitly enables the option -no-stl-stubs.
visual11.0

Analysis allows Microsoft Visual C++ 2012 syntax.

This option implicitly enables the option -no-stl-stubs.
visual12.0

Analysis allows Microsoft Visual C++ 2013 syntax.

This option implicitly enables the option -no-stl-stubs.
visual14.0

Analysis allows Microsoft Visual C++ 2015 syntax (supports Microsoft Visual Studio® update 2).

This option implicitly enables the option -no-stl-stubs.
visual15.x

Analysis allows Microsoft Visual C++ 2017 syntax. For a list of available Microsoft Visual Studio
2017 versions, see Visual Studio 2017 Release Notes History.

This option implicitly enables the option -no-stl-stubs.
visual16.x

Analysis allows Microsoft Visual C++ 2019 syntax. For a list of available Microsoft Visual Studio
2019 versions, see Visual Studio 2019 Release Notes History.

This option implicitly enables the option -no-stl-stubs.
keil

Analysis allows non-ANSI® C syntax and semantics associated with the Keil products from ARM
(www.keil.com).

iar
Analysis allows non-ANSI C syntax and semantics associated with the compilers from IAR
Systems (www.iar.com).

armcc
Analysis allows non-ANSI C syntax and semantics associated with the ARM v5 compiler.

If you select armcc, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the ARM v5 compiler.
See ARM v5 Compiler (-compiler armcc).

 Compiler (-compiler)

1-21

https://docs.microsoft.com/en-us/visualstudio/releasenotes/vs2017-relnotes-history
https://docs.microsoft.com/en-us/visualstudio/releases/2019/release-notes-history
https://www.keil.com/
https://www.iar.com/

armclang
Analysis allows non-ANSI C syntax and semantics associated with the ARM v6 compiler.

If you select armclang, in the user interface of the Polyspace desktop products, the option
Target processor type (-target) shows only the targets that are allowed for the ARM v6
compiler. See ARM v6 Compiler (-compiler armclang).

codewarrior
Analysis allows non-ANSI C syntax and semantics associated with the NXP CodeWarrior compiler.

If you select codewarrior, in the user interface of the Polyspace desktop products, the option
Target processor type (-target) shows only the targets that are allowed for the NXP
CodeWarrior compiler. See NXP CodeWarrior Compiler (-compiler codewarrior).

cosmic
Analysis allows non-ANSI C syntax and semantics associated with the Cosmic compiler.

If you select cosmic, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the Comic compiler.
See Cosmic Compiler (-compiler cosmic).

diab
Analysis allows non-ANSI C syntax and semantics associated with the Wind River Diab compiler.

If you select diab, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the NXP CodeWarrior
compiler. See Diab Compiler (-compiler diab).

greenhills
Analysis allows non-ANSI C syntax and semantics associated with a Green Hills compiler.

If you select greenhills, in the user interface of the Polyspace desktop products, the option
Target processor type (-target) shows only the targets that are allowed for a Green Hills
compiler. See Green Hills Compiler (-compiler greenhills).

iar-ew
Analysis allows non-ANSI C syntax and semantics associated with the IAR Embedded Workbench
compiler.

If you select iar-ew, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the IAR Embedded
Workbench compiler. See IAR Embedded Workbench Compiler (-compiler iar-ew).

microchip
Analysis allows non-ANSI C syntax and semantics associated with the MPLAB XC8 C compiler.

If you select microchip, in the user interface of the Polyspace desktop products, the option
Target processor type (-target) shows only the targets that are allowed for the MPLAB
XC8 C compiler. See MPLAB XC8 C Compiler (-compiler microchip).

renesas
Analysis allows non-ANSI C syntax and semantics associated with the Renesas compiler.

If you select renesas, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the Renesas compiler.
See Renesas Compiler (-compiler renesas).

1 Analysis Options

1-22

tasking
Analysis allows non-ANSI C syntax and semantics associated with the TASKING compiler.

If you select tasking,in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the TASKING
compiler. See TASKING Compiler (-compiler tasking).

ti
Analysis allows non-ANSI C syntax and semantics associated with the Texas Instrumentscompiler.

If you select ti, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the Texas Instruments
compiler. See Texas Instruments Compiler (-compiler ti).

cosmic
Analysis allows non-ANSI C syntax and semantics associated with the compiler used in the
Cosmic software development tools.

If you select cosmic, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the Cosmic compiler.

Tips
• Your compiler specification determines the values of many compiler-specific macros. In case you

want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-
info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

• If you use a Visual Studio compiler, you must use a Target processor type (-target)
option that sets long long to 64 bits. Compatible targets include: i386, sparc, m68k, powerpc,
tms320c3x, sharc21x61, mpc5xx, x86_64, or mcpu with long long set to 64 (-long-long-
is-64bits at the command line).

• If you use the option Check JSF AV C++ rules (-jsf-coding-rules), select the compiler
generic. If you use another compiler, Polyspace cannot check the JSF® coding rules that require
conforming to the ISO standard. For example, AV Rule 8: “All code shall conform to ISO/IEC
14882:2002(E) standard C++.”

Limitations
Polyspace does not support certain features of these compilers:

• GNU® compilers (version 4.7 or later):

• Nested functions.

For instance, the function bar is nested in function foo:

int foo (int a, int b)
{
 int bar (int c) { return c * c; }

 Compiler (-compiler)

1-23

 return bar (a) + bar (b);
}

• Binary operations with vector types where one operand uses the shorthand notation for
uniform vectors.

For instance, in the addition operation, 2+a, 2 is used as a shorthand notation for {2,2,2,2}.

typedef int v4si __attribute__ ((vector_size (16)));
v4si res, a = {1,2,3,4};

res = 2 + a; /* means {2,2,2,2} + a */

• Forward declaration of function parameters.

For instance, the parameter len is forward declared:

void func (int len; char data[len][len], int len)
{
 /* … */
}

• Complex integer data types.

However, complex floating point data types are supported.
• Initialization of structures with flexible array members using an initialization list.

For instance, the structure S has a flexible array member tab. A variable of type S is directly
initialized with an initialization list.

struct S {
 int x;
 int tab[]; /* flexible array member - not supported */
};
struct S s = { 0, 1, 2} ;

You see a warning during analysis and a red check in the results when you dereference, for
instance, s.tab[1].

• 128-bit variables.

Polyspace cannot analyze this data type semantically. Bug Finder allows use of 128-bit data
types, but Code Prover shows a compilation error if you use such a data type, for instance, the
GCC extension __float128.

• GNU compilers version 7.x:

• Type names _FloatN and _FloatNx are not semantically supported. The analysis treats them
as type float, double, or long double.

• Constants of type _FloatN or _FloatNx with suffixes fN, FN, or fNx, such as 1.2f123 or
2.3F64x are not supported.

• Visual Studio compilers:

• C++ Accelerated Massive Parallelism (AMP).

C++ AMP is a Visual Studio feature that accelerates your C++ code execution for certain
types of data-parallel hardware on specific targets. You typically use the restrict keyword to
enable this feature.

1 Analysis Options

1-24

void Buffer() restrict(amp)
{
 ...
}

• __assume statements.

You typically use __assume with a condition that is false. The statement indicates that the
optimizer must assume the condition to be henceforth true. Code Prover cannot reconcile this
contradiction. You get the error:

Asked for compulsory presence of absent entity : assert

• Managed Extensions for C++ (required for the .NET Framework), or its successor, C++/CLI (C
++ modified for Common Language Infrastructure)

• __declspec keyword with attributes other than noreturn, nothrow, selectany or thread.

Command-Line Information
Parameter: -compiler
Value: armcc | armclang | clang3.x | clang4.x | clang5.x | codewarrior | cosmic
| diab | generic | gnu3.4 | gnu4.6 | gnu4.7 | gnu4.8 | gnu4.9 | gnu5.x |
gnu6.x | gnu7.x | gnu8.x | greenhills | iar | iar-ew | keil | microchip |
renesas | tasking | ti | visual10.0 | visual11.0 | visual12.0 | visual14.0 |
visual15.x | visual16.x | visual9.0
Default: generic
Example 1 (Bug Finder): polyspace-bug-finder -lang c -sources "file1.c,file2.c"
-compiler gnu4.6
Example 2 (Bug Finder): polyspace-bug-finder -lang cpp -sources
"file1.cpp,file2.cpp" -compiler visual9.0
Example 1 (Code Prover): polyspace-code-prover -lang c -sources
"file1.c,file2.c" -lang c -compiler gnu4.6
Example 2 (Code Prover): polyspace-code-prover -lang cpp -sources
"file1.cpp,file2.cpp" -compiler visual9.0
Example 1 (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
"file1.c,file2.c" -compiler gnu4.6
Example 2 (Bug Finder Server): polyspace-bug-finder-server -lang cpp -sources
"file1.cpp,file2.cpp" -compiler visual9.0
Example 1 (Code Prover Server): polyspace-code-prover-server -lang c -sources
"file1.c,file2.c" -lang c -compiler gnu4.6
Example 2 (Code Prover Server): polyspace-code-prover-server -lang cpp -sources
"file1.cpp,file2.cpp" -compiler visual9.0

See Also
C standard version (-c-version) | C++ standard version (-cpp-version) | Target
processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Troubleshoot Compilation Errors”
“Specify Target Environment and Compiler Behavior”
“Supported Keil or IAR Language Extensions”

 Compiler (-compiler)

1-25

ARM v5 Compiler (-compiler armcc)
Specify ARM v5 compiler

Description
Specify armcc for the Compiler (-compiler) option if you compile your code with a ARM v5
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select armcc for Compiler, in the user interface of
the Polyspace desktop products, you see only the processors allowed for a ARM v5 compiler. Your
choice of target processor determines the size of fundamental data types, the endianness of the
target machine, and certain keyword definitions.

If you specify the armcc compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information
Parameter: -compiler armcc -target
Value: arm
Default: arm
Example (Bug Finder): polyspace-bug-finder -compiler armcc -target arm
Example (Code Prover): polyspace-code-prover -compiler armcc -target arm
Example (Bug Finder Server): polyspace-bug-finder-server -compiler armcc -target
arm
Example (Code Prover Server): polyspace-code-prover-server -compiler armcc -
target arm

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

See Also
Compiler (-compiler) | Target processor type (-target)

1 Analysis Options

1-26

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2019a

 ARM v5 Compiler (-compiler armcc)

1-27

ARM v6 Compiler (-compiler armclang)
Specify ARM v6 compiler

Description
Specify armclang for the Compiler (-compiler) option if you compile your code with a ARM v6
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select armclang for Compiler, in the user interface
of the Polyspace desktop products, you see only the processors allowed for a ARM v6 compiler. Your
choice of target processor determines the size of fundamental data types, the endianness of the
target machine, and certain keyword definitions.

If you specify the armclang compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information
Parameter: -compiler armclang -target
Value: arm | arm64
Default: arm
Example (Bug Finder): polyspace-bug-finder -compiler armclang -target arm64
Example (Code Prover): polyspace-code-prover -compiler armclang -target arm64
Example (Bug Finder Server): polyspace-bug-finder-server -compiler armclang -
target arm64
Example (Code Prover Server): polyspace-code-prover-server -compiler armclang -
target arm64

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

See Also
Compiler (-compiler) | Target processor type (-target)

1 Analysis Options

1-28

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2019a

 ARM v6 Compiler (-compiler armclang)

1-29

NXP CodeWarrior Compiler (-compiler
codewarrior)
Specify NXP CodeWarrior compiler

Description
Specify codewarrior for Compiler (-compiler) if you compile your code using a NXP
CodeWarrior compiler. By specifying your compiler, you can avoid compilation errors from syntax that
is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select codewarrior for Compiler, in the user
interface of the Polyspace desktop products, you see only the processors allowed for a NXP
CodeWarrior compiler. Your choice of target processor determines the size of fundamental data types,
the endianness of the target machine and certain keyword definitions.

If you specify the codewarrior compiler, you must specify the path to your compiler header files.
See “Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information
Parameter: -compiler codewarrior -target
Value: s12z | powerpc
Default: s12z
Example (Bug Finder): polyspace-bug-finder -compiler codewarrior -target powerpc
Example (Code Prover): polyspace-code-prover -compiler codewarrior -target
powerpc
Example (Bug Finder Server): polyspace-bug-finder-server -compiler codewarrior -
target powerpc
Example (Code Prover Server): polyspace-code-prover-server -compiler codewarrior
-target powerpc

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

1 Analysis Options

1-30

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2018a

 NXP CodeWarrior Compiler (-compiler codewarrior)

1-31

Cosmic Compiler (-compiler cosmic)
Specify Cosmic compiler

Description
Specify cosmic for the Compiler (-compiler) option if you compile your code with a Cosmic
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select cosmic for Compiler, in the user interface,
you see only the processors allowed for a Cosmic compiler. Your choice of target processor
determines the size of fundamental data types, the endianness of the target machine, and certain
keyword definitions.

If you specify the cosmic compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the target uses, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information
Parameter: -compiler cosmic -target
Value: s12z
Default: s12z
Example (Bug Finder): polyspace-bug-finder -compiler cosmic -target s12z
Example (Code Prover): polyspace-code-prover -compiler cosmic -target s12z
Example (Bug Finder Server): polyspace-bug-finder-server -compiler cosmic -target
s12z
Example (Code Prover Server): polyspace-code-prover-server -compiler cosmic -
target s12z

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

See Also
Compiler (-compiler) | Target processor type (-target)

1 Analysis Options

1-32

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2019b

 Cosmic Compiler (-compiler cosmic)

1-33

Diab Compiler (-compiler diab)
Specify the Wind River Diab compiler

Description
Specify diab for Compiler (-compiler) if you compile your code using the Wind River Diab
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select diab for Compiler, in the user interface of the
Polyspace desktop products, you see only the processors allowed for the Diab compiler. Your choice of
target processor determines the size of fundamental data types, the endianness of the target machine
and certain keyword definitions.

If you specify the diab compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tips
If you encounter errors during Polyspace analysis, see “Errors Related to Diab Compiler”.

If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

Command-Line Information
Parameter: -compiler diab -target
Value: i386 | powerpc | arm | coldfire | mips | mcore | rh850 | superh |
tricore
Default: powerpc
Example (Bug Finder): polyspace-bug-finder -compiler diab -target tricore
Example (Code Prover): polyspace-code-prover -compiler diab -target tricore
Example (Bug Finder Server): polyspace-bug-finder-server -compiler diab -target
tricore
Example (Code Prover Server): polyspace-code-prover-server -compiler diab -target
tricore

1 Analysis Options

1-34

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2016b

 Diab Compiler (-compiler diab)

1-35

Green Hills Compiler (-compiler greenhills)
Specify Green Hills compiler

Description
Specify greenhills for Compiler (-compiler) if you compile your code using a Green Hills
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select greenhills for Compiler, in the user
interface of the Polyspace desktop products, you see only the processors allowed for a Green Hills
compiler. Your choice of target processor determines the size of fundamental data types, the
endianness of the target machine and certain keyword definitions.

If you specify the greenhills compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tips
• If you encounter errors during a Polyspace analysis, see “Errors Related to Green Hills Compiler”
• Polyspace supports the embedded configuration for the i386 target. If your x86 Green Hills

compiler is configured for native Windows® development, you can see compilation errors or
incorrect analysis results with Code Prover. Contact Technical Support.

For instance, Green Hills compilers consider a size of 12 bytes for long double for embedded
targets, but 8 bytes for native Windows. Polyspace considers 12 bytes by default.

• If you create a Polyspace project from a build command that uses a Green Hills compiler, the
compiler options -filetype and -os_dir are not implemented in the project. To emulate the -
os_dir option, you can explicitly add the path argument of the option as an include folder to your
Polyspace project.

• If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file.
See options file.

Command-Line Information
Parameter: -compiler greenhills -target

1 Analysis Options

1-36

Value: powerpc | powerpc64 | arm | arm64 | tricore | rh850 | arm | i386 |
x86_64
Default: powerpc
Example (Bug Finder): polyspace-bug-finder -compiler greenhills -target arm
Example (Code Prover): polyspace-code-prover -compiler greenhills -target arm
Example (Bug Finder Server): polyspace-bug-finder-server -compiler greenhills -
target arm
Example (Code Prover Server): polyspace-code-prover-server -compiler greenhills -
target arm

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2017b

 Green Hills Compiler (-compiler greenhills)

1-37

IAR Embedded Workbench Compiler (-compiler
iar-ew)
Specify IAR Embedded Workbench compiler

Description
Specify iar-ew for Compiler (-compiler) if you compile your code using a IAR Embedded
Workbench compiler. By specifying your compiler, you can avoid compilation errors from syntax that
is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select iar-ew for Compiler, in the user interface of
the Polyspace desktop products, you see only the processors allowed for a IAR Embedded Workbench
compiler. Your choice of target processor determines the size of fundamental data types, the
endianness of the target machine and certain keyword definitions.

If you specify the iar-ew compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tips
Polyspace does not support some constructs specific to the IAR compiler.

For the list of unsupported constructs, see codeprover_limitations.pdf in polyspaceroot
\polyspace\verifier\code_prover_desktop. Here, polyspaceroot is the MATLAB®

installation folder, for instance, C:\Program Files\Polyspace\R2019a.

If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

Command-Line Information
Parameter: -compiler iar-ew -target
Value: arm | avr | msp430 | rh850 | rl78
Default: arm
Example (Bug Finder): polyspace-bug-finder -compiler iar-ew -target rl78
Example (Code Prover): polyspace-code-prover -compiler iar-ew -target rl78

1 Analysis Options

1-38

Example (Bug Finder Server): polyspace-bug-finder-server -compiler iar-ew -target
rl78
Example (Code Prover Server): polyspace-code-prover-server -compiler iar-ew -
target rl78

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2018a

 IAR Embedded Workbench Compiler (-compiler iar-ew)

1-39

MPLAB XC8 C Compiler (-compiler microchip)
Specify MPLAB XC8 C compiler

Description
Specify microchip for the Compiler (-compiler) option if you compile your code with a MPLAB
XC8 C compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not
part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select microchip for Compiler, in the user
interface, you see only the processors allowed for a MPLAB XC8 C compiler. Your choice of target
processor determines the size of fundamental data types, the endianness of the target machine, and
certain keyword definitions.

If you specify the microchip compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the target uses, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tip
• Polyspace does not support the Atmel families of processors, such as AVR, TinyAVR, MegaAVR,

XMEGA, and SAM32.
• Polyspace does not support the CPP/P1 or C18 Microchip front-end. This front-end is activated by

the compiler when you compile your code with the C90 version of the Standard.
• If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file.

See options file.

Command-Line Information
Parameter: -compiler microchip -target
Value: pic
Default: pic
Example (Bug Finder): polyspace-bug-finder -compiler microchip -target pic
Example (Code Prover): polyspace-code-prover -compiler microchip -target pic
Example (Bug Finder Server): polyspace-bug-finder-server -compiler microchip -
target pic
Example (Code Prover Server): polyspace-code-prover-server -compiler microchip -
target pic

1 Analysis Options

1-40

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2020a

 MPLAB XC8 C Compiler (-compiler microchip)

1-41

Renesas Compiler (-compiler renesas)
Specify Renesas compiler

Description
Specify renesas for the Compiler (-compiler) option if you compile your code with a Renesas
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select renesas for Compiler, in the user interface of
the Polyspace desktop products, you see only the processors allowed for a Renesas compiler. Your
choice of target processor determines the size of fundamental data types, the endianness of the
target machine, and certain keyword definitions.

If you specify the renesas compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information
Parameter: -compiler renesas -target
Value: rl78 | rh850 | rx | sh
Default: rl78
Example (Bug Finder): polyspace-bug-finder -compiler renesas -target rx
Example (Code Prover): polyspace-code-prover -compiler renesas -target rx
Example (Bug Finder Server): polyspace-bug-finder-server -compiler renesas -
target rx
Example (Code Prover Server): polyspace-code-prover-server -compiler renesas -
target rx

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

See Also
Compiler (-compiler) | Target processor type (-target)

1 Analysis Options

1-42

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2018b

 Renesas Compiler (-compiler renesas)

1-43

TASKING Compiler (-compiler tasking)
Specify the Altium TASKING compiler

Description
Specify tasking for Compiler (-compiler) if you compile your code using the Altium® TASKING
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select tasking for Compiler, in the user interface of
the Polyspace desktop products, you see only the processors allowed for the TASKING compiler. Your
choice of target processor determines the size of fundamental data types, the endianness of the
target machine and certain keyword definitions.

If you specify the tasking compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

The software supports different versions of the TASKING compiler, depending on the target:

• TriCore: 6.x and older versions
• C166: 4.x and older versions
• ARM: 5.x and older versions
• RH850: 2.x and older versions

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tips
• Polyspace does not support some constructs specific to the TASKING compiler.

For the list of unsupported constructs, see codeprover_limitations.pdf in polyspaceroot
\polyspace\verifier\code_prover_desktop. Here, polyspaceroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2019a.

• The CPU used is TC1793. If you use a different CPU, set the following analysis options in your
project:

• Disabled preprocessor definitions (-U): Undefine the macro __CPU_TC1793B__.
• Preprocessor definitions (-D): Define the macro __CPU__. Enter __CPU__=xxx,

where xxx is the name of your CPU.

1 Analysis Options

1-44

Additionally, define the equivalent of the macro __CPU_TC1793B__ for your CPU. For instance,
enter __CPU_TC1793A__.

Instead of manually specifying your compiler, if you trace your build command (makefile),
Polyspace can detect your CPU and add the required definitions in your project.

• For some errors related to TASKING compiler-specific constructs, see solutions in “Errors Related
to TASKING Compiler”.

• If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file.
See options file.

Command-Line Information
Parameter: -compiler tasking -target
Value: tricore | c166 | rh850 | arm
Default: tricore
Example (Bug Finder): polyspace-bug-finder -compiler tasking -target tricore
Example (Code Prover): polyspace-code-prover -compiler tasking -target tricore
Example (Bug Finder Server): polyspace-bug-finder-server -compiler tasking -
target tricore
Example (Code Prover Server): polyspace-code-prover-server -compiler tasking -
target tricore

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2017a

 TASKING Compiler (-compiler tasking)

1-45

Texas Instruments Compiler (-compiler ti)
Specify Texas Instruments compiler

Description
Specify ti for Compiler (-compiler) if you compile your code using a Texas Instruments
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select ti for Compiler, in the user interface of the
Polyspace desktop products, you see only the processors allowed for a Texas Instruments compiler.
Your choice of target processor determines the size of fundamental data types, the endianness of the
target machine and certain keyword definitions.

If you specify the ti compiler, you must specify the path to your compiler header files. See “Provide
Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tips
Polyspace does not support some constructs specific to the Texas Instruments compiler.

For the list of unsupported constructs, see codeprover_limitations.pdf in polyspaceroot
\polyspace\verifier\code_prover_desktop. Here, polyspaceroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2019a.

If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

Command-Line Information
Parameter: -compiler ti -target
Value: c28x | c6000 | arm | msp430
Default: c28x
Example (Bug Finder): polyspace-bug-finder -compiler ti -target msp430
Example (Code Prover): polyspace-code-prover -compiler ti -target msp430
Example (Bug Finder Server): polyspace-bug-finder-server -compiler ti -target
msp430

1 Analysis Options

1-46

Example (Code Prover Server): polyspace-code-prover-server -compiler ti -target
msp430

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2018a

 Texas Instruments Compiler (-compiler ti)

1-47

Sfr type support (-sfr-types)
Specify sizes of sfr types for code developed with Keil or IAR compilers

Description
Specify sizes of sfr types (types that define special function registers).

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. See “Dependency” on page 1-48 for other options you must also enable.

Command line and options file: Use the option -sfr-types. See “Command-Line Information” on
page 1-48.

Why Use This Option

Use this option if you have statements such as sfr addr = 0x80; in your code. sfr types are not
standard C types. Therefore, you must specify their sizes explicitly for the Polyspace analysis.

Settings
No Default

List each sfr name and its size in bits.

Dependency
This option is available only when Compiler (-compiler) is set to keil or iar.

Command-Line Information
Syntax: -sfr-types sfr_name=size_in_bits,...
No Default
Name Value: an sfr name such as sfr16.
Size Value: 8 | 16 | 32
Example (Bug Finder): polyspace-bug-finder -lang c -compiler iar -sfr-types
sfr=8,sfr16=16 ...
Example (Code Prover): polyspace-code-prover -lang c -compiler iar -sfr-types
sfr=8,sfr16=16 ...
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -compiler iar -
sfr-types sfr=8,sfr16=16 ...
Example (Code Prover Server): polyspace-code-prover-server -lang c -compiler iar
-sfr-types sfr=8,sfr16=16 ...

See Also
Topics
“Specify Polyspace Analysis Options”

1 Analysis Options

1-48

“Specify Target Environment and Compiler Behavior”
“Supported Keil or IAR Language Extensions”

 Sfr type support (-sfr-types)

1-49

Division round down (-div-round-down)
Round down quotients from division or modulus of negative numbers instead of rounding up

Description
Specify whether quotients from division and modulus of negative numbers are rounded up or down.

Note a = (a / b) * b + a % b is always true.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -div-round-down. See “Command-Line
Information” on page 1-51.

Why Use This Option

Use this option to emulate your compiler.

The option is relevant only for compilers following C90 standard (ISO/IEC 9899:1990). The standard
stipulates that "if either operand of / or % is negative, whether the result of the / operator, is the
largest integer less or equal than the algebraic quotient or the smallest integer greater or equal than
the quotient, is implementation defined, same for the sign of the % operator". The standard allows
compilers to choose their own implementation.

For compilers following the C99 standard ((ISO/IEC 9899:1999), this option is not required. The
standard enforces division with rounding towards zero (section 6.5.5).

Settings
 On

If either operand / or % is negative, the result of the / operator is the largest integer less than or
equal to the algebraic quotient. The result of the % operator is deduced from a % b = a - (a /
b) * b.

Example: assert(-5/3 == -2 && -5%3 == 1); is true.

 Off (default)
If either operand of / or % is negative, the result of the / operator is the smallest integer greater
than or equal to the algebraic quotient. The result of the % operator is deduced from a % b = a
- (a / b) * b.

This behavior is also known as rounding towards zero.

Example: assert(-5/3 == -1 && -5%3 == -2); is true.

1 Analysis Options

1-50

Command-Line Information
Parameter: -div-round-down
Default: Off
Example (Bug Finder): polyspace-bug-finder -div-round-down
Example (Code Prover): polyspace-code-prover -div-round-down
Example (Bug Finder Server): polyspace-bug-finder-server -div-round-down
Example (Code Prover Server): polyspace-code-prover-server -div-round-down

See Also
Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

 Division round down (-div-round-down)

1-51

Enum type definition (-enum-type-definition)
Specify how to represent an enum with a base type

Description
Allow the analysis to use different base types to represent an enumerated type, depending on the
enumerator values and the selected definition. When using this option, each enum type is represented
by the smallest integral type that can hold its enumeration values.

This option is available on the Target & Compiler node in the Configuration pane.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -enum-type-definition. See “Command-Line
Information” on page 1-53.

Why Use This Option

Your compiler represents enum variables as constants of a base integer type. Use this option so that
you can emulate your compiler.

To check your compiler settings:

1 Compile this code using the compiler settings that you typically use:

enum { MAXSIGNEDBYTE=127 } mysmallenum_t;

int dummy[(int)sizeof(mysmallenum_t) - (int)sizeof(int)];

If compilation fails, you have to use one of auto-signed-first or auto-unsigned-first.
2 Compile this code using the compiler settings that you typically use:

#include <limits.h>

enum { MYINTMAX = INT_MAX } myintenum_t;

int dummy[(MYINTMAX + 1) < 0 ? -1:1];

If compilation fails, use auto-signed-first for this option, otherwise use auto-unsigned-
first.

Settings
Default: defined-by-compiler

defined-by-compiler
Uses the signed integer type for all compilers except gnu, clang and tasking.

1 Analysis Options

1-52

For the gnu and clang compilers, it uses the first type that can hold all of the enumerator values
from this list: unsigned int, signed int, unsigned long, signed long, unsigned long
long and signed long long.

For the tasking compiler, it uses the first type that can hold all of the enumerator values from this
list: char, unsigned char, short, unsigned short, int, and unsigned int.

auto-signed-first
Uses the first type that can hold all of the enumerator values from this list: signed char,
unsigned char, signed short, unsigned short, signed int, unsigned int, signed
long, unsigned long, signed long long, and unsigned long long.

auto-unsigned-first
Uses the first type that can hold all of the enumerator values from these lists:

• If enumerator values are positive: unsigned char, unsigned short, unsigned int,
unsigned long, and unsigned long long.

• If one or more enumerator values are negative: signed char, signed short, signed int,
signed long, and signed long long.

Command-Line Information
Parameter: -enum-type-definition
Value: defined-by-compiler | auto-signed-first | auto-unsigned-first
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -enum-type-definition auto-signed-
first
Example (Code Prover): polyspace-code-prover -enum-type-definition auto-signed-
first
Example (Bug Finder Server): polyspace-bug-finder-server -enum-type-definition
auto-signed-first
Example (Code Prover Server): polyspace-code-prover-server -enum-type-definition
auto-signed-first

See Also
Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

 Enum type definition (-enum-type-definition)

1-53

Block char16/32_t types (-no-uliterals)
Disable Polyspace definitions for char16_t or char32_t

Description
Specify that the analysis must not define char16_t or char32_t types.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. See “Dependencies” on page 1-54 for other options you must also enable.

Command line and options file: Use the option -no-uliterals. See “Command-Line
Information” on page 1-54.

Why Use This Option

If your compiler defines char16_t and/or char32_t through a typedef statement or by using
includes, use this option to turn off the standard Polyspace definition of char16_t and char32_t.

To check if your compiler defines these types, compile this code using the compiler settings that you
typically use:

typedef unsigned short char16_t;
typedef unsigned long char32_t;

If the file compiles, it means that your compiler has already defined char16_t and char32_t.
Enable this Polyspace option.

Settings
 On

The analysis does not allow char16_t and char32_t types.
 Off (default)

The analysis allows char16_t and char32_t types.

Dependencies
You can select this option only when these conditions are true:

• Source code language (-lang) is set to CPP or C-CPP.
• Compiler (-compiler) is set to generic or a gnu version.

Command-Line Information
Parameter: -no-uliterals
Default: off
Example (Bug Finder): polyspace-bug-finder -lang cpp -compiler gnu4.7 -cpp-
version cpp11 -no-uliterals

1 Analysis Options

1-54

Example (Code Prover): polyspace-code-prover -compiler gnu4.7 -lang cpp -cpp-
version cpp11 -no-uliterals
Example (Bug Finder Server): polyspace-bug-finder-server -lang cpp -compiler
gnu4.7 -cpp-version cpp11 -no-uliterals
Example (Code Prover Server): polyspace-code-prover-server -compiler gnu4.7 -lang
cpp -cpp-version cpp11 -no-uliterals

See Also
Compiler (-compiler)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

 Block char16/32_t types (-no-uliterals)

1-55

Pack alignment value (-pack-alignment-value)
Specify default structure packing alignment for code developed in Visual C++

Description
Specify the default packing alignment (in bytes) for structures, unions, and class members.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -pack-alignment-value. See “Command-Line
Information” on page 1-56.

Why Use This Option

If you use compiler options to specify how members of a structure are packed into memory, use this
option to emulate your compiler.

For instance, if you use the Visual Studio option /Zp to specify an alignment, use this option for your
Polyspace analysis.

If you use #pragma pack directives in your code to specify alignment, and also specify this option
for analysis, the #pragma pack directives take precedence.

Settings
Default: 8

You can enter one of these values:

• 1
• 2
• 4
• 8
• 16

Command-Line Information
Parameter: -pack-alignment-value
Value: 1 | 2 | 4 | 8 | 16
Default: 8
Example (Bug Finder): polyspace-bug-finder -compiler visual10 -pack-alignment-
value 4
Example (Code Prover): polyspace-code-prover -compiler visual10 -pack-alignment-
value 4
Example (Bug Finder Server): polyspace-bug-finder-server -compiler visual10 -
pack-alignment-value 4

1 Analysis Options

1-56

https://msdn.microsoft.com/en-us/library/xh3e3fd0.aspx

Example (Code Prover Server): polyspace-code-prover-server -compiler visual10 -
pack-alignment-value 4

See Also
Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”
“Assumptions About #pragma Directives” on page 4-28

 Pack alignment value (-pack-alignment-value)

1-57

Ignore pragma pack directives (-ignore-pragma-
pack)
Ignore #pragma pack directives

Description
Specify that the analysis must ignore #pragma pack directives in the code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -ignore-pragma-pack. See “Command-Line
Information” on page 1-58.

Why Use This Option

Use this option if #pragma pack directives in your code cause linking errors.

For instance, you have two structures with the same name in your code, but one declaration follows a
#pragma pack(2) statement. Because the default alignment is 8 bytes, the different packing for the
two structures causes a linking error. Use this option to avoid such errors.

Settings
 On

The analysis ignores the #pragma directives.

 Off (default)
The analysis takes into account specifications in the #pragma directives.

Command-Line Information
Parameter: -ignore-pragma-pack
Default: Off
Example (Bug Finder): polyspace-bug-finder -ignore-pragma-pack
Example (Code Prover): polyspace-code-prover -ignore-pragma-pack
Example (Bug Finder Server): polyspace-bug-finder-server -ignore-pragma-pack
Example (Code Prover Server): polyspace-code-prover-server -ignore-pragma-pack

See Also
Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”
“Assumptions About #pragma Directives” on page 4-28

1 Analysis Options

1-58

Management of size_t (-size-t-type-is)
Specify the underlying data type of size_t

Description
Specify the underlying data type of size_t explicitly: unsigned char, unsigned short,
unsigned int, unsigned long or unsigned long long. If you do not specify this option, your
choice of compiler determines the underlying type.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -size-t-type-is. See “Command-Line
Information” on page 1-60.

Why Use This Option

The analysis associates a data type with size_t when you specify your compiler. If you use a
compiler option that changes this default type, emulate your compiler option by using this analysis
option.

If you run into compilation errors during Polyspace analysis and trace the error to the definition of
size_t, it is possible that you use a compiler option and change your compiler default. To probe
further, compile this code with your compiler using the options that you typically use:

/* Header defines malloc as void* malloc (size_t size)
#include <stdio.h>

void* malloc (unsigned int size);

If the file does not compile, your compiler (along with compiler options) defines size_t using a
different underlying type. Replace unsigned int with another type such as unsigned long and
try again.

Settings
Default: defined-by-compiler

defined-by-compiler
Your specification for Compiler (-compiler) determines the underlying type of size_t.

unsigned-int
The analysis considers unsigned int as the underlying type of size_t.

unsigned-long
The analysis considers unsigned long as the underlying type of size_t.

unsigned-long-long
The analysis considers unsigned long long as the underlying type of size_t.

 Management of size_t (-size-t-type-is)

1-59

unsigned-char
The analysis considers unsigned char as the underlying type of size_t.

unsigned-short
The analysis considers unsigned short as the underlying type of size_t.

Command-Line Information
Parameter: -size-t-type-is
Value: defined-by-compiler | unsigned-char | unsigned-int | unsigned-short |
unsigned-long | unsigned-long-long
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -size-t-type-is unsigned-long
Example (Code Prover): polyspace-code-prover -size-t-type-is unsigned-long
Example (Bug Finder Server): polyspace-bug-finder-server -size-t-type-is
unsigned-long
Example (Code Prover Server): polyspace-code-prover-server -size-t-type-is
unsigned-long

See Also
-custom-target

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

1 Analysis Options

1-60

Management of wchar_t (-wchar-t-type-is)
Specify the underlying data type of wchar_t

Description
Specify the underlying data type of wchar_t explicitly. If you do not specify this option, your choice
of compiler determines the underlying type.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -wchar-t-type-is. See “Command-Line
Information” on page 1-61.

Why Use This Option

The analysis associates a data type with wchar_t when you specify your compiler. If you use a
compiler option that changes this default type, emulate your compiler option by using this analysis
option.

Settings
Default: defined-by-compiler

defined-by-compiler
Your specification for Compiler (-compiler) determines the underlying type of wchar_t.

signed-short
The analysis considers signed short as the underlying type of wchar_t.

unsigned-short
The analysis considers unsigned short as the underlying type of wchar_t.

signed-int
The analysis considers signed int as the underlying type of wchar_t.

unsigned-int
The analysis considers unsigned int as the underlying type of wchar_t.

signed-long
The analysis considers signed long as the underlying type of wchar_t.

unsigned-long
The analysis considers unsigned long as the underlying type of wchar_t.

Command-Line Information
Parameter: -wchar-t-type-is

 Management of wchar_t (-wchar-t-type-is)

1-61

Value: defined-by-compiler | signed-short | unsigned-short | signed-int |
unsigned-int | signed-long | unsigned-long
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -wchar-t-type-is signed-int
Example (Code Prover): polyspace-code-prover -wchar-t-type-is signed-int
Example (Bug Finder Server): polyspace-bug-finder-server -wchar-t-type-is signed-
int
Example (Code Prover Server): polyspace-code-prover-server -wchar-t-type-is
signed-int

See Also
Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

1 Analysis Options

1-62

Signed right shift (-logical-signed-right-
shift)
Specify how to treat the sign bit for logical right shifts on signed variables

Description
Choose between arithmetic and logical shift for right shift operations on negative values.

This option does not modify compile-time expressions. For more details, see “Limitation” on page 1-
63.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -logical-signed-right-shift. See
“Command-Line Information” on page 1-64.

Why Use This Option

The C99 Standard (sec 6.5.7) states that for a right-shift operation x1>>x2, if x1 is signed and has
negative values, the behavior is implementation-defined. Different compilers choose between
arithmetic and logical shift. Use this option to emulate your compiler.

Settings
Default: Arithmetical

Arithmetical
The sign bit remains:

(-4) >> 1 = -2
(-7) >> 1 = -4
 7 >> 1 = 3

Logical
0 replaces the sign bit:

(-4) >> 1 = (-4U) >> 1 = 2147483646
(-7) >> 1 = (-7U) >> 1 = 2147483644
 7 >> 1 = 3

Limitation
In compile-time expressions, this Polyspace option does not change the standard behavior for right
shifts.

For example, consider this right shift expression:

 Signed right shift (-logical-signed-right-shift)

1-63

int arr[((-4) >> 20)];

The compiler computes array sizes, so the expression (-4) >> 20 is evaluated at compilation time.
Logically, this expression is equivalent to 4095. However, arithmetically, the result is -1. This
statement causes a compilation error (arrays cannot have negative size) because the standard right-
shift behavior for signed integers is arithmetic.

Command-Line Information
When using the command line, arithmetic is the default computation mode. When this option is set,
logical computation is performed.
Parameter: -logical-signed-right-shift
Default: Arithmetic signed right shifts
Example (Bug Finder): polyspace-bug-finder -logical-signed-right-shift
Example (Code Prover): polyspace-code-prover -logical-signed-right-shift
Example (Bug Finder Server): polyspace-bug-finder-server -logical-signed-right-
shift
Example (Code Prover Server): polyspace-code-prover-server -logical-signed-right-
shift

See Also
Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

1 Analysis Options

1-64

Preprocessor definitions (-D)
Replace macros in preprocessed code

Description
Replace macros with their definitions in preprocessed code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Macros
node.

Command line and options file: Use the option -D. See “Command-Line Information” on page 1-
66.

Why Use This Option

Use this option to emulate your compiler behavior. For instance, if your compiler considers a macro
_WIN32 as defined when you build your code, it executes code in a #ifdef _WIN32 statement. If
Polyspace does not consider that macro as defined, you must use this option to replace the macro
with 1.

Depending on your settings for Compiler (-compiler), some macros are defined by default. Use
this option to define macros that are not implicitly defined.

Typically, you recognize from compilation errors that a certain macro is not defined. For instance, the
following code does not compile if the macro _WIN32 is not defined.

#ifdef _WIN32
 int env_var;
#endif

void set() {
 env_var=1;
}

The error message states that env_var is undefined. However, the definition of env_var is in the
#ifdef _WIN32 statement. The underlying cause for the error is that the macro _WIN32 is not
defined. You must define _WIN32.

Settings
No Default

Using the button, add a row for the macro you want to define. The definition must be in the
format Macro=Value. If you want Polyspace to ignore the macro, leave the Value blank.

For example:

• name1=name2 replaces all instances of name1 by name2.

 Preprocessor definitions (-D)

1-65

• name= instructs the software to ignore name.
• name with no equals sign or value replaces all instances of name by 1. To define a macro to

execute code in a #ifdef macro_name statement, use this syntax.

Tips
• If Polyspace does not support a non-ANSI keyword and shows a compilation error, use this option

to replace all occurrences of the keyword with a blank string in preprocessed code. The
replacement occurs only for the purposes of the analysis. Your original source code remains intact.

For instance, if your compiler supports the __far keyword, to avoid compilation errors:

• In the user interface (desktop products only), enter __far=.
• On the command line, use the flag -D __far=.

The software replaces the __far keyword with a blank string during preprocessing. For example:

int __far* pValue;

is converted to:

int * pValue;

• Polyspace recognizes keywords such as restrict and does not allow their use as identifiers. If
you use those keywords as identifiers (because your compiler does not recognize them as
keywords), replace the disallowed name with another name using this option. The replacement
occurs only for the purposes of the analysis. Your original source code remains intact.

For instance, to allow use of restrict as identifier:

• In the user interface, enter restrict=my_restrict.
• On the command line, use the flag -D restrict=my_restrict.

• Your compiler specification determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-
info.

• To override the macro definition coming from a compiler specification, use this option.
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information
You can specify only one flag with each -D option. However, you can specify the option multiple times.
Parameter: -D
No Default
Value: flag=value
Example (Bug Finder): polyspace-bug-finder -D HAVE_MYLIB -D int32_t=int
Example (Code Prover): polyspace-code-prover -D HAVE_MYLIB -D int32_t=int
Example (Bug Finder Server): polyspace-bug-finder-server -D HAVE_MYLIB -D
int32_t=int
Example (Code Prover Server): polyspace-code-prover-server -D HAVE_MYLIB -D
int32_t=int

1 Analysis Options

1-66

See Also
Disabled preprocessor definitions (-U)

Topics
“Specify Polyspace Analysis Options”

 Preprocessor definitions (-D)

1-67

Disabled preprocessor definitions (-U)
Undefine macros in preprocessed code

Description
Undefine macros in preprocessed code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Macros
node.

Command line and options file: Use the option -U. See “Command-Line Information” on page 1-
69.

Why Use This Option

Use this option to emulate your compiler behavior. For instance, if your compiler considers a macro
_WIN32 as undefined when you build your code, it executes code in a #ifndef _WIN32 statement. If
Polyspace considers that macro as defined, you must explicitly undefine the macro.

Some settings for Compiler (-compiler) enable certain macros by default. This option allows you
undefine the macros.

Typically, you recognize from compilation errors that a certain macro must be undefined. For
instance, the following code does not compile if the macro _WIN32 is defined.

#ifndef _WIN32
 int env_var;
#endif

void set() {
 env_var=1;
}

The error message states that env_var is undefined. However, the definition of env_var is in the
#ifndef _WIN32 statement. The underlying cause for the error is that the macro _WIN32 is defined.
You must undefine _WIN32.

Settings
No Default

Using the button, add a new row for each macro being undefined.

Tips
Your compiler specification determines the values of many compiler-specific macros. In case you want
to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

1 Analysis Options

1-68

• To override a macro definition coming from a compiler specification, use the option
Preprocessor definitions (-D).

• To undefine the macro, use this option.

Command-Line Information
You can specify only one flag with each -U option. However, you can specify the option multiple times.
Parameter: -U
No Default
Value: macro
Example (Bug Finder): polyspace-bug-finder -U HAVE_MYLIB -U USE_COM1
Example (Code Prover): polyspace-code-prover -U HAVE_MYLIB -U USE_COM1
Example (Bug Finder Server): polyspace-bug-finder-server -U HAVE_MYLIB -U
USE_COM1
Example (Code Prover Server): polyspace-code-prover-server -U HAVE_MYLIB -U
USE_COM1

See Also
Preprocessor definitions (-D)

Topics
“Specify Polyspace Analysis Options”

 Disabled preprocessor definitions (-U)

1-69

Source code encoding (-sources-encoding)
Specify the encoding of source files

Description
Specify the encoding of the source files that you analyze with Polyspace.

Use this option only if you see compilation errors or display issues from non-ASCII characters in your
source files. The option forces an internal conversion of your source files from the specified encoding
to an UTF-8 encoding and might help resolve the issue.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Environment Settings node.

Command line and options file: Use the option -sources-encoding. See “Command-Line
Information” on page 1-71.

Why Use This Option

The analysis uses the default encoding of your operating system as the source code encoding. In most
cases, if your source code contains non-ASCII characters, for instance, Japanese or Korean
characters, the Polyspace analysis can interpret the characters and later display the source code
correctly.

If you still have compilation errors or display issues from non-ASCII characters, you might be using
an encoding that is different from the default encoding. You can then specify your source code
encoding explicitly using this option.

Settings
Default: system

system
The analysis uses the default encoding of the operating system.

shift-jis
The analysis uses the Shift JIS (Shift Japanese Industrial Standards) encoding, a character
encoding for the Japanese language.

iso-8859-1
The analysis uses the ISO/IEC 8859-1:1998 encoding, a character encoding that encodes what it
refers to as "Latin alphabet no.1", consisting of 191 characters from the Latin script.

windows-1252
The analysis uses the Windows-1252 encoding, a single-byte character encoding of the Latin
alphabet, used by default in the legacy components of Windows for English and some other
Western languages.

1 Analysis Options

1-70

UTF-8
The analysis uses the UTF-8 encoding, a variable width character encoding capable of encoding
all valid code points in Unicode.

Polyspace supports many more encodings. To specify an encoding that is not in the above list in the
Polyspace user interface, enter -sources-encoding encodingname in the Other field. In
particular, if your source files contain a mix of different encodings, you can use -sources-encoding
auto. In this mode, the analysis uses internal heuristics to determine the encoding of your source
files from their contents.

For the full list of supported encodings, at the command line, enter:

-list-all-values -sources-encoding

with the polyspace-bug-finder, polyspace-code-prover, polyspace-bug-finder-server
or polyspace-code-prover-server command. Pipe the output to a file and search the file for the
encoding that you are using.

Command-Line Information
Parameter: -sources-encoding
Default: system
Value: auto | system | shift-jis | iso-8859-1 | windows-1252 | UTF-8
Example (Bug Finder): polyspace-bug-finder -sources-encoding windows-1252
Example (Code Prover): polyspace-code-prover -sources-encoding windows-1252
Example (Bug Finder Server): polyspace-bug-finder-server -sources-encoding
windows-1252
Example (Code Prover Server): polyspace-code-prover-server -sources-encoding
windows-1252

Polyspace supports many more encodings besides the above list. For the full list of supported
encodings, at the command line, enter:

-list-all-values -sources-encoding

with the polyspace-bug-finder, polyspace-code-prover, polyspace-bug-finder-server
or polyspace-code-prover-server command. Pipe the output to a file and search the file for the
encoding that you are using.

See Also
Topics
“Specify Polyspace Analysis Options”

 Source code encoding (-sources-encoding)

1-71

Code from DOS or Windows file system (-dos)
Consider that file paths are in MS-DOS style

Description
Specify that DOS or Windows files are provided for analysis.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Environment Settings node.

Command line and options file: Use the option -dos. See “Command-Line Information” on page 1-
72.

Why Use This Option

Use this option if the contents of the Include or Source folder come from a DOS or Windows file
system. The option helps you resolve case sensitivity and control character issues.

Settings
 On (default)

Analysis understands file names and include paths for Windows/DOS files

For example, with this option,

#include "..\mY_TEst.h"^M

#include "..\mY_other_FILE.H"^M

resolves to:

#include "../my_test.h"

#include "../my_other_file.h"

In this mode, you see an error if your include folder has header files whose names differ only in
case.

 Off
Characters are not controlled for files names or paths.

Command-Line Information
Parameter: -dos
Default: Off
Example (Bug Finder): polyspace-bug-finder -dos -I ./my_copied_include_dir -D
test=1

1 Analysis Options

1-72

Example (Code Prover): polyspace-code-prover -dos -I ./my_copied_include_dir -D
test=1
Example (Bug Finder Server): polyspace-bug-finder-server -dos -I ./
my_copied_include_dir -D test=1
Example (Code Prover Server): polyspace-code-prover-server -dos -I ./
my_copied_include_dir -D test=1

See Also
Topics
“Specify Polyspace Analysis Options”

 Code from DOS or Windows file system (-dos)

1-73

Stop analysis if a file does not compile (-stop-if-
compile-error)
Specify that a compilation error must stop the analysis

Description
Specify that even a single compilation error must stop the analysis.

Set Option

User interface (desktop products only): In the Configuration pane, the option is on the
Environment Settings node.

Command line and options file: Use the option -stop-if-compile-error. See “Command-Line
Information” on page 1-75.

Why Use This Option

Use this option to first resolve all compilation errors and then perform the Polyspace analysis. This
sequence ensures that all files are analyzed.

Otherwise, only files without compilation errors are fully analyzed. The analysis might return some
results for files that do not compile. If a file with compilation errors contains a function definition, the
analysis considers the function undefined. This assumption can sometimes make the analysis less
precise.

The option is more useful for a Code Prover analysis because the Code Prover run-time checks rely
more heavily on range propagation across functions.

Settings
 On

The analysis stops even if a single compilation error occurs.

In the user interface of the Polyspace desktop products, you see the compilation errors on the
Output Summary pane.

For information on how to resolve the errors, see “Troubleshoot Compilation Errors”.

1 Analysis Options

1-74

You can also see the errors in the analysis log, a text file generated during the analysis. The log is
named Polyspace_R20##n_ProjectName_date-time.log and contains lines starting with
Error: indicating compilation errors. To view the log from the analysis results:

• In the user interface of the Polyspace desktop products, select Window > Show/Hide View >
Run Log.

• In the Polyspace Access web interface, open the Review tab. Select Layout > Show/Hide
View > Run Log.

Despite compilation errors, you can see some analysis results, for instance, coding rule violations.

 Off (default)
The analysis does not stop because of compilation errors, but only files without compilation errors
are analyzed. The analysis does not consider files that do not compile. If a file with compilation
errors contains a function definition, the analysis considers the function undefined. If the analysis
needs the definition of such a function, it makes broad assumptions about the function.

• The function return value can take any value in the range allowed by its data type.
• The function can modify arguments passed by reference so that they can take any value in the

range allowed by their data types.

If the assumptions are too broad, the analysis can be less precise. For instance, a run-time check
can flag an operation in orange even though it does not fail in practice.

If compilation errors occur, in the user interface of the Polyspace desktop products, the
Dashboard pane has a link, which shows that some files failed to compile. You can click the link
and see the compilation errors on the Output Summary pane.

You can also see the errors in the analysis log, a text file generated during the analysis. The log is
named Polyspace_R20##n_ProjectName_date-time.log and contains lines starting with
Error: indicating compilation errors. To view the log from the analysis results:

• In the user interface of the Polyspace desktop products, select Window > Show/Hide View >
Run Log.

• In the Polyspace Access web interface, open the Review tab. Select Layout > Show/Hide
View > Run Log.

Command-Line Information
Parameter:-stop-if-compile-error
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources filename -stop-if-compile-
error
Example (Code Prover): polyspace-code-prover -sources filename -stop-if-compile-
error
Example (Bug Finder Server): polyspace-bug-finder-server -sources filename -stop-
if-compile-error
Example (Code Prover Server): polyspace-code-prover-server -sources filename -
stop-if-compile-error

See Also
File does not compile

 Stop analysis if a file does not compile (-stop-if-compile-error)

1-75

Topics
“Specify Polyspace Analysis Options”

Introduced in R2017a

1 Analysis Options

1-76

Command/script to apply to preprocessed files (-
post-preprocessing-command)
Specify command or script to run on source files after preprocessing phase of analysis

Description
Specify a command or script to run on each source file after preprocessing.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Environment Settings node.

Command line and options file: Use the option -post-preprocessing-command. See
“Command-Line Information” on page 1-79.

Why Use This Option

You can run scripts on preprocessed files to work around compilation errors or imprecisions of the
analysis while keeping your original source files untouched. For instance, suppose Polyspace does not
recognize a compiler-specific keyword. If you are certain that the keyword is not relevant for the
analysis, you can run a Perl script to remove all instances of the keyword. When you use this option,
the software removes the keyword from your preprocessed code but keeps your original code
untouched.

Use a script only if the existing analysis options do not meet your requirements. For instance:

• For direct replacement of one keyword with another, use the option Preprocessor
definitions (-D).

However, the option does not allow search and replacement involving regular expressions. For
regular expressions, use a script.

• For mapping your library function to a standard library function, use the option -code-
behavior-specifications.

However, the option supports mapping to only a subset of standard library functions. To map to an
unsupported function, use a script.

If you are unsure about removing or replacing an unsupported construct, do not use this option.
Contact MathWorks® Support for guidance.

Settings
No Default

Enter full path to the command or script or click to navigate to the location of the command or
script. This script is executed before verification.

 Command/script to apply to preprocessed files (-post-preprocessing-command)

1-77

Tips
• Your script must be designed to process the standard output from preprocessing and produce its

results in accordance with that standard output.
• Your script must preserve the number of lines in the preprocessed file. In other words, it must not

add or remove entire lines to or from the file.

Adding a line or removing one can potentially result in some unpredictable behavior on the
location of checks and macros in the Polyspace user interface.

• For a Perl script, in Windows, specify the full path to the Perl executable followed by the full path
to the script.

For example:

• To specify a Perl command that replaces all instances of the far keyword, enter
polyspaceroot\sys\perl\win32\bin\perl.exe -p -e "s/far//g".

• To specify a Perl script replace_keyword.pl that replaces all instances of a keyword, enter
polyspaceroot\sys\perl\win32\bin\perl.exe absolute_path
\replace_keyword.pl.

Here, polyspaceroot is the location of the current Polyspace installation such as C:\Program
Files\Polyspace\R2019a\ and absolute_path is the location of the Perl script. If the paths
contain spaces, use quotes to enclose the full path names.

• Use this Perl script as template. The script removes all instances of the far keyword.

#!/usr/bin/perl

binmode STDOUT;

Process every line from STDIN until EOF
while ($line = <STDIN>)
{

 # Remove far keyword
 $line =~ s/far//g;

 # Print the current processed line to STDOUT
 print $line;
}

You can use Perl regular expressions to perform substitutions. For instance, you can use the
following expressions.

Expression Meaning
. Matches any single character except newline
[a-z0-9] Matches any single letter in the set a-z, or digit in the set 0-9
[^a-e] Matches any single letter not in the set a-e
\d Matches any single digit
\w Matches any single alphanumeric character or _
x? Matches 0 or 1 occurrence of x

1 Analysis Options

1-78

Expression Meaning
x* Matches 0 or more occurrences of x
x+ Matches 1 or more occurrences of x

For complete list of regular expressions, see Perl documentation.
• When you specify this option, the Compilation Assistant is automatically disabled.

Command-Line Information
Parameter: -post-preprocessing-command
Value: Path to executable file or command in quotes
No Default
Example in Linux® (Bug Finder): polyspace-bug-finder -sources file_name -post-
preprocessing-command `pwd`/replace_keyword.pl
Example in Linux (Code Prover): polyspace-code-prover -sources file_name -post-
preprocessing-command `pwd`/replace_keyword.pl
Example in Linux (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -post-preprocessing-command `pwd`/replace_keyword.pl
Example in Linux (Code Prover Server): polyspace-code-prover-server -sources
file_name -post-preprocessing-command `pwd`/replace_keyword.pl
Example in Windows: polyspace-bug-finder -sources file_name -post-
preprocessing-command "C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin
\perl.exe" "C:\My_Scripts\replace_keyword.pl"

Note that in Windows, you use the full path to the Perl executable.

See Also
-regex-replace-rgx -regex-replace-fmt | Command/script to apply after the end
of the code verification (-post-analysis-command)

Topics
“Specify Polyspace Analysis Options”
“Remove or Replace Keywords Before Compilation”

 Command/script to apply to preprocessed files (-post-preprocessing-command)

1-79

https://perldoc.perl.org/perlre.html#Regular-Expressions

Include (-include)
Specify files to be #include-ed by each C file in analysis

Description
Specify files to be #include-ed by each C file involved in the analysis. The software enters the
#include statements in the preprocessed code used for analysis, but does not modify the original
source code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Environment Settings node.

Command line and options file: Use the option -include. See “Command-Line Information” on
page 1-80.

Why Use This Option

There can be many reasons why you want to #include a file in all your source files.

For instance, you can collect in one header file all workarounds for compilation errors. Use this
option to provide the header file for analysis. Suppose you have compilation issues because Polyspace
does not recognize certain compiler-specific keywords. To work around the issues, #define the
keywords in a header file and provide the header file with this option.

Settings
No Default

Specify the file name to be included in every file involved in the analysis.

Polyspace still acts on other directives such as #include <include_file.h>.

Command-Line Information
Parameter: -include
Default: None
Value: file (Use -include multiple times for multiple files)
Example (Bug Finder): polyspace-bug-finder -include `pwd`/sources/a_file.h -
include /inc/inc_file.h
Example (Code Prover): polyspace-code-prover -include `pwd`/sources/a_file.h -
include /inc/inc_file.h
Example (Bug Finder Server): polyspace-bug-finder-server -include `pwd`/sources/
a_file.h -include /inc/inc_file.h
Example (Code Prover Server): polyspace-code-prover-server -include `pwd`/
sources/a_file.h -include /inc/inc_file.h

1 Analysis Options

1-80

See Also
Topics
“Specify Polyspace Analysis Options”
“Gather Compilation Options Efficiently”

 Include (-include)

1-81

Include folders (-I)
View include folders used for analysis

Description
This option is relevant only for the user interface of the Polyspace desktop products.

View the include folders used for analysis.

Set Option

This is not an option that you set in your project configuration. You can only view the include folders
in the configuration associated with a result. For instance, in the user interface:

• To add include folders, on the Project Browser, right-click your project. Select Add Source.
• To view the include folders that you used, with your results open, select Window > Show/Hide

View > Configuration. Under the node Environment Settings, you see the folders listed under
Include folders.

Settings
This is a read-only option available only when viewing results in the user interface of the Polyspace
desktop products. Unlike other options, you do not specify include folders on the Configuration
pane. Instead, you add your include folders on the Project Browser pane.

See Also
-I | Include (-include)

1 Analysis Options

1-82

Ignore link errors (-no-extern-c)
Ignore certain linking errors

Description
Specify that the analysis must ignore certain linking errors.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Environment Settings node. See “Dependency” on page 1-83 for other options that you must also
enable.

Command line and options file: Use the option -no-extern-C. See “Command-Line Information”
on page 1-83.

Why Use This Option

Some functions may be declared inside an extern "C" { } block in some files and not in others.
Then, their linkage is not the same and it causes a link error according to the ANSI standard.

Applying this option will cause Polyspace to ignore this error. This permissive option may not resolve
all the extern C linkage errors.

Settings
 On

Ignore linking errors if possible.

 Off (default)
Stop analysis for linkage errors.

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-CPP.

Command-Line Information
Parameter: -no-extern-C
Default: off
Example (Bug Finder): polyspace-bug-finder -lang cpp -no-extern-C
Example (Code Prover): polyspace-code-prover -lang cpp -no-extern-C
Example (Bug Finder Server): polyspace-bug-finder-server -lang cpp -no-extern-C
Example (Code Prover Server): polyspace-code-prover-server -lang cpp -no-extern-C

 Ignore link errors (-no-extern-c)

1-83

See Also
Topics
“Specify Polyspace Analysis Options”

1 Analysis Options

1-84

Constraint setup (-data-range-specifications)
Constrain global variables, function inputs and return values of stubbed functions

Description
This option applies primarily to a Code Prover analysis. In Bug Finder, you can only specify external
constraints on global variables.

Specify constraints (also known as data range specifications or DRS) for global variables, function
inputs and return values of stubbed functions using a Constraint Specification template file. The
template file is an XML file that you can generate in the Polyspace user interface.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line and options file: Use the option -data-range-specifications. See “Command-
Line Information” on page 1-86.

Why Use This Option

Use this option for specifying constraints outside your code.

Polyspace uses the code that you provide to make assumptions about items such as variable ranges
and allowed buffer size for pointers. Sometimes the assumptions are broader than what you expect
because:

• You have not provided the complete code. For example, you did not provide some of the function
definitions.

• Some of the information about variables is available only at run time. For example, some variables
in your code obtain values from the user at run time.

Because of these broad assumptions:

• Code Prover can consider more execution paths than those paths that occur at run time. If an
operation fails along one of the execution paths, Polyspace places an orange check on the
operation. If that execution path does not occur at run time, the orange check indicates a false
positive.

• Bug Finder can sometimes produce false positives.

To reduce the number of such false positives, you can specify additional constraints on global
variables, function inputs, and return values of stubbed functions.

After you specify your constraints, you can save them as an XML file to use them for subsequent
analyses. If your source code changes, you can update the previous constraints. You do not have to
create a new constraint template.

Settings
No Default

 Constraint setup (-data-range-specifications)

1-85

Enter full path to the template file. Alternately, click to open a Constraint Specification
wizard. This wizard allows you to generate a template file or navigate to an existing template file.

For more information, see “Specify External Constraints”.

Command-Line Information
Parameter: -data-range-specifications
Value: file
No Default
Example (Bug Finder): polyspace-bug-finder -sources file_name -data-range-
specifications "C:\DRS\range.xml"
Example (Code Prover): polyspace-code-prover -sources file_name -data-range-
specifications "C:\DRS\range.xml"
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
data-range-specifications "C:\DRS\range.xml"
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
data-range-specifications "C:\DRS\range.xml"

See Also
Functions to stub (-functions-to-stub) | Ignore default initialization of
global variables (-no-def-init-glob)

Topics
“Specify Polyspace Analysis Options”
“Specify External Constraints”

1 Analysis Options

1-86

Ignore default initialization of global variables (-
no-def-init-glob)
Consider global variables as uninitialized unless explicitly initialized in code

Description
This option applies to Code Prover only. It does not affect a Bug Finder analysis.

Specify that Polyspace must not consider global and static variables as initialized unless they are
explicitly initialized in the code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line and options file: Use the option -no-def-init-glob. See “Command-Line
Information” on page 1-88.

Why Use This Option

The C99 Standard specifies that global variables are implicitly initialized. The default analysis follows
the Standard and considers this implicit initialization.

If you want to initialize specific global variables explicitly, use this option to find the instances where
global variables are not explicitly initialized.

Settings
 On

Polyspace ignores implicit initialization of global and static variables. The verification generates a
red Non-initialized variable error if your code reads a global or static variable before writing to
it.

If you enable this option, global variables are considered uninitialized unless you explicitly
initialize them in the code. Note that this option overrides the option Variables to
initialize (-main-generator-writes-variables). Even if you initialize variables with
the generated main, this option forces the analysis to ignore the initialization.

 Off (default)
Polyspace considers global variables and static variables to be initialized according to C99 or ISO
C++ standards. For instance, the default values are:

• 0 for int
• 0 for char
• 0.0 for float

 Ignore default initialization of global variables (-no-def-init-glob)

1-87

Tips
Static local variables have the same lifetime as global variables even though their visibility is limited
to the function where they are defined. Therefore, the option applies to static local variables.

Command-Line Information
Parameter: -no-def-init-glob
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -no-def-init-
glob
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
no-def-init-glob

See Also
Non-initialized variable

Topics
“Specify Polyspace Analysis Options”

1 Analysis Options

1-88

Functions to stub (-functions-to-stub)
Specify functions to stub during analysis

Description
Specify functions to stub during analysis.

For specified functions, Polyspace :

• Ignores the function definition even if it exists.
• Assumes that the function inputs and outputs have full range of values allowed by their type.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line and options file: Use the option -functions-to-stub. See “Command-Line
Information” on page 1-90.

Why Use This Option

If you want the analysis to ignore the code in a function body, you can stub the function.

For instance:

• Suppose you have not completed writing the function and do not want the analysis to consider the
function body. You can use this option to stub the function and then specify constraints on its
return value and modifiable arguments.

• Suppose the analysis of a function body is imprecise. The analysis assumes that the function
returns all possible values that the function return type allows. You can use this option to stub the
function and then specify constraints on its return value.

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

When entering function names, use either the basic syntax or, to differentiate overloaded functions,
the argument syntax. For the argument syntax, separate function arguments with semicolons. See the
following code and table for examples.

//simple function

void test(int a, int b);

 Functions to stub (-functions-to-stub)

1-89

//C++ template function

Template <class myType>
myType test(myType a, myType b);

//C++ class method

class A {
 public:
 int test(int var1, int var2);
};

//C++ template class method

template <class myType> class A
{
 public:
 myType test(myType var1, myType var2);
};

Function Type Basic Syntax Argument Syntax
Simple function test test(int; int)
C++ template function test test(myType; myType)
C++ class method A::test A::test(int;int)
C++ template class
method

A<myType>::test A<myType>::test(myType;myTyp
e)

Tips
• Code Prover makes assumptions about the arguments and return values of stubbed functions. For

example, Polyspace assumes that the return values of stubbed functions are full range. These
assumptions can affect checks in other sections of the code. See “Assumptions About Stubbed
Functions” on page 4-7.

• If you stub a function, you can constrain the range of function arguments and return value. To
specify constraints, use the analysis option Constraint setup (-data-range-
specifications).

• For C functions, these special characters are allowed:() < > ; _

For C++ functions, these special characters are allowed : () < > ; _ * & []

Space characters are allowed for C++, but are not allowed for C functions.

Command-Line Information
Parameter: -functions-to-stub
No Default
Value: function1[,function2[,...]]
Example (Code Prover): polyspace-code-prover -sources file_name -functions-to-
stub function_1,function_2

1 Analysis Options

1-90

Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
functions-to-stub function_1,function_2

See Also
Constraint setup (-data-range-specifications)

Topics
“Specify Polyspace Analysis Options”

 Functions to stub (-functions-to-stub)

1-91

Libraries used (-library)
Specify libraries that you use in your program

Description
Specify libraries that you use in your program.

The analysis uses smart stubs for functions from those libraries instead of generic stubs and does not
attempt to check the function implementations. Using this option enables faster analysis without
losing precision and triggers library-specific checks on function calls.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line and options file: Use the option -library. See “Command-Line Information” on
page 1-93.

Why Use This Option

For faster and library-aware analysis, use this option. Unless you use this option, the analysis either
attempts to check the library implementation or if the implementation is not available, uses generic
stubs for library functions. Checking the function bodies can increase analysis time significantly while
using generic stubs can lead to loss of precision.

The option also triggers library-specific checks on function arguments. For instance, if you select the
option value autosar, a Bug Finder or Code Prover analysis checks arguments to functions from the
AUTOSAR RTE API for compliance with the AUTOSAR Standard.

Settings
Default: none

none
The analysis uses smart stubs only for functions from the C or C++ Standard Library (if their
implementations cannot be found).

autosar
In addition to the stubbing of C or C++ Standard Library functions with missing
implementations, the analysis uses smart stubs for AUTOSAR RTE API functions (even if their
implementations are available).

The option also triggers AUTOSAR-specific checks on function arguments. For more information,
see the corresponding checkers:

• Bug Finder: Non-compliance with AUTOSAR specification

Besides setting the option, you must also explicitly enable the above checker (or enable all
checkers).

1 Analysis Options

1-92

• Code Prover: Non-compliance with AUTOSAR specification

Setting the option is sufficient to enable the checker.

Command-Line Information
Parameter: -library
No Default
Value: autosar
Example (Bug Finder): polyspace-bug-finder -sources file_name -library autosar -
checkers autosar_lib_non_compliance
Example (Code Prover): polyspace-code-prover -sources file_name -library autosar
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
library autosar -checkers autosar_lib_non_compliance
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
library autosar

See Also
Topics
“Specify Polyspace Analysis Options”

Introduced in R2021a

 Libraries used (-library)

1-93

Generate stubs for Embedded Coder lookup tables
(-stub-embedded-coder-lookup-table-
functions)
Stub autogenerated functions that use lookup tables and model them more precisely

Description
This option is available only for model-generated code. The option is relevant only if you generate
code from a Simulink® model that uses Lookup Table blocks using MathWorks code generation
products.

Specify that the verification must stub autogenerated functions that use certain kinds of lookup tables
in their body. The lookup tables in these functions use linear interpolation and do not allow
extrapolation. That is, the result of using the lookup table always lies between the lower and upper
bounds of the table.

Set Option

If you are running verification from Simulink, use the option “Stub lookup tables” on page 12-9 in
Simulink Configuration Parameters, which performs the same task.

User interface (desktop products only): In your Polyspace project configuration, the option is on the
Inputs & Stubbing node.

Command line and options file: Use the option -stub-embedded-coder-lookup-table-
functions. See “Command-Line Information” on page 1-95.

Why Use This Option

If you use this option, the verification is more precise and has fewer orange checks. The verification
of lookup table functions is usually imprecise. The software has to make certain assumptions about
these functions. To avoid missing a run-time error, the verification assumes that the result of using
the lookup table is within the full range allowed by the result data type. This assumption can cause
many unproven results (orange checks) when a lookup table function is called. By using this option,
you narrow down the assumption. For functions that use lookup tables with linear interpolation and
no extrapolation, the result is at least within the bounds of the table.

The option is relevant only if your model has Lookup Table blocks. In the generated code, the
functions corresponding to Lookup Table blocks also use lookup tables. The function names follow
specific conventions. The verification uses the naming conventions to identify if the lookup tables in
the functions use linear interpolation and no extrapolation. The verification then replaces such
functions with stubs for more precise verification.

Settings
 On (default)

For autogenerated functions that use lookup tables with linear interpolation and no extrapolation,
the verification:

1 Analysis Options

1-94

• Does not check for run-time errors in the function body.
• Calls a function stub instead of the actual function at the function call sites. The stub ensures

that the result of using the lookup table is within the bounds of the table.

To identify if the lookup table in the function uses linear interpolation and no extrapolation, the
verification uses the function name. In your analysis results, you see that the function is not
analyzed. If you place your cursor on the function name, you see the following message:

 Function has been recognized as an Embedded Coder Lookup-Table function.
 It was stubbed by Polyspace to increase precision.
 Unset the -stub-embedded-coder-lookup-table-functions option to analyze
 the code below.

 Off
The verification does not stub autogenerated functions that use lookup tables.

Tips
• The option applies to only autogenerated functions. If you integrate your own C/C++ S-Function

using lookup tables with the model, these functions do not follow the naming conventions for
autogenerated functions. The option does not cause them to be stubbed. If you want the same
behavior for your handwritten lookup table functions as the autogenerated functions, use the
option -code-behavior-specifications and map your function to the
__ps_lookup_table_clip function.

• If you run verification from Simulink, the option is on by default. For certification purposes, if you
want your verification tool to be independent of the code generation tool, turn off the option.

Command-Line Information
Parameter: -stub-embedded-coder-lookup-table-functions
Default: On
Example (Code Prover): polyspace-code-prover -sources file_name -stub-embedded-
coder-lookup-table-functions
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
stub-embedded-coder-lookup-table-functions

See Also
Topics
“Specify Polyspace Analysis Options”

Introduced in R2016b

 Generate stubs for Embedded Coder lookup tables (-stub-embedded-coder-lookup-table-functions)

1-95

Generate results for sources and (-generate-
results-for)
Specify files on which you want analysis results

Description
Specify files on which you want analysis results.

By default, results appear on source files and header files in the same folder as the source files. You
can use this option to see results in other header files. If you use the option Do not generate
results for (-do-not-generate-results-for) to suppress entire folders, you can use this
option to unsuppress some subfolders or files in those folders.

The option applies only to coding rule violations and code metrics. You cannot suppress Code Prover
run-time checks from select source and header files.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line and options file: Use the option -generate-results-for. See “Command-Line
Information” on page 1-97.

Why Use This Option

Use this option to see results in header files that are most relevant to you.

For instance, by default, results are generated on header files that are located in the same folder as
the source files. Often, other header files belong to a third-party library. Though these header files are
required for a precise analysis, you are not interested in reviewing findings in those headers.
Therefore, by default, results are not generated for those headers. If you are interested in certain
headers from third-party libraries, change the default value of this option.

Note that in Polyspace as You Code, you cannot see results in headers #include-d through a source
file at all. The default behavior is to consider the headers in the same folder as the source file (or
subfolders) for analysis but suppress results found in the headers. You can use this option only to
expand the scope of which headers are considered during analysis. See also “Analysis Scope of
Polyspace as You Code” (Polyspace Bug Finder Access).

Settings
Default: source-headers

source-headers
Results appear on source files and header files in the same folder as the source files or in
subfolders of source file folders.

The source files are the files that you add to the Source folder of your Polyspace project (or use
with the argument -sources at the command line).

1 Analysis Options

1-96

all-headers
Results appear on source files and all header files. The header files can be in the same folder as
source files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace project (or use
with the argument -sources at the command line).

The include folders are the folders that you add to the Include folder of your Polyspace project
(or use with the argument -I at the command line).

custom
Results appear on source files and the files that you specify. If you enter a folder name, results
appear on header files in that folder (and its subfolders).

Click to add a field. Enter a file or folder name.

Tips
1 Use this option in combination with appropriate values for the option Do not generate

results for (-do-not-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific value
determines the display of results. For instance, in the following examples, the value for the option
Generate results for sources and is more specific.

Generate results for
sources and

Do not generate results
for

Final Result

custom:

C:\Includes
\Custom_Library\

custom:

C:\Includes

Results are displayed on
header files in C:\Includes
\Custom_Library\ and its
subfolders but not generated
for other header files in
C:\Includes.

custom:

C:\Includes
\my_header.h

custom:

C:\Includes\

Results are displayed on the
header file my_header.h in
C:\Includes\ but not
generated for other header
files in C:\Includes\ and
its subfolders.

Using these two options together, you can suppress results from all files in a certain folder but
unsuppress select files in those folders.

2 If you choose all-headers for this option, results are displayed on all header files irrespective
of what you specify for the option Do not generate results for.

Command-Line Information
Parameter: -generate-results-for
Value: source-headers | all-headers | custom=file1[,file2[,...]] |
custom=folder1[,folder2[,...]]

 Generate results for sources and (-generate-results-for)

1-97

Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -misra2
required-rules -generate-results-for custom="C:\usr\include"
Example (Code Prover): polyspace-code-prover -lang c -sources file_name -misra2
required-rules -generate-results-for custom="C:\usr\include"
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
file_name -misra2 required-rules -generate-results-for custom="C:\usr
\include"
Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
file_name -misra2 required-rules -generate-results-for custom="C:\usr
\include"

See Also
Topics
“Specify Polyspace Analysis Options”

Introduced in R2016a

1 Analysis Options

1-98

Do not generate results for (-do-not-generate-
results-for)
Specify files on which you do not want analysis results

Description
Specify files on which you do not want analysis results.

By default, results do not appear on header files (unless they are in the same folder as the source
files). You can use this option to suppress results from some source files too (or from header files in
the same folders as source files). If you use the option Generate results for sources and (-
generate-results-for) to show results on some include folders, you can use this option to
suppress results from some subfolders or files in those include folders.

The option applies only to coding rule violations, code metrics and unused global variables. You
cannot suppress Code Prover run-time checks from source and header files.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line and options file: Use the option -do-not-generate-results-for. See
“Command-Line Information” on page 1-102.

Why Use This Option

Use this option to see results in header files that are most relevant to you.

For instance, by default, results are generated on header files that are located in the same folder as
the source files. If you are not interested in reviewing the findings in those headers, change the
default value of this option.

Note that in Polyspace as You Code, the default behavior is to not even analyze the headers in non-
source folders. You can use this option to expand the scope of not analyzed files to all headers or a
different subset of headers. See also “Analysis Scope of Polyspace as You Code” (Polyspace Bug
Finder Access).

Settings
Default: include-folders

include-folders
Results are not generated for header files in include folders (and their subfolders).

The include folders are the folders that you add to the Include folder of your Polyspace project
(or use with the argument -I at the command line).

 Do not generate results for (-do-not-generate-results-for)

1-99

If an include folder is a subfolder of a source folder, results are generated for files in that include
folder even if you specify the option value include-folders. In this situation, use the option
value custom and explicitly specify the include folders to ignore.

all-headers
Results are not generated for all header files. The header files can be in the same folder as source
files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace project (or use
with the argument -sources at the command line).

The include folders are the folders that you add to the Include folder of your Polyspace project
(or use with the argument -I at the command line).

custom
Results are not generated for the files that you specify. If you enter a folder name, results are
suppressed from files in that folder (and its subfolders).

Click to add a field. Enter a file or folder name.

Tips
1 Use this option appropriately in combination with appropriate values for the option Generate

results for sources and (-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific value
determines the display of results. For instance, in the following examples, the value for the option
Generate results for sources and is more specific.

Generate results for
sources and

Do not generate results
for

Final Result

custom:

C:\Includes
\Custom_Library\

custom:

C:\Includes

Results are displayed on
header files in C:\Includes
\Custom_Library\ and its
subfolders but not generated
for other header files in
C:\Includes.

custom:

C:\Includes
\my_header.h

custom:

C:\Includes\

Results are displayed on the
header file my_header.h in
C:\Includes\ but not
generated for other header
files in C:\Includes\ and
its subfolders.

Using these two options together, you can suppress results from all files in a certain folder but
unsuppress select files in those folders.

2 If you choose all-headers for this option, results are suppressed from all header files
irrespective of what you specify for the option Generate results for sources and.

3 If a defect or coding rule violation involves two files and you do not generate results for one of
the files, the defect or rule violation still appears. For instance, if you define two variables with
similar-looking names in files myFile.cpp and myFile.h, you get a violation of the MISRA® C+

1 Analysis Options

1-100

+ rule 2-10-1, even if you do not generate results for myFile.h. MISRA C++ rule 2-10-1 states
that different identifiers must be typographically unambiguous.

The following results can involve more than one file:

MISRA C: 2004 Rules

• MISRA C: 2004 Rule 5.1 — Identifiers (internal and external) shall not rely on the significance
of more than 31 characters.

• MISRA C: 2004 Rule 5.2 — Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

• MISRA C: 2004 Rule 8.8 — An external object or function shall be declared in one file and
only one file.

• MISRA C: 2004 Rule 8.9 — An identifier with external linkage shall have exactly one external
definition.

MISRA C: 2012 Directives and Rules

• MISRA C: 2012 Directive 4.5 — Identifiers in the same name space with overlapping visibility
should be typographically unambiguous.

• MISRA C: 2012 Rule 5.2 — Identifiers declared in the same scope and name space shall be
distinct.

• MISRA C: 2012 Rule 5.3 — An identifier declared in an inner scope shall not hide an identifier
declared in an outer scope.

• MISRA C: 2012 Rule 5.4 — Macro identifiers shall be distinct.
• MISRA C: 2012 Rule 5.5 — Identifiers shall be distinct from macro names.
• MISRA C: 2012 Rule 8.5 — An external object or function shall be declared once in one and

only one file.
• MISRA C: 2012 Rule 8.6 — An identifier with external linkage shall have exactly one external
definition.

MISRA C++ Rules

• MISRA C++ Rule 2-10-1 — Different identifiers shall be typographically unambiguous.
• MISRA C++ Rule 2-10-2 — Identifiers declared in an inner scope shall not hide an identifier

declared in an outer scope.
• MISRA C++ Rule 3-2-2 — The One Definition Rule shall not be violated.
• MISRA C++ Rule 3-2-3 — A type, object or function that is used in multiple translation units

shall be declared in one and only one file.
• MISRA C++ Rule 3-2-4 — An identifier with external linkage shall have exactly one definition.
• MISRA C++ Rule 7-5-4 — Functions should not call themselves, either directly or indirectly.
• MISRA C++ Rule 15-4-1 — If a function is declared with an exception-specification, then all

declarations of the same function (in other translation units) shall be declared with the same
set of type-ids.

JSF C++ Rules

• JSF C++ Rule 46 — User-specified identifiers (internal and external) will not rely on
significance of more than 64 characters.

 Do not generate results for (-do-not-generate-results-for)

1-101

• JSF C++ Rule 48 — Identifiers will not differ by only a mixture of case, the presence/absence
of the underscore character, the interchange of the letter O with the number 0 or the letter D,
the interchange of the letter I with the number 1 or the letter l, the interchange of the letter
S with the number 5, the interchange of the letter Z with the number 2 and the interchange of
the letter n with the letter h.

• JSF C++ Rule 137 — All declarations at file scope should be static where possible.
• JSF C++ Rule 139 — External objects will not be declared in more than one file.

Polyspace Bug Finder Defects

• Variable shadowing — Variable hides another variable of same name with nested scope.
• Declaration mismatch — Mismatch occurs between function or variable declarations.

4 If a global variable is never used after declaration, it appears in Code Prover results as an unused
global variable. However, if it is declared in a file for which you do not want results, you do not
see the unused variable in your verification results.

5 If a result (coding rule violation or Bug Finder defect) is inside a macro, Polyspace typically
shows the result on the macro definition instead of the macro occurrences so that you review the
result only once. Even if the macro is used in a suppressed file, the result is still shown on the
macro definition, if the definition occurs in an unsuppressed file.

Command-Line Information
Parameter: -do-not-generate-results-for
Value: all-headers | include-folders | custom=file1[,file2[,...]] |
custom=folder1[,folder2[,...]]
Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -misra2
required-rules -do-not-generate-results-for custom="C:\usr\include"
Example (Code Prover): polyspace-code-prover -lang c -sources file_name -misra2
required-rules -do-not-generate-results-for custom="C:\usr\include"
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
file_name -misra2 required-rules -do-not-generate-results-for custom="C:\usr
\include"
Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
file_name -misra2 required-rules -do-not-generate-results-for custom="C:\usr
\include"

See Also
Generate results for sources and (-generate-results-for)

Topics
“Specify Polyspace Analysis Options”

Introduced in R2016a

1 Analysis Options

1-102

No STL stubs (-no-stl-stubs)
Do not use Polyspace implementations of functions in the Standard Template Library

Description
Specify that the verification must not use Polyspace implementations of the Standard Template
Library.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node. See “Dependency” on page 1-103 for other options that you must also enable.

Command line and options file: Use the option -no-stl-stubs. See “Command-Line
Information” on page 1-103.

Why Use This Option

When you use a class template from the Standard Template Library (STL), the Polyspace analysis,
instead of verifying a full implementation of the STL template, uses stubs to improve performance
and precision.

However, it might happen that your compiler redefines an STL template with an implementation that
conflicts with the Polyspace implementation. If a conflict occurs, you see errors because your code
uses your compiler implementation of the STL template. To avoid the errors, use this option and
prevent Polyspace from using its implementations of STL templates. You must also explicitly provide
the path to your compiler includes. See “C++ Standard Template Library Stubbing Errors”

Settings
 On

The verification does not use Polyspace implementations of the Standard Template Library.

 Off (default)
The verification uses efficient Polyspace implementations of the Standard Template Library.

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-CPP.

Command-Line Information
Parameter: -no-stl-stubs
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -no-stl-stubs
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
no-stl-stubs

 No STL stubs (-no-stl-stubs)

1-103

See Also
Topics
“Specify Polyspace Analysis Options”

1 Analysis Options

1-104

Enable automatic concurrency detection for Code
Prover (-enable-concurrency-detection)
Automatically detect certain families of multithreading functions

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify whether the analysis must automatically detect POSIX®, VxWorks®, Windows, μC/OS II and
other multithreading functions.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-106 for other options that you must enable or
disable.

Command line and options file: Use the option -enable-concurrency-detection. See
“Command-Line Information” on page 1-106.

Why Use This Option

If you use this option, Polyspace determines your multitasking model from your use of multithreading
functions. In Bug Finder, automatic concurrency detection is enabled by default. In Code Prover, you
have to explicitly enable automatic concurrency detection.

In some cases, using automatic concurrency detection can slow down the Code Prover analysis. In
those cases, you can choose to not enable this option and explicitly specify your multitasking model.
See “Configuring Polyspace Multitasking Analysis Manually”.

Settings
 On

If you use one of the supported functions for multitasking, the analysis automatically detects your
multitasking model from your code.

For a list of supported multitasking functions and limitations in auto-detection of threads, see
“Auto-Detection of Thread Creation and Critical Section in Polyspace”.

 Off (default)
The analysis does not attempt to detect the multitasking model from your code.

If you want to manually configure your multitasking model, see “Configuring Polyspace
Multitasking Analysis Manually”.

 Enable automatic concurrency detection for Code Prover (-enable-concurrency-detection)

1-105

Dependencies
If you enable this option, your code must contain a main function. You cannot use the Code Prover
options to generate a main.

Command-Line Information
Parameter: -enable-concurrency-detection
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -enable-
concurrency-detection
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
enable-concurrency-detection

See Also
Show global variable sharing and usage only (-shared-variables-mode)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Auto-Detection of Thread Creation and Critical Section in Polyspace”

1 Analysis Options

1-106

External multitasking configuration
Enable setup of multitasking configuration from external file definitions

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify whether you want to use definitions from external files to set up the multitasking
configuration of your Polyspace project. The supported external file formats are:

• ARXML files for AUTOSAR projects
• OIL files for OSEK projects

Set Option

User interface: In the Configuration pane, the option is available on the Multitasking node.

Command line and options file: See “Command-Line Information” on page 1-107.

Why Use This Option

If your AUTOSAR project includes ARXML files with ECU configuration parameters, or if your OSEK
project includes OIL files, Polyspace can parse these files. The software sets up tasks, interrupts,
cyclical tasks, and critical sections. You do not have to set them up manually.

Settings
 On

Polyspace parses the external files that you provide in the format that you specify to set up the
multitasking configuration of your project.

osek
Look for and parse OIL files to extract multitasking description.

autosar
Look for and parse AUTOSAR XML files to extract multitasking description.

 Off (default)
Polyspace does not set up the multitasking configuration of your project.

Command-Line Information
There is no single command-line option to turn on external multitasking configuration. By using the -
osek-multitasking option or the -autosar-multitasking option, you enable external
multitasking configuration.

See Also
ARXML files selection (-autosar-multitasking) | OIL files selection (-osek-
multitasking)

 External multitasking configuration

1-107

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”

Introduced in R2018a

1 Analysis Options

1-108

OIL files selection (-osek-multitasking)
Set up multitasking configuration from OIL file definition

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify the OIL files that Polyspace parses to set up the multitasking configuration of your OSEK
project.

Set Option

User interface: In the Configuration pane, the option is available on the Multitasking node. See
Dependencies on page 1-113 for other options you must also enable.

Command line: and options file Use the option -osek-multitasking. See “Command-Line
Information” on page 1-113.

Why Use This Option

If your project includes OIL files, Polyspace can parse these files to set up tasks, interrupts, cyclical
tasks, and critical sections. You do not have to set them up manually.

Settings
 On

Polyspace looks for and parses OIL files to set up your multitasking configuration.
auto

Look for OIL files in your project source and include folders, but not in their subfolders.
custom

Look for OIL files on the specified path and the path subfolders. You can specify a path to the OIL
files or to the folder containing the files.

When you select this option, in your source code, Polyspace supports these OSEK multitasking
keywords:

• TASK
• DeclareTask
• ActivateTask
• DeclareResource
• GetResource
• ReleaseResource
• ISR
• DeclareEvent
• DeclareAlarm

 OIL files selection (-osek-multitasking)

1-109

Polyspace parses the OIL files that you provide for TASK, ISR, RESOURCE, and ALARM definitions. The
analysis uses these definitions and the supported multitasking keywords to configure tasks,
interrupts, cyclical tasks, and critical sections.

Example: Analyze Your OSEK Multitasking Project

This example shows how to set up the multitasking configuration of an OSEK project and run an
analysis on this project. To try the steps in this example, use the demo files in the folder
polyspaceroot/help/toolbox/bugfinder/examples/External_multitasking/OSEK or
polyspaceroot/help/toolbox/codeprover/examples/External_multitasking/OSEK.
polyspaceroot is the Polyspace installation folder. The analysis results apply to this example code.

1 Analysis Options

1-110

#include <assert.h>
#include "include/example_osek_multi.h"

int var1;
int var2;
int var3;

DeclareAlarm(Cyclic_task_activate);
DeclareResource(res1);
DeclareTask(init);
TASK(afterinit1);

TASK(init) // task
{

 var2++;
 ActivateTask(afterinit1);
 var3++;
 GetResource(res1); // critical section begins
 var1++;
 ReleaseResource(res1); // critical section ends
}

TASK(afterinit1) // task
{
 var3++;
 var2++;
 GetResource(res1); // critical section begins
 var1++;
 ReleaseResource(res1); // critical section ends

}

int var4;
void func()
{
 var4++;
}

TASK(Cyclic_task) // cyclic task
{
 func();
}

void main()
{}

To set up your multitasking configuration and analyze the code:

1 Copy the contents of polyspaceroot/help/toolbox/bugfinder/examples/
External_multitasking/OSEK or polyspaceroot/help/toolbox/codeprover/
examples/External_multitasking/OSEK to your machine, for instance in
C:\Polyspace_worskpace\OSEK.

2 Run an analysis on your OSEK project by using the command:

 OIL files selection (-osek-multitasking)

1-111

• Bug Finder:

polyspace-bug-finder -sources ^
C:\Polyspace_workspace\OSEK\example_osek_multitasking.c ^
-osek-multitasking auto

• Code Prover:

polyspace-code-prover -sources ^
C:\Polyspace_workspace\OSEK\example_osek_multitasking.c ^
-osek-multitasking auto

• Bug Finder Server:

polyspace-bug-finder-server -sources ^
C:\Polyspace_workspace\OSEK\example_osek_multitasking.c ^
-osek-multitasking auto

• Code Prover Server:

polyspace-code-prover-server -sources ^
C:\Polyspace_workspace\OSEK\example_osek_multitasking.c ^
-osek-multitasking auto

Bug Finder detects a data race on variable var3 because of multiple read and write operation from
tasks init and afterinit1. See Data race.

#include <assert.h>
#include "include/example_osek_multi.h"

int var1;
int var2;
int var3;

There is no defect on var2 since afterinit1 goes to an active state (ActivateTask()) after init
increments var2. Similarly, there is no defect on var1 because it is protected by the
GetResource() and ReleaseResource() calls.

Code Prover detects that var3 is a potentially unprotected global variable because it is used in tasks
init and afterinit1 with no protection from interruption during the read and write operations.
The analysis also shows that the cyclic task operation on var4 can potentially cause an overflow. See
Potentially unprotected variable and Overflow.

#include <assert.h>
#include "include/example_osek_multi.h"

int var1;
int var2;
int var3;

...
void func()
{
 var4++;
}

Variable var2 is not shared because afterinit1 goes to an active state (ActivateTask()) after
init increments var2. Variable var1 is a protected variable on page 10-6 through the critical
sections from the GetResource() and ReleaseResource() calls.

1 Analysis Options

1-112

To see how Polyspace models the TASK, ISR, and RESOURCE definitions from your OIL files, open the
Concurrency window from the Dashboard pane.

 Off (default)
Polyspace does not set up a multitasking configuration for your OSEK project.

Additional Considerations

• Make sure that you declare all tasks by using the DeclareTask or TASK keywords before you
pass those tasks as parameters to functions or macros that expect a task. For example , if you pass
task foo to ActivateTask without using DeclareTask(foo); first, Polyspace considers task
foo undefined which results in a compilation error.

• The analysis ignores TerminateTask() declarations in your source code and considers that
subsequent code is executed.

• Polyspace ignores syntax elements of your OIL files that do not follow the syntax defined here.

Dependencies
To enable this option in the user interface of the desktop products, first select the option External
multitasking configuration.

Command-Line Information
Parameter: -osek-multitasking
Value: auto | custom='file1 [,file2, dir1,...]'
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources source_path -I include_path
-osek-multitasking custom='path\to\file1.oil, path\to\dir'
Example (Code Prover): polyspace-code-prover -sources source_path -I
include_path -osek-multitasking custom='path\to\file1.oil, path\to\dir'
Example (Bug Finder Server): polyspace-bug-finder-server -sources source_path -I
include_path -osek-multitasking custom='path\to\file1.oil, path\to\dir'
Example (Code Prover Server): polyspace-code-prover-server -sources source_path -
I include_path -osek-multitasking custom='path\to\file1.oil, path\to\dir'

See Also
Show global variable sharing and usage only (-shared-variables-mode)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”

Introduced in R2017b

 OIL files selection (-osek-multitasking)

1-113

https://www.irisa.fr/alf/downloads/puaut/TPNXT/images/oil25.pdf

ARXML files selection (-autosar-multitasking)
Set up multitasking configuration from ARXML file definitions

Description
To detect data races in large AUTOSAR applications, use this option with Polyspace Bug Finder™.

This option is not available for code generated from MATLAB code or Simulink models.

Specify the ARXML files that Polyspace parses to set up the multitasking configuration of your
AUTOSAR project.

Set Option

User interface: In the Configuration pane, the option is available on the Multitasking node. See
Dependencies on page 1-115 for other options you must also enable.

Command line: and options file Use the option -autosar-multitasking. See “Command-Line
Information” on page 1-113.

Why Use This Option

If your project includes ARXML files with <ECUC-CONTAINER-VALUE> elements, Polyspace can parse
these files to set up tasks, interrupts, cyclical tasks, and critical sections. You do not have to set them
up manually.

Settings
 On

Polyspace looks for and parses ARXML files to set up your multitasking configuration.

When you select this option, the software assumes that you use the OSEK multitasking API in your
source code to declare and define tasks and interrupts. Polyspace supports these OSEK multitasking
keywords:

• TASK
• DeclareTask
• ActivateTask
• DeclareResource
• GetResource
• ReleaseResource
• ISR
• DeclareEvent
• DeclareAlarm

Polyspace parses the ARXML files that you provide for OsTask, OsIsr, OsResource, OsAlarm, and
OsEvent definitions. The analysis uses these definitions and the supported multitasking keywords to
configure tasks, interrupts, cyclical tasks, and critical sections.

1 Analysis Options

1-114

To see how Polyspace models the OsTask, OsIsr, and OsResource definitions from your ARXML
files, open the Concurrency window from the Dashboard pane. In that window, under the Entry
points column, the names of the elements are extracted from their <SHORT-NAME> values in the
ARXML files.

 Off (default)
Polyspace does not set up a multitasking configuration for your AUTOSAR project.

Additional Considerations

• The analysis ignores TerminateTask() declarations in your source code and considers that
subsequent code is executed.

• Polyspace supports multitasking configuration only from ARXML files for AUTOSAR specification
version 4.0 and later.

Dependencies
To enable this option in the user interface of the desktop products, first select the option External
multitasking configuration.

Command-Line Information
Parameter: -autosar-multitasking
Value: file1 [,file2, dir1,...]
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources source_path -I include_path
-autosar-multitasking C:\Polyspace_Workspace\AUTOSAR\myFile.arxml
Example (Bug Finder Server): polyspace-bug-finder-server -sources source_path -I
include_path -autosar-multitasking C:\Polyspace_Workspace\AUTOSAR
\myFile.arxml

See Also
Enable automatic concurrency detection for Code Prover (-enable-concurrency-
detection) | External multitasking configuration | OIL files selection (-osek-
multitasking) | Show global variable sharing and usage only (-shared-variables-
mode)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”

Introduced in R2018a

 ARXML files selection (-autosar-multitasking)

1-115

Configure multitasking manually
Consider that code is intended for multitasking

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify whether your code is a multitasking application. This option allows you to manually configure
the multitasking structure for Polyspace.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node.

Command line and options file: See “Command-Line Information” on page 1-117.

Why Use This Option

By default, Bug Finder determines your multitasking model from your use of multithreading
functions. In Code Prover, you have to enable automatic concurrency detection with the option
Enable automatic concurrency detection for Code Prover (-enable-concurrency-
detection). However, in some cases, using automatic concurrency detection can slow down the
Code Prover analysis.

In cases where automatic concurrency detection is not supported, you can explicitly specify your
multitasking model by using this option. Once you select this option, you can explicitly specify your
entry point functions, cyclic tasks, interrupts and protection mechanisms for shared variables, such
as critical section details.

A Code Prover verification uses your specifications to determine:

• Whether a global variable is shared.

See “Global Variables”.
• Whether a run-time error can occur.

For instance, if the operation var++ occurs in the body of a cyclic task and you do not impose a
limit on var, the operation can overflow. The analysis detects the possible overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For more information,
see “Concurrency Defects”.

Settings
 On

The code is intended for a multitasking application.

You have to explicitly specify your multitasking configuration using other Polyspace options. See
“Configuring Polyspace Multitasking Analysis Manually”.

1 Analysis Options

1-116

 Off (default)
The code is not intended for a multitasking application.

Disabling the option has this additional effect in Code Prover:

• If a main exists, Code Prover verifies only those functions that are called by the main.
• If a main does not exist, Polyspace verifies the functions that you specify. To verify the

functions, Polyspace generates a main function and calls functions from the generated main
in a sequence that you specify. For more information, see Verify module or library (-
main-generator).

Tips
If you run a file by file verification in Code Prover, your multitasking options are ignored. See Verify
files independently (-unit-by-unit).

Command-Line Information
There is no single command-line option to turn on multitasking analysis. By using any of the options
Tasks (-entry-points), Cyclic tasks (-cyclic-tasks) or Interrupts (-interrupts),
you turn on multitasking analysis.

See Also
-non-preemptable-tasks | -preemptable-interrupts | Critical section details (-
critical-section-begin -critical-section-end) | Cyclic tasks (-cyclic-tasks) |
Tasks (-entry-points) | Tasks (-entry-points) | Temporally exclusive tasks (-
temporal-exclusions-file)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

 Configure multitasking manually

1-117

Tasks (-entry-points)
Specify functions that serve as tasks to your multitasking application

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify functions that serve as tasks to your code. If the function does not exist, the verification
warns you and continues the verification.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-119 for other options you must also enable.

Command line and options file: Use the option -entry-points. See “Command-Line
Information” on page 1-119.

Why Use This Option

Use this option when your code is intended for multitasking.

To specify cyclic tasks and interrupts, use the options Cyclic tasks (-cyclic-tasks) and
Interrupts (-interrupts). Use this option to specify other tasks.

A Code Prover analysis uses your specifications to determine:

• Whether a global variable is shared.

See “Global Variables”.
• Whether a run-time error can occur.

For instance, if the operation var++ occurs in the body of a cyclic task and you do not impose a
limit on var, the operation can overflow. The analysis detects the possible overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For more information,
see “Concurrency Defects”.

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

1 Analysis Options

1-118

Dependencies
To enable this option in the user interface of the desktop products, first select the option Configure
multitasking manually.

Tips
• In Code Prover, the functions representing entry points must have the form

void functionName (void)
• If a function func takes arguments or returns a value, you cannot use it directly as an entry point.

To use func as an entry point:, call func from a wrapper void-void function and specify the
wrapper as an entry point. See “Configuring Polyspace Multitasking Analysis Manually”.

• If you specify a function as a task, you must provide its definition. Otherwise, a Code Prover
verification stops with the error message:

task func_name must be a userdef function without parameters

A Bug Finder analysis continues but does not consider the function as an entry point.
• If you run a file by file verification in Code Prover, your multitasking options are ignored. See

Verify files independently (-unit-by-unit).
• The Polyspace multitasking analysis assumes that a task cannot interrupt itself.

Command-Line Information
Parameter: -entry-points
No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -entry-points
func_1,func_2
Example (Code Prover): polyspace-code-prover -sources file_name -entry-points
func_1,func_2
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
entry-points func_1,func_2
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
entry-points func_1,func_2

See Also
-non-preemptable-tasks | -preemptable-interrupts | Cyclic tasks (-cyclic-tasks) |
Interrupts (-interrupts) | Show global variable sharing and usage only (-
shared-variables-mode)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

 Tasks (-entry-points)

1-119

Cyclic tasks (-cyclic-tasks)
Specify functions that represent cyclic tasks

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify functions that represent cyclic tasks. The analysis assumes that operations in the function
body:

• Can execute any number of times.
• Can be interrupted by noncyclic tasks, other cyclic tasks and interrupts. Noncyclic tasks are
specified with the option Tasks (-entry-points) and interrupts are specified with the option
Interrupts (-interrupts).

To model a cyclic task that cannot be interrupted by other cyclic tasks, specify the task as
nonpreemptable. See -non-preemptable-tasks. For examples, see “Define Preemptable
Interrupts and Nonpreemptable Tasks”.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-121 for other options you must also enable.

Command line and options file: Use the option -cyclic-tasks. See “Command-Line
Information” on page 1-121.

Why Use This Option

Use this option to specify cyclic tasks in your multitasking code. The functions that you specify must
have the prototype:

void function_name(void);

A Code Prover verification uses your specifications to determine:

• Whether a global variable is shared.

See “Global Variables”.
• Whether a run-time error can occur.

For instance, if the operation var++ occurs in the body of a cyclic task and you do not impose a
limit on var, the operation can overflow. The analysis detects the possible overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For the Data race
defect, the software establishes the following relations between preemptable tasks and other tasks.

• Data race between two preemptable tasks:

Unless protected, two operations in different preemptable tasks can interfere with each other. If
the operations use the same shared variable without protection, a data race can occur.

1 Analysis Options

1-120

If both operations are atomic, to see the defect, you have to enable the checker Data race
including atomic operations.

• Data race between a preemptable task and a nonpreemptable task or interrupt:

• An atomic operation in a preemptable task cannot interfere with an operation in a
nonpreemptable task or an interrupt. Even if the operations use the same shared variable
without protection, a data race cannot occur.

• A nonatomic operation in a preemptable task also cannot interfere with an operation in a
nonpreemptable task or an interrupt. However, the latter operation can interrupt the former.
Therefore, if the operations use the same shared variable without protection, a data race can
occur.

For more information, see “Concurrency Defects”.

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option Configure
multitasking manually.

Tips
• In Code Prover, the functions representing cyclic tasks must have the form

void functionName (void)

• If a function func takes arguments or returns a value, you cannot use it directly as a cyclic task.
To use func as a cyclic task:, call func from a wrapper void-void function and specify the
wrapper as a cyclic task. See “Configuring Polyspace Multitasking Analysis Manually”.

• If you specify a function as a cyclic task, you must provide its definition. Otherwise, a Code Prover
verification stops with the error message:

task func_name must be a userdef function without parameters

A Bug Finder analysis continues but does not consider the function as a cyclic task.
• If you run a file by file verification in Code Prover, your multitasking options are ignored. See

Verify files independently (-unit-by-unit).
• The Polyspace multitasking analysis assumes that a task cannot interrupt itself.

Command-Line Information
Parameter: -cyclic-tasks

 Cyclic tasks (-cyclic-tasks)

1-121

No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -cyclic-tasks
func_1,func_2
Example (Code Prover): polyspace-code-prover -sources file_name -cyclic-tasks
func_1,func_2
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
cyclic-tasks func_1,func_2
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
cyclic-tasks func_1,func_2

See Also
-non-preemptable-tasks | -preemptable-interrupts | Interrupts (-interrupts) | Show
global variable sharing and usage only (-shared-variables-mode) | Tasks (-
entry-points)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Preemptable Interrupts and Nonpreemptable Tasks”

Introduced in R2016b

1 Analysis Options

1-122

Interrupts (-interrupts)
Specify functions that represent nonpreemptable interrupts

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify functions that represent nonpreemptable interrupts. The analysis assumes that operations in
the function body:

• Can execute any number of times.
• Cannot be interrupted by noncyclic tasks, cyclic tasks or other interrupts. Noncyclic tasks are
specified with the option Tasks (-entry-points) and cyclic tasks are specified with the option
Cyclic tasks (-cyclic-tasks).

To model an interrupt that can be interrupted by other interrupts, specify the interrupt as
preemptable. See -preemptable-interrupts. For examples, see “Define Preemptable
Interrupts and Nonpreemptable Tasks”.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-124 for other options you must also enable.

Command line and options file: Use the option -interrupts. See “Command-Line Information”
on page 1-124.

Why Use This Option

Use this option to specify interrupts in your multitasking code. The functions that you specify must
have the prototype:

void function_name(void);

A Code Prover verification uses your specifications to determine:

• Whether a global variable is shared.

See “Global Variables”.
• Whether a run-time error can occur.

For instance, if the operation var=INT_MAX; occurs in an interrupt and var++ occurs in the body
of a task, an overflow can occur if the interrupt excepts before the operation in the task. The
analysis detects the possible overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For the Data race
defect, the analysis establishes the following relations between interrupts and other tasks:

• Data race between two interrupts:

 Interrupts (-interrupts)

1-123

Two operations in different interrupts cannot interfere with each other (unless one of the
interrupts is preemptable). Even if the operations use the same shared variable without
protection, a data race cannot occur.

• Data race between an interrupt and another task:

• An operation in an interrupt cannot interfere with an atomic operation in any other task. Even
if the operations use the same shared variable without protection, a data race cannot occur.

• An operation in an interrupt can interfere with a nonatomic operation in any other task unless
the other task is also a nonpreemptable interrupt. Therefore, if the operations use the same
shared variable without protection, a data race can occur.

See “Concurrency Defects”.

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option Configure
multitasking manually.

Tips
• In Code Prover, the functions representing interrupts must have the form

void functionName (void)

• If a function func takes arguments or returns a value, you cannot use it directly as an interrupt.
To use func as an interrupt, call func from a wrapper void-void function and specify the
wrapper as an interrupt. See “Configuring Polyspace Multitasking Analysis Manually”.

• If you specify a function as an interrupt, you must provide its definition. Otherwise, a Code Prover
verification stops with the error message:

task func_name must be a userdef function without parameters

A Bug Finder analysis continues but does not consider the function as an interrupt.
• If you run a file by file verification in Code Prover, your multitasking options are ignored. See

Verify files independently (-unit-by-unit).
• The Polyspace multitasking analysis assumes that an interrupt cannot interrupt itself.

Command-Line Information
Parameter: -interrupts
No Default

1 Analysis Options

1-124

Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -interrupts
func_1,func_2
Example (Code Prover): polyspace-code-prover -sources file_name -interrupts
func_1,func_2
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
interrupts func_1,func_2
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
interrupts func_1,func_2

See Also
-non-preemptable-tasks | -preemptable-interrupts | Cyclic tasks (-cyclic-tasks) |
Show global variable sharing and usage only (-shared-variables-mode) | Tasks (-
entry-points)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Preemptable Interrupts and Nonpreemptable Tasks”

Introduced in R2016b

 Interrupts (-interrupts)

1-125

Critical section details (-critical-section-begin
-critical-section-end)
Specify functions that begin and end critical sections

Description
This option is not available for code generated from MATLAB code or Simulink models.

When verifying multitasking code, Polyspace considers that a critical section lies between calls to a
lock function and an unlock function.

lock();
/* Critical section code */
unlock();

Specify the lock and unlock function names for your critical sections (for instance, lock() and
unlock() in above example).

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-127 for other options you must also enable.

Command line and options file: Use the option -critical-section-begin and -critical-
section-end. See “Command-Line Information” on page 1-128.

Why Use This Option

When a task my_task calls a lock function my_lock, other tasks calling my_lock must wait till
my_task calls the corresponding unlock function. Therefore, critical section operations in the other
tasks cannot interrupt critical section operations in my_task.

For instance, the operation var++ in my_task1 and my_task2 cannot interrupt each other.

int var;

void my_task1() {
 my_lock();
 var++;
 my_unlock();
}

void my_task2() {
 my_lock();
 var++;
 my_unlock();
}

Using your specifications, a Code Prover verification checks if your placement of lock and unlock
functions protects all shared variables from concurrent access. When determining values of those
variables, the verification accounts for the fact that critical sections in different tasks do not interrupt
each other.

1 Analysis Options

1-126

A Bug Finder analysis uses the critical section information to look for concurrency defects such as
data race and deadlock.

Settings
No Default

Click to add a field.

• In Starting routine, enter name of lock function.
• In Ending routine, enter name of unlock function.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option Configure
multitasking manually.

Tips
• You can also use primitives such as the POSIX functions pthread_mutex_lock and

pthread_mutex_unlock to begin and end critical sections. For a list of primitives that Polyspace
can detect automatically, see “Auto-Detection of Thread Creation and Critical Section in
Polyspace”.

• For function calls that begin and end critical sections, Polyspace ignores the function arguments.

For instance, Polyspace treats the two code sections below as the same critical section.

Starting routine: my_lock
Ending routine: my_unlock
void my_task1() {
 my_lock(1);
 /* Critical section code */
 my_unlock(1);
}

void my_task2() {
 my_lock(2);
 /* Critical section code */
 my_unlock(2);
}

To work around the limitation, see “Define Critical Sections with Functions That Take Arguments”.
• The functions that begin and end critical sections must be functions. For instance, if you define a

function-like macro:

#define init() num_locks++

You cannot use the macro init() to begin or end a critical section.
• When you use multiple critical sections, you can run into issues such as:

 Critical section details (-critical-section-begin -critical-section-end)

1-127

• Deadlock: A sequence of calls to lock functions causes two tasks to block each other.
• Double lock: A lock function is called twice in a task without an intermediate call to an unlock

function.

Use Polyspace Bug Finder to detect such issues. See “Concurrency Defects”.

Then, use Polyspace Code Prover™ to detect if your placement of lock and unlock functions
actually protects all shared variables from concurrent access. See “Global Variables”.

• When considering possible values of shared variables, a Code Prover verification takes into
account your specifications for critical sections.

However, if the shared variable is a pointer or array, the software uses the specifications only to
determine if the variable is a shared protected global variable. For run-time error checking, the
software does not take your specifications into account and considers that the variable can be
concurrently accessed.

Command-Line Information
Parameter: -critical-section-begin | -critical-section-end
No Default
Value: function1:cs1[,function2:cs2[,...]]
Example (Bug Finder): polyspace-bug_finder -sources file_name -critical-section-
begin func_begin:cs1 -critical-section-end func_end:cs1
Example (Code Prover): polyspace-code-prover -sources file_name -critical-
section-begin func_begin:cs1 -critical-section-end func_end:cs1
Example (Bug Finder Server): polyspace-bug_finder-server -sources file_name -
critical-section-begin func_begin:cs1 -critical-section-end func_end:cs1
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
critical-section-begin func_begin:cs1 -critical-section-end func_end:cs1

See Also
-non-preemptable-tasks | -preemptable-interrupts | Cyclic tasks (-cyclic-tasks) |
Interrupts (-interrupts) | Tasks (-entry-points) | Temporally exclusive tasks (-
temporal-exclusions-file)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Atomic Operations in Multitasking Code”
“Define Critical Sections with Functions That Take Arguments”
“Concurrency Defects”
“Global Variables”

1 Analysis Options

1-128

Temporally exclusive tasks (-temporal-
exclusions-file)
Specify entry point functions that cannot execute concurrently

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify entry point functions that cannot execute concurrently. The execution of the functions cannot
overlap with each other.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-129 for other options you must also enable.

Command line and options file: Use the option -temporal-exclusions-file. See “Command-
Line Information” on page 1-130.

Why Use This Option

Use this option to implement temporal exclusion in multitasking code.

A Code Prover verification checks if specifying certain tasks as temporally exclusive protects all
shared variables from concurrent access. When determining possible values of those shared
variables, the verification accounts for the fact that temporally exclusive tasks do not interrupt each
other. See “Global Variables”.

A Bug Finder analysis uses the temporal exclusion information to look for concurrency defects such
as data race. See “Concurrency Defects”.

Settings
No Default

Click to add a field. In each field, enter a space-separated list of functions. Polyspace considers
that the functions in the list cannot execute concurrently.

Enter the function names manually or choose from a list.

•
Click to add a field and enter the function names.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option Configure
multitasking manually.

 Temporally exclusive tasks (-temporal-exclusions-file)

1-129

Tips
When considering possible values of shared variables, a Code Prover verification takes into account
your specifications for temporally exclusive tasks.

However, if the shared variable is a pointer or array, the software uses the specifications only to
determine if the variable is a shared protected global variable. For run-time error checking in Code
Prover, the software does not take your specifications into account and considers that the variable
can be concurrently accessed.

Command-Line Information
For the command-line option, create a temporal exclusions file in the following format:

• On each line, enter one group of temporally excluded tasks.
• Within a line, the tasks are separated by spaces.

To enter comments, begin with #. For an example, see the file polyspaceroot\polyspace
\examples\cxx\Code_Prover_Example\sources\temporal_exclusions.txt. Here,
polyspaceroot is the Polyspace installation folder, for example C:\Program Files\Polyspace
\R2019a.
Parameter: -temporal-exclusions-file
No Default
Value: Name of temporal exclusions file
Example (Bug Finder): polyspace-bug-finder -sources file_name -temporal-
exclusions-file "C:\exclusions_file.txt"
Example (Code Prover): polyspace-code-prover -sources file_name -temporal-
exclusions-file "C:\exclusions_file.txt"
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
temporal-exclusions-file "C:\exclusions_file.txt"
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
temporal-exclusions-file "C:\exclusions_file.txt"

See Also
-non-preemptable-tasks | -preemptable-interrupts | Critical section details (-
critical-section-begin -critical-section-end) | Cyclic tasks (-cyclic-tasks) |
Interrupts (-interrupts) | Tasks (-entry-points)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Atomic Operations in Multitasking Code”
“Concurrency Defects”
“Global Variables”

1 Analysis Options

1-130

Set checkers by file (-checkers-selection-file)
Define a custom set of coding standards checks for your analysis

Description
Specify the full path of a configuration XML file where you define custom selections of coding
standards checkers. In the same XML file, you can specify a custom selection of checkers for each of
these coding standards:

• MISRA C:2004
• MISRA C:2012
• MISRA C++
• JSF AV C++
• AUTOSAR C++14 (Bug Finder only)
• CERT® C (Bug Finder only)
• CERT C++ (Bug Finder only)
• ISO/IEC TS 17961 (Bug Finder only)
• Polyspace Guidelines (Bug Finder only)

You can also define custom rules to match identifiers in your code to text patterns you specify.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node.

Command line and options file: Use the option -checkers-selection-file. See “Command-
Line Information” on page 1-134.

When you enable this option, set the coding standards that you select to from-file to use the
specified configuration file.

Why Use This Option

Use this option to define a selection of coding standard checkers specific to your organization. The
configuration of different coding standards is consolidated in a single XML file that you can reuse
across projects to enforce common coding standards.

Settings
 On

Polyspace checks your code against the selection of coding standard checkers, or the custom
rules, defined in the configuration file that you specify.

To create a configuration file by using the Polyspace Desktop, in the Configuration, select
Coding Standards & Code Metrics. To open the Checkers selection interface, click the folder

 Set checkers by file (-checkers-selection-file)

1-131

() on the right pane. Choose the coding standards that you want to configure in the left pane,
and then select the rules that you want to activate in the right pane.

To create a configuration file by using Polyspace As you Code IDE plugins, refer to the
documentation of your specific plugin.

To use or update an existing file, enter the full path to the file in the in the Select file field of the
Checkers selection dialog box. Alternatively, click Browse in the Findings selection window
and browse to the existing file.

1 Analysis Options

1-132

 Off (default)
Polyspace does not check your code against the selection of coding standard checkers, or the
custom rules, defined in the configuration file you specify.

 Set checkers by file (-checkers-selection-file)

1-133

Tips
• For the Polyspace desktop products, specify the coding standard configuration in the Polyspace

User Interface. When you save the configuration, an XML file is created for use in the current and
other projects.

• For the Polyspace Server products, you have to create a coding standard XML. Depending on the
standard that you want to enable, make a writeable copy of one of the files in
polyspaceserverroot\help\toolbox\polyspace_bug_finder_server\examples
\coding_standards_XML. Turn off rules by using entries in the XML file (all rules from a
standard are enabled in the template). Here, polyspaceserverroot is the root installation
folder for the Polyspace Server products, for instance, C:\Program Files\Polyspace Server
\R2019a.

For instance, to turn off MISRA C:2012 rule 8.1, in the file misra_c_2012_rules.xml, use this
entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="off">
 </check>
 ...
 </section>
 ...
</standard>

For a full list of rule IDs and section names, see:

•
•
•
•
• “Custom Coding Rules”
• “JSF C++ Rules”
• “MISRA C:2004 Rules”
• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”
•

Note The XML format of the checker configuration file might change in future releases.

Command-Line Information
Parameter: -checkers-selection-file
Value: Full path of XML configuration file
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -checkers-
selection-file "C:\Standards\custom_config.xml" -misra3 from-file

1 Analysis Options

1-134

Example (Code Prover): polyspace-code-prover -sources file_name -checkers-
selection-file "C:\Standards\custom_config.xml" -misra3 from-file
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
checkers-selection-file "C:\Standards\custom_config.xml" -misra3 from-file
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
checkers-selection-file "C:\Standards\custom_config.xml" -misra3 from-file

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”

 Set checkers by file (-checkers-selection-file)

1-135

Check MISRA C:2004 (-misra2)
Check for violation of MISRA C:2004 rules

Description
Specify whether to check for violation of MISRA C:2004 rules. Each value of the option corresponds
to a subset of rules to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 1-137 for other options that you
must also enable.

Command line and options file: Use the option -misra2. See “Command-Line Information” on
page 1-137.

Why Use This Option

Use this option to specify the subset of MISRA C:2004 rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding rule violation, Polyspace assigns a symbol to the keyword or identifier relevant to the
violation.

Settings
Default: required-rules

required-rules
Check required coding rules.

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are checked in the
compilation phase of the analysis.

system-decidable-rules
Check rules in the single-unit-rules subset and some rules that apply to the collective set of
program files. The additional rules are the less complex rules that apply at the integration level.
These rules can be checked only at the integration level because the rules involve more than one
translation unit. These rules are checked in the compilation and linking phases of the analysis.

all-rules
Check required and advisory coding rules.

SQO-subset1
Check only a subset of MISRA C rules. In Polyspace Code Prover, observing these rules can
reduce the number of unproven results. For more information, see “Software Quality Objective
Subsets (C:2004)”.

1 Analysis Options

1-136

SQO-subset2
Check a subset of rules including SQO-subset1 and some additional rules. In Polyspace Code
Prover, observing these rules can further reduce the number of unproven results. For more
information, see “Software Quality Objective Subsets (C:2004)”.

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules and recommendations you want
to check for this coding standard from the right pane of the Findings selection window. Save
the file.

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-CPP.

For projects with mixed C and C++ code, the MISRA C:2004 checker analyzes only .c files.
• If you set Source code language (-lang) to C-CPP, you can activate a C coding rule checker

and a C++ coding rule checker. When you have both C and C++ coding rule checkers active, to
avoid duplicate results, Polyspace does not produce the C coding rules found in the linking phase
(such as MISRA C:2012 Rule 8.3).

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the violations and
rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the violations and
rerun verification.

• If you select the option single-unit-rules or system-decidable-rules and choose to
detect coding rule violations only, the analysis can complete quicker than checking other rules.
For more information, see “Coding Rule Subsets Checked Early in Analysis”.

Command-Line Information
Parameter: -misra2
Value: required-rules | all-rules | SQO-subset1 | SQO-subset2 | single-unit-rules |
system-decidable-rules | from-file
Example (Bug Finder): polyspace-bug-finder -sources file_name -misra2 all-rules
Example (Code Prover): polyspace-code-prover -sources file_name -misra2 all-
rules
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
misra2 all-rules

 Check MISRA C:2004 (-misra2)

1-137

Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
misra2 all-rules

Compatibility Considerations
Polyspace will no longer support text format for coding rules file (only XML format
supported)
Not recommended starting in R2019a

Starting in R2019a, the file where you define a custom selection of coding standard checkers uses the
XML format. You can save custom selections for all the coding standards that Polyspace supports in
the same file.

In previous releases, you saved your custom selection for each coding standard in separate text files.
Polyspace will stop supporting custom coding standard files in text format in a future release.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format, Polyspace
automatically updates and consolidates those files into a single XML file. If your project has
conflicting configurations that refer to the same custom selection file, the software saves the
consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click . In the Findings selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar.conf, they are saved as bar.conf.xml.

Command-line:

If you do not have access to a Polyspace desktop interface, use the file misra_c_2004_rules.xml
as a template to create the XML file where you define a custom selection of coding standard
checkers. This template file is in polyspaceroot\help\toolbox
\polyspace_bug_finder_server\examples\coding_standards_XML . Here, polyspaceroot
is the root installation folder for the Polyspace products, for instance, C:\Program Files
\Polyspace\R2019a. To update your script, see this table

Option Use Instead
-misra2 "custom_standard.conf" -checkers-selection-file

misra_c_2004_rules.xml -misra2 from-
file

.

Note The XML format of the checker configuration file can change in future releases.

Example of Configuration File in XML Format

To turn on MISRA C:2012 rule 8.1, use this entry:

1 Analysis Options

1-138

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

•
•
•
• “Custom Coding Rules”
• “JSF C++ Rules”
• “MISRA C:2004 Rules”
• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“MISRA C:2004 Rules”

 Check MISRA C:2004 (-misra2)

1-139

Check MISRA AC AGC (-misra-ac-agc)
Check for violation of MISRA AC AGC rules

Description
Specify whether to check for violation of rules specified by MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation. Each value of the option
corresponds to a subset of rules to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 1-141 for other options that you
must also enable.

Command line and options file: Use the option -misra-ac-agc. See “Command-Line
Information” on page 1-141.

Why Use This Option

Use this option to specify the subset of MISRA C:2004 AC AGC rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding rule violation, Polyspace assigns a symbol to the keyword or identifier relevant to the
violation.

Settings
Default: OBL-rules

OBL-rules
Check required coding rules.

OBL-REC-rules
Check required and recommended rules.

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are checked in the
compilation phase of the analysis.

system-decidable-rules
Check rules in the single-unit-rules subset and some rules that apply to the collective set of
program files. The additional rules are the less complex rules that apply at the integration level.
These rules can be checked only at the integration level because the rules involve more than one
translation unit. These rules are checked in the compilation and linking phases of the analysis.

all-rules
Check required, recommended and readability-related rules.

SQO-subset1
Check a subset of rules. In Polyspace Code Prover, observing these rules can reduce the number
of unproven results. For more information, see “Software Quality Objective Subsets (AC AGC)”.

1 Analysis Options

1-140

SQO-subset2
Check a subset of rules including SQO-subset1 and some additional rules. In Polyspace Code
Prover, observing these rules can further reduce the number of unproven results. For more
information, see “Software Quality Objective Subsets (AC AGC)”.

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules and recommendations you want
to check for this coding standard from the right pane of the Findings selection window. Save
the file.

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-CPP.

For projects with mixed C and C++ code, the MISRA AC AGC checker analyzes only .c files.
• If you set Source code language (-lang) to C-CPP, you can activate a C coding rule checker

and a C++ coding rule checker. When you have both C and C++ coding rule checkers active, to
avoid duplicate results, Polyspace does not produce the C coding rules found in the linking phase
(such as MISRA C:2012 Rule 8.3).

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the violations and
rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the violations and
rerun verification.

• If you select the option single-unit-rules or system-decidable-rules and choose to
detect coding rule violations only, the analysis can complete quicker than checking other rules.
For more information, see “Coding Rule Subsets Checked Early in Analysis”.

Command-Line Information
Parameter: -misra-ac-agc
Value: OBL-rules | OBL-REC-rules | single-unit-rules | system-decidable-rules | all-
rules | SQO-subset1 | SQO-subset2 | from-file
Example (Bug Finder): polyspace-bug-finder -sources file_name -misra-ac-agc all-
rules
Example (Code Prover): polyspace-code-prover -sources file_name -misra-ac-agc
all-rules
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
misra-ac-agc all-rules

 Check MISRA AC AGC (-misra-ac-agc)

1-141

Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
misra-ac-agc all-rules

Compatibility Considerations
Polyspace will no longer support text format for coding rules file (only XML format
supported)
Not recommended starting in R2019a

Starting in R2019a, the file where you define a custom selection of coding standard checkers uses the
XML format. You can save custom selections for all the coding standards that Polyspace supports in
the same file.

In previous releases, you saved your custom selection for each coding standard in separate text files.
Polyspace will stop supporting custom coding standard files in text format in a future release.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format, Polyspace
automatically updates and consolidates those files into a single XML file. If your project has
conflicting configurations that refer to the same custom selection file, the software saves the
consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click . In the Findings selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar.conf, they are saved as bar.conf.xml.

Command-line:

If you do not have access to a Polyspace desktop interface, use the file misra_ac_agc_rules.xml
as a template to create the XML file where you define a custom selection of coding standard
checkers. This template file is in polyspaceroot\help\toolbox
\polyspace_bug_finder_server\examples\coding_standards_XML. Here, polyspaceroot
is the root installation folder for the Polyspace products, for instance, C:\Program Files
\Polyspace\R2019a. To update your script, see this table

Option Use Instead
-misra-ac-agc "custom_standard.conf" -checkers-selection-file

misra_ac_agc_rules.xml -misra-ac-agc
from-file

.

Note The XML format of the checker configuration file can change in future releases.

Example of Configuration File in XML Format

To turn on MISRA C:2012 rule 8.1, use this entry:

1 Analysis Options

1-142

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

•
•
•
• “Custom Coding Rules”
• “JSF C++ Rules”
• “MISRA C:2004 Rules”
• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“MISRA C:2004 Rules”

 Check MISRA AC AGC (-misra-ac-agc)

1-143

Check MISRA C:2012 (-misra3)
Check for violations of MISRA C:2012 rules and directives

Description
Specify whether to check for violations of MISRA C:2012 guidelines. Each value of the option
corresponds to a subset of guidelines to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 1-145 for other options that you
must also enable.

Command line and options file: Use the option -misra3. See “Command-Line Information” on
page 1-146.

Why Use This Option

Use this option to specify the subset of MISRA C:2012 rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding rule violation, Polyspace assigns a symbol to the keyword or identifier relevant to the
violation.

Settings
Default: mandatory-required

mandatory
Check for mandatory guidelines.

mandatory-required
Check for mandatory and required guidelines.

• Mandatory guidelines: Your code must comply with these guidelines.
• Required guidelines: You may deviate from these guidelines. However, you must complete a

formal deviation record, and your deviation must be authorized.

See Section 5.4 of the MISRA C:2012 guidelines. For an example of a deviation record, see
Appendix I of the MISRA C:2012 guidelines.

Note To turn off some required guidelines, instead of mandatory-required select custom. To

clear specific guidelines, click . In the Comment column, enter your rationale for
disabling a guideline. For instance, you can enter the Deviation ID that refers to a deviation
record for the guideline. The rationale appears in your generated report.

1 Analysis Options

1-144

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are checked in the
compilation phase of the analysis.

system-decidable-rules
Check rules in the single-unit-rules subset and some rules that apply to the collective set of
program files. The additional rules are the less complex rules that apply at the integration level.
These rules can be checked only at the integration level because the rules involve more than one
translation unit. These rules are checked in the compilation and linking phases of the analysis.

all
Check for mandatory, required, and advisory guidelines.

SQO-subset1
Check for only a subset of guidelines. In Polyspace Code Prover, observing these rules can reduce
the number of unproven results. For more information, see “Software Quality Objective Subsets
(C:2012)”.

SQO-subset2
Check for the subset SQO-subset1, plus some additional rules. In Polyspace Code Prover,
observing these rules can further reduce the number of unproven results. For more information,
see “Software Quality Objective Subsets (C:2012)”.

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules and recommendations you want
to check for this coding standard from the right pane of the Findings selection window. Save
the file.

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-CPP.

For projects with mixed C and C++ code, the MISRA C:2012 checker analyzes only .c files.
• If you set Source code language (-lang) to C-CPP, you can activate a C coding rule checker

and a C++ coding rule checker. When you have both C and C++ coding rule checkers active, to
avoid duplicate results, Polyspace does not produce the C coding rules found in the linking phase
(such as MISRA C:2012 Rule 8.3).

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the violations and
rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the violations and
rerun verification.

 Check MISRA C:2012 (-misra3)

1-145

• If you select the option single-unit-rules or system-decidable-rules and choose to
detect coding rule violations only, the analysis can complete quicker than checking other rules.
For more information, see “Coding Rule Subsets Checked Early in Analysis”.

• Polyspace Code Prover does not support checking of the following:

• MISRA C:2012 Directive 4.13 and 4.14
• MISRA C:2012 Rule 21.13, 21.14, and 21.17 - 21.20
• MISRA C:2012 Rule 22.1 - 22.4 and 22.6 - 22.10

For support of all MISRA C:2012 rules including the security guidelines in Amendment 1, use
Polyspace Bug Finder.

• In code generated by using Embedded Coder®, there are known deviations from MISRA C:2012.
See “Deviations Rationale for MISRA C:2012 Compliance” (Embedded Coder).

Command-Line Information
Parameter: -misra3
Value: mandatory | mandatory-required | single-unit-rules | system-decidable-rules |
all | SQO-subset1 | SQO-subset2 | from-file
Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -misra3
mandatory-required
Example (Code Prover): polyspace-code-prover -lang c -sources file_name -misra3
mandatory-required
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
file_name -misra3 mandatory-required
Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
file_name -misra3 mandatory-required

Compatibility Considerations
Polyspace will no longer support text format for coding rules file (only XML format
supported)
Not recommended starting in R2019a

Starting in R2019a, the file where you define a custom selection of coding standard checkers uses the
XML format. You can save custom selections for all the coding standards that Polyspace supports in
the same file.

In previous releases, you saved your custom selection for each coding standard in separate text files.
Polyspace will stop supporting custom coding standard files in text format in a future release.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format, Polyspace
automatically updates and consolidates those files into a single XML file. If your project has
conflicting configurations that refer to the same custom selection file, the software saves the
consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click . In the Findings selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as

1 Analysis Options

1-146

filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar.conf, they are saved as bar.conf.xml.

Command-line:

If you do not have access to a Polyspace desktop interface, use the file misra_c_2012_rules.xml
as a template to create the XML file where you define a custom selection of coding standard
checkers. This template file is in polyspaceroot\help\toolbox
\polyspace_bug_finder_server\examples\coding_standards_XML. Here, polyspaceroot
is the root installation folder for the Polyspace products, for instance, C:\Program Files
\Polyspace\R2019a. To update your script, see this table

Option Use Instead
-misra3 "custom_standard.conf" -checkers-selection-file

misra_c_2012_rules.xml -misra3 from-
file

.

Note The XML format of the checker configuration file can change in future releases.

Example of Configuration File in XML Format

To turn on MISRA C:2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

•
•
•
• “Custom Coding Rules”
• “JSF C++ Rules”
• “MISRA C:2004 Rules”
• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”

See Also
Do not generate results for (-do-not-generate-results-for)

 Check MISRA C:2012 (-misra3)

1-147

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“MISRA C:2012 Directives and Rules”

1 Analysis Options

1-148

Use generated code requirements (-misra3-agc-
mode)
Check for violations of MISRA C:2012 rules and directives that apply to generated code

Description
Specify whether to use the MISRA C:2012 categories for automatically generated code. This option
changes which rules are mandatory, required, or advisory.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependency” on page 1-150 for other options that you must
also enable.

Command line and options file: Use the option -misra3-agc-mode. See “Command-Line
Information” on page 1-150.

Why Use This Option

Use this option to specify that you are checking for MISRA C:2012 rules in generated code. The
option modifies the MISRA C:2012 subsets so that they are tailored for generated code.

Settings
 Off (default)

Use the normal categories (mandatory, required, advisory) for MISRA C:2012 coding guideline
checking.

 On (default for analyses from Simulink)
Use the generated code categories (mandatory, required, advisory, readability) for MISRA C:2012
coding guideline checking.

For analyses started from the Simulink plug-in, this option is the default value.

Category changed to Advisory

These rules are changed to advisory:

• 5.3
• 7.1
• 8.4, 8.5, 8.14
• 10.1, 10.2, 10.3, 10.4, 10.6, 10.7, 10.8
• 14.1, 14.4
• 15.2, 15.3
• 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7

 Use generated code requirements (-misra3-agc-mode)

1-149

• 20.8

Category changed to Readability

These guidelines are changed to readability:

• Dir 4.5
• 2.3, 2.4, 2.5, 2.6, 2.7
• 5.9
• 7.2, 7.3
• 9.2, 9.3, 9.5
• 11.9
• 13.3
• 14.2
• 15.7
• 17.5, 17.7, 17.8
• 18.5
• 20.5

Dependency
To use this option, first select the Check MISRA C:2012 (-misra3) option.

Command-Line Information
Parameter: -misra3-agc-mode
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -misra3 all -
misra3-agc-mode
Example (Code Prover): polyspace-code-prover -sources file_name -misra3 all -
misra3-agc-mode
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
misra3 all -misra3-agc-mode
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
misra3 all -misra3-agc-mode

See Also
Check MISRA C:2012 (-misra3) | Do not generate results for (-do-not-generate-
results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“MISRA C:2012 Directives and Rules”

1 Analysis Options

1-150

Check custom rules (-custom-rules)
Follow naming conventions for identifiers

Description
Define naming conventions for identifiers and check your code against them.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node.

Command line and options file: Use the option -custom-rules. See “Command-Line
Information” on page 1-153.

Why Use This Option

Use this option to impose naming conventions on identifiers. Using a naming convention allows you to
easily determine the nature of an identifier from its name. For instance, if you define a naming
convention for structures, you can easily tell whether an identifier represents a structured variable or
not.

After analysis, the Results List pane lists violations of the naming conventions. On the Source pane,
for every violation, Polyspace assigns a symbol to the keyword or identifier relevant to the
violation.

For the full list of types on which you can apply naming conventions, see “Custom Coding Rules”.

Settings
 On

Polyspace matches identifiers in your code against text patterns you define. Define the text
patterns in a custom coding rules file. To create a coding rules file,

• Use the custom rules wizard:

1
Click . A Findings selection window opens.

2 The Custom node in the left pane is highlighted. Expand the nodes in the right pane to
select custom rule you want to check.

3 For every custom rule you want to check:

a Select On .
b In the Convention column, enter the error message you want to display if the rule is

violated.

For example, for rule 4.3, All struct fields must follow the specified pattern, you
can enter All struct fields must begin with s_. This message appears on
the Result Details pane if:

 Check custom rules (-custom-rules)

1-151

• You specify the Pattern as s_[A-Za-z0-9_]+.
• A structure field in your code does not begin with s_.

c In the Pattern column, enter the text pattern.

For example, for rule 4.3, All struct fields must follow the specified pattern, you
can enter s_[A-Za-z0-9_]+. Polyspace reports violation of rule 4.3 if a structure
field does not begin with s_.

You can use Perl regular expressions to define patterns. For instance, you can use the
following expressions.

Expression Meaning
. Matches any single character except newline
[a-z0-9] Matches any single letter in the set a-z, or digit in

the set 0-9
[^a-e] Matches any single letter not in the set a-e
\d Matches any single digit
\w Matches any single alphanumeric character or _
x? Matches 0 or 1 occurrence of x
x* Matches 0 or more occurrences of x
x+ Matches 1 or more occurrences of x

For frequent patterns, you can use the following regular expressions:

• (?!__)[a-z0-9_]+(?!__), matches a text pattern that does not start and end
with two underscores.

int __text; //Does not match
int _text_; //Matches

• [a-z0-9_]+_(u8|u16|u32|s8|s16|s32) , matches a text pattern that ends
with a specific suffix.

int _text_; //Does not match
int _text_s16; //Matches
int _text_s33; // Does not match

• [a-z0-9_]+_(u8|u16|u32|s8|s16|s32)(_b3|_b8)? , matches a text pattern
that ends with a specific suffix and an optional second suffix.

int _text_s16; //Matches
int _text_s16_b8; //Matches

For a complete list of regular expressions, see Perl documentation.

To use or update an existing coding rules file, click to open the Findings selection
window then do one of the following:

• Enter the full path to the file in the field provided
• Click Browse and navigate to the file location.

1 Analysis Options

1-152

https://perldoc.perl.org/perlre.html#Regular-Expressions

 Off (default)
Polyspace does not check your code against custom naming conventions.

Command-Line Information
Parameter: -custom-rules
Value: from-file, specify the file using Set checkers by file (-checkers-selection-
file)
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -custom-rules
from-file -checkers-selection-file "C:\Standards\custom_config.xml"
Example (Code Prover): polyspace-code-prover -sources file_name -custom-rules
from-file -checkers-selection-file "C:\Standards\custom_config.xml"
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
custom-rules from-file -checkers-selection-file "C:\Standards
\custom_config.xml"
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
custom-rules from-file -checkers-selection-file "C:\Standards
\custom_config.xml"

Compatibility Considerations
Polyspace will no longer support text format for coding rules file (only XML format
supported)
Not recommended starting in R2019a

Starting in R2019a, the file where you define custom coding rules uses the XML format. You can save
selections for custom coding rules and all the coding standards that Polyspace supports in the same
file.

In previous releases, you saved your selection for each coding standard and custom coding rules in
separate text files. Polyspace will stop supporting custom coding rule files in text format in a future
release.

Desktop user interface:

If you have a project that contains custom coding rules and coding standard selection files in text
format, Polyspace automatically updates and consolidates those files into a single XML file. If your
project has conflicting configurations that refer to the same custom selection file, the software saves
the consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click . In the Findings selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar.conf, they are saved as bar.conf.xml.

Command-line:

If you do not have access to a Polyspace desktop interface, use the file custom_rules.xml as a
template to create the XML file where you define a custom selection of coding standard checkers.
This template file is in polyspaceroot\help\toolbox\polyspace_bug_finder_server

 Check custom rules (-custom-rules)

1-153

\examples\coding_standards_XML. Here, polyspaceroot is the root installation folder for the
Polyspace products, for instance, C:\Program Files\Polyspace\R2019a. To update your script,
replace reference to the old file format with the new XML file format .

Example of Configuration File in XML Format

To turn on and define custom coding rule 8.1, use this entry:

<standard name="CUSTOM RULES">
 ...
 <section name="8 Constants">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

•
•
•
• “Custom Coding Rules”
• “JSF C++ Rules”
• “MISRA C:2004 Rules”
• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”

See Also
Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“Create Custom Coding Rules”
“Custom Coding Rules”

1 Analysis Options

1-154

Effective boolean types (-boolean-types)
Specify data types that coding rule checker must treat as effectively Boolean

Description
Specify data types that the coding rule checker must treat as effectively Boolean. You can specify a
data type as effectively Boolean only if you have defined it through an enum or typedef statement in
your source code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 1-156 for other options that you
must also enable.

Command line and options file: Use the option -boolean-types. See “Command-Line
Information” on page 1-156.

Why Use This Option

Use this option to allow Polyspace to check the following coding rules:

• MISRA C: 2004 and MISRA AC AGC

Rule
Number

Rule Statement

12.6 Operands of logical operators, &&, ||, and !, should be effectively Boolean.
Expressions that are effectively Boolean should not be used as operands to other
operators.

13.2 Tests of a value against zero should be made explicit, unless the operand is
effectively Boolean.

15.4 A switch expression should not represent a value that is effectively Boolean.

• MISRA C: 2012

Rule
Number

Rule Statement

10.1 Operands shall not be of an inappropriate essential type
10.3 The value of an expression shall not be assigned to an object with a narrower

essential type or of a different essential type category
10.5 The value of an expression should not be cast to an inappropriate essential type
14.4 The controlling expression of an if statement and the controlling expression of an

iteration-statement shall have essentially Boolean type.
16.7 A switch-expression shall not have essentially Boolean type.

For example, in the following code, unless you specify myBool as effectively Boolean, Polyspace
detects a violation of MISRA C: 2012 rule 14.4.

 Effective boolean types (-boolean-types)

1-155

typedef int myBool;

void func1(void);
void func2(void);

void func(myBool flag) {
 if(flag)
 func1();
 else
 func2();
}

Settings
No Default

Click to add a field. Enter a type name that you want Polyspace to treat as Boolean.

Dependencies
This option is enabled only if you select one of these options:

• Check MISRA C:2004 (-misra2)
• Check MISRA AC AGC (-misra-ac-agc).
• Check MISRA C:2012 (-misra3)

Command-Line Information
Parameter: -boolean-types
Value: type1[,type2[,...]]
No Default
Example (Bug Finder): polyspace-bug-finder -sources filename -misra2 required-
rules -boolean-types boolean1_t,boolean2_t
Example (Code Prover): polyspace-code-prover -sources filename -misra2 required-
rules -boolean-types boolean1_t,boolean2_t
Example (Bug Finder Server): polyspace-bug-finder-server -sources filename -
misra2 required-rules -boolean-types boolean1_t,boolean2_t
Example (Code Prover Server): polyspace-code-prover-server -sources filename -
misra2 required-rules -boolean-types boolean1_t,boolean2_t

See Also
Check MISRA AC AGC (-misra-ac-agc) | Check MISRA C:2004 (-misra2) | Check MISRA
C:2012 (-misra3)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“MISRA C:2004 Rules”
“MISRA C:2012 Directives and Rules”

1 Analysis Options

1-156

Allowed pragmas (-allowed-pragmas)
Specify pragma directives that are documented

Description
Specify pragma directives that must not be flagged by MISRA C:2004 rule 3.4 or MISRA C++ rule
16-6-1. These rules require that you document all pragma directives.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 1-157 for other options that you
must also enable.

Command line and options file: Use the option -allowed-pragmas. See “Command-Line
Information” on page 1-158.

Why Use This Option

MISRA C:2004/MISRA AC AGC rule 3.4 and MISRA C++ rule 16-6-1 require that all pragma
directives are documented within the documentation of the compiler. If you list a pragma as
documented using this analysis option, Polyspace does not flag use of the pragma as a violation of
these rules.

Settings
No Default

Click to add a field. Enter the pragma name that you want Polyspace to ignore during coding rule
checking .

Dependencies
This option is enabled only if you select one of these options:

• Check MISRA C:2004 (-misra2)
• Check MISRA AC AGC (-misra-ac-agc).
• Check MISRA C++:2008 (-misra-cpp)

Tips
Enter the name of the pragma only excluding any argument. For instance, if you use the pragma
pack:

#pragma pack(n)

Enter only the name pack for this option.

 Allowed pragmas (-allowed-pragmas)

1-157

Command-Line Information
Parameter: -allowed-pragmas
Value: pragma1[,pragma2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources filename -misra-cpp
required-rules -allowed-pragmas pragma_01,pragma_02
Example (Code Prover): polyspace-code-prover -sources filename -misra-cpp
required-rules -allowed-pragmas pragma_01,pragma_02
Example (Bug Finder Server): polyspace-bug-finder-server -sources filename -
misra-cpp required-rules -allowed-pragmas pragma_01,pragma_02
Example (Code Prover Server): polyspace-code-prover-server -sources filename -
misra-cpp required-rules -allowed-pragmas pragma_01,pragma_02

See Also
Check MISRA AC AGC (-misra-ac-agc) | Check MISRA C++:2008 (-misra-cpp) | Check
MISRA C:2004 (-misra2)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“MISRA C:2004 Rules”
“MISRA C++:2008 Rules”

1 Analysis Options

1-158

Calculate code metrics (-code-metrics)
Compute and display code complexity metrics

Description
Specify that Polyspace must compute and display code complexity metrics for your source code. The
metrics include file metrics such as number of lines and function metrics such as cyclomatic
complexity and estimated size of local variables.

For more information, see “Compute Code Complexity Metrics”.

To maintain an acceptable level of software complexity during the development cycle, use the
software complexity checkers. See .

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node.

Command line and options file: Use the option -code-metrics. See “Command-Line
Information” on page 1-160.

Why Use This Option

By default, Polyspace does not calculate code complexity metrics. If you want these metrics in your
analysis results, before running analysis, set this option.

High values of code complexity metrics can lead to obscure code and increase chances of coding
errors. Additionally, if you run a Code Prover verification on your source code, you might benefit from
checking your code complexity metrics first. If a function is too complex, attempts to verify the
function can lead to a lot of unproven code. For information on how to cap your code complexity
metrics, see “Compute Code Complexity Metrics”.

Settings
 On

Polyspace computes and displays code complexity metrics on the Results List pane.

 Off (default)
Polyspace does not compute complexity metrics.

Tips
If you want to compute only the code complexity metrics for your code:

• In Bug Finder, disable checking of defects. See Find defects (-checkers).
• In Code Prover, run verification up to the Source Compliance Checking phase. See

Verification level (-to).

 Calculate code metrics (-code-metrics)

1-159

A Code Prover analysis computes the stack usage metrics after the source compliance checking
phase. If you stop a Code Prover verification before source compliance checking, the stack usage
metrics are not reported.

Command-Line Information
Parameter: -code-metrics
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -code-metrics
Example (Code Prover): polyspace-code-prover -sources file_name -code-metrics
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
code-metrics
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
code-metrics

See Also
Topics
“Compute Code Complexity Metrics”
“Code Metrics”

1 Analysis Options

1-160

Check MISRA C++:2008 (-misra-cpp)
Check for violations of MISRA C++ rules

Description
Specify whether to check for violation of MISRA C++ rules. Each value of the option corresponds to a
subset of rules to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependency” on page 1-162 for other options that you must
also enable.

Command line and options file: Use the option -misra-cpp. See “Command-Line Information” on
page 1-162.

Why Use This Option

Use this option to specify the subset of MISRA C++ rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding rule violation, Polyspace assigns a symbol to the keyword or identifier relevant to the
violation.

Settings
Default: required-rules

required-rules
Check required coding rules.

all-rules
Check required and advisory coding rules.

SQO-subset1
Check only a subset of MISRA C++ rules. In Polyspace Code Prover, observing these rules can
reduce the number of unproven results. For more information, see “Software Quality Objective
Subsets (C++)”.

SQO-subset2
Check a subset of rules including SQO-subset1 and some additional rules. In Polyspace Code
Prover, observing these rules can further reduce the number of unproven results. For more
information, see “Software Quality Objective Subsets (C++)”

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules and recommendations you want
to check for this coding standard from the right pane of the Findings selection window. Save
the file.

 Check MISRA C++:2008 (-misra-cpp)

1-161

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-CPP.

For projects with mixed C and C++ code, the MISRA C++ checker analyzes only .cpp files.

Command-Line Information
Parameter: -misra-cpp
Value: required-rules | all-rules | SQO-subset1 | SQO-subset2 | from-file
Example (Bug Finder): polyspace-bug-finder -sources file_name -misra-cpp all-
rules
Example (Code Prover): polyspace-code-prover -sources file_name -misra-cpp all-
rules
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
misra-cpp all-rules
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
misra-cpp all-rules

Compatibility Considerations
Polyspace will no longer support text format for coding rules file (only XML format
supported)
Not recommended starting in R2019a

Starting in R2019a, the file where you define a custom selection of coding standard checkers uses the
XML format. You can save custom selections for all the coding standards that Polyspace supports in
the same file.

In previous releases, you saved your custom selection for each coding standard in separate text files.
Polyspace will stop supporting custom coding standard files in text format in a future release.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format, Polyspace
automatically updates and consolidates those files into a single XML file. If your project has
conflicting configurations that refer to the same custom selection file, the software saves the
consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click . In the Findings selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar.conf, they are saved as bar.conf.xml.

Command-line:

1 Analysis Options

1-162

If you do not have access to a Polyspace desktop interface, use the file
misra_cpp_2008_rules.xml as a template to create the XML file where you define a custom
selection of coding standard checkers. This template file is in polyspaceroot\help\toolbox
\polyspace_bug_finder_server\examples\coding_standards_XML. Here, polyspaceroot
is the root installation folder for the Polyspace products, for instance, C:\Program Files
\Polyspace\R2019a. To update your script, see this table

Option Use Instead
-misra-cpp "custom_standard.conf" -checkers-selection-file

misra_cpp_2008_rules.xml -misra-cpp
from-file

.

Note The XML format of the checker configuration file can change in future releases.

Example of Configuration File in XML Format

To turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

•
•
•
• “Custom Coding Rules”
• “JSF C++ Rules”
• “MISRA C:2004 Rules”
• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“MISRA C++:2008 Rules”

 Check MISRA C++:2008 (-misra-cpp)

1-163

Check JSF AV C++ rules (-jsf-coding-rules)
Check for violations of JSF C++ rules

Description
Specify whether to check for violation of JSF AV C++ rules (JSF++:2005). Each value of the option
corresponds to a subset of rules to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependency” on page 1-165 for other options that you must
also enable.

Command line and options file: Use the option -jsf-coding-rules. See “Command-Line
Information” on page 1-165.

Why Use This Option

Use this option to specify the subset of JSF C++ rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding rule violation, Polyspace assigns a symbol to the keyword or identifier relevant to the
violation.

Settings
Default: shall-rules

shall-rules
Check all Shall rules. Shall rules are mandatory requirements and require verification.

shall-will-rules
Check all Shall and Will rules. Will rules are intended to be mandatory requirements but do not
require verification.

all-rules
Check all Shall, Will, and Should rules. Should rules are advisory rules.

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules and recommendations you want
to check for this coding standard from the right pane of the Findings selection window. Save
the file.

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

1 Analysis Options

1-164

Tips
• If your project uses a setting other than generic for Compiler (-compiler), some rules might

not be completely checked. For example, AV Rule 8: “All code shall conform to ISO/IEC
14882:2002(E) standard C++.”

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-CPP.

For projects with mixed C and C++ code, the JSF C++ checker analyzes only .cpp files.

Command-Line Information
Parameter: -jsf-coding-rules
Value: shall-rules | shall-will-rules | all-rules | from-file
Example (Bug Finder): polyspace-bug-finder -sources file_name -jsf-coding-rules
all-rules
Example (Code Prover): polyspace-code-prover -sources file_name -jsf-coding-
rules all-rules
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -jsf-
coding-rules all-rules
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
jsf-coding-rules all-rules

Compatibility Considerations
Polyspace will no longer support text format for coding rules file (only XML format
supported)
Not recommended starting in R2019a

Starting in R2019a, the file where you define a custom selection of coding standard checkers uses the
XML format. You can save custom selections for all the coding standards that Polyspace supports in
the same file.

In previous releases, you saved your custom selection for each coding standard in separate text files.
Polyspace will stop supporting custom coding standard files in text format in a future release.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format, Polyspace
automatically updates and consolidates those files into a single XML file. If your project has
conflicting configurations that refer to the same custom selection file, the software saves the
consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click . In the Findings selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar.conf, they are saved as bar.conf.xml.

Command-line:

 Check JSF AV C++ rules (-jsf-coding-rules)

1-165

If you do not have access to a Polyspace desktop interface, use the file
StandardsConfiguration.xml as a template to create the XML file where you define a custom
selection of coding standard checkers. This template file is in polyspaceserverroot\polyspace
\examples\cxx\Bug_Finder_Example\sources or polyspaceserverroot\polyspace
\examples\cxx\Code_Prover_Example\sources. Here, polyspaceserverroot is the root
installation folder for the Polyspace products, for instance, C:\Program Files\Polyspace
\R2019a. To update your script, see this table

Option Use Instead
-jsf-coding-rules
"custom_standard.conf"

-checkers-selection-file
"custom_standard.conf.xml" -jsf-
coding-rules from-file

.

Example of Configuration File in XML Format

To turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

•
•
•
• “Custom Coding Rules”
• “JSF C++ Rules”
• “MISRA C:2004 Rules”
• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“JSF C++ Rules”

1 Analysis Options

1-166

Verify whole application
Stop verification if sources files are incomplete and do not contain a main function

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify that Polyspace verification must stop if a main function is not present in the source files.

If you select a Visual C++ setting for Compiler (-compiler), you can specify which function must
be considered as main. See Main entry point (-main).

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node.

Command line and options file: There is no corresponding command-line option. See “Command-
Line Information” on page 1-167.

Settings
 On

Polyspace verification stops if it does not find a main function in the source files.
 Off (default)

Polyspace continues verification even when a main function is not present in the source files. If a
main is not present, it generates a file __polyspace_main.c that contains a main function.

Tips
If you use this option, your code must contain a main function. Otherwise you see the error:

Error: required main procedure not found

If your code does not contain a main function, use the option Verify module or library (-
main-generator) to generate a main function.

Command-Line Information
Unlike the user interface, by default, a verification from the command line stops if it does not find a
main function in the source files. If you specify the option -main-generator, Polyspace generates a
main if it cannot find one in the source files.

See Also
Show global variable sharing and usage only (-shared-variables-mode) | Verify
module or library (-main-generator)

 Verify whole application

1-167

Topics
“Specify Polyspace Analysis Options”
“Verify C Application Without main Function”
“Verify C++ Classes”

1 Analysis Options

1-168

Show global variable sharing and usage only (-
shared-variables-mode)
Compute global variable sharing and usage without running full analysis

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify this option to run a less extensive analysis that computes the global variable sharing and
usage in your entire application. The analysis does not verify your code for run-time errors. The
analysis results also include coding standards violations if you enable coding standards checking, and
code metrics if you enable code metrics computation.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node.

Command line and options file: Use the option -shared-variables-mode. See “Command-Line
Information” on page 1-170.

Why Use This Option

You can see global variable sharing and usage without running a full analysis on your entire
application that includes run-time error detection. Run-time error detection on an entire application
can take a long time.

Settings
 On

Polyspace computes global variable sharing and usage but does not verify your code for run-time
errors.

 Off (default)
Polyspace runs a full analysis on your code, including run-time error detection.

Dependencies
• You can use this option only if your program contains a main function and you enable the option

Verify whole application (implicitly set by default at command line).
• When you enable this option, you must also enable at least one of these options.

• Enable automatic concurrency detection for Code Prover (-enable-
concurrency-detection)

• Tasks (-entry-points)

 Show global variable sharing and usage only (-shared-variables-mode)

1-169

• Cyclic tasks (-cyclic-tasks)
• Interrupts (-interrupts)
• ARXML files selection (-autosar-multitasking)
• OIL files selection (-osek-multitasking)

Tips
• After you analyze your complete application to see global variable sharing and usage, run a

component-by-component Code Prover analysis to detect run-time errors.
• In the desktop product, you can see all read and write operations on global variables in the

“Variable Access” pane.
• In this less extensive analysis mode, the analysis checks for most but not all coding standards

violations, and computes most but not all code metrics.

Command-Line Information
Parameter: -shared-variables-mode
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -shared-
variables-mode -enable-concurrency-detection
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
shared-variables-mode -enable-concurrency-detection

See Also
Topics
“Specify Polyspace Analysis Options”

Introduced in R2019b

1 Analysis Options

1-170

Verify initialization section of code only (-init-
only-mode)
Check initialization code alone for run-time errors and other issues

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must check only the section of code marked as initialization code for run-time
errors and other issues.

To indicate the end of initialization code, you enter the line

#pragma polyspace_end_of_init

in the main function (only once). The initialization code starts from the beginning of main and
continues up to this pragma.

Since compilers ignore unrecognized pragmas, the presence of this pragma does not affect program
execution.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node.

Command line and options file: Use the option -init-only-mode. See “Command-Line
Information” on page 1-173.

Why Use This Option

Often, issues in the initialization code can invalidate the analysis of the remaining code. You can use
this option to check the initialization code alone and fix the issues, and then disable this option to
verify the remaining program.

For instance, in this example:

#include <limits.h>

int aVar;
const int aConst = INT_MAX;
int anotherVar;

int main() {
 aVar = aConst + 1;
#pragma polyspace_end_of_init
 anotherVar = aVar - 1;
 return 0;
}

the overflow in the line aVar = aConst+1 must be fixed first before the value of aVar is used in
subsequent code.

 Verify initialization section of code only (-init-only-mode)

1-171

Settings
 On

Polyspace checks the code from the beginning of main and continues up to the pragma
polyspace_end_of_init.

 Off (default)
Polyspace checks the complete application beginning from the main function.

Dependencies
You can use this option and designate a section of code as initialization code only if:

• Your program contains a main function and you use the option Verify whole application
(implicitly set by default at command line).

• You set Source code language (-lang) to C.

Note that the pragma must appear only once in the main function. The pragma can appear before or
after variable declarations but must appear after type definitions (typedef-s).

You cannot use this option with the following options:

• Verify files independently (-unit-by-unit)
• Show global variable sharing and usage only (-shared-variables-mode)

Tips
• Use this option along with the option Check that global variables are initialized

after warm reboot (-check-globals-init) to thoroughly check the initialization code
before checking the remaining program. If you use both options, the verification checks for the
following:

• Definite or possible run-time errors in the initialization code.
• Whether all non-const global variables are initialized along all execution paths through the

initialization code.
• Multitasking options are disabled if you check initialization code only because the initialization of

global variables is expected to happen before the tasks (threads) begin. As a result, task bodies
are not verified.

See also “Multitasking”.
• If you check initialization code only, the analysis truncates execution paths containing the pragma

at the location of the pragma but continues to check other execution paths.

For instance, in this example, the pragma appears in an if block. A red non-initialized variable
check appears on the line int a = var because the path containing the initialization stops at the
location of the pragma. On the only other remaining path that bypasses the if block, the variable
var is not initialized.

int var;

int func();

1 Analysis Options

1-172

int main() {
 int err = func();
 if(err) {
 var = 0;
 #pragma polyspace_end_of_init
 }
 int a = var;
 return 0;
}

To avoid these situations, try to place the pragma outside a block. See other suggestions for
placement of the pragma in the reference for Check that global variables are
initialized after warm reboot (-check-globals-init).

• To determine the initialization of a structure, a regular Code Prover analysis only considers fields
that are used.

If you check initialization code only using this option, the analysis covers only a portion of the
code and cannot determine if a variable is used beyond this portion. Therefore, the checks for
initialization consider all structure fields, whether used or not.

Command-Line Information
Parameter: -init-only-mode
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -init-only-mode
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
init-only-mode

See Also
Check that global variables are initialized after warm reboot (-check-
globals-init) | Global variable not assigned a value in initialization code

Topics
“Specify Polyspace Analysis Options”
“Assumptions About Global Variable Initialization” on page 4-15

Introduced in R2020a

 Verify initialization section of code only (-init-only-mode)

1-173

Verify module or library (-main-generator)
Generate a main function if source files are modules or libraries that do not contain a main

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must generate a main function if it does not find one in the source files.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node.

Command line and options file: Use the option -main-generator. See “Command-Line
Information” on page 1-175.

For the analogous option for model generated code, see Verify model generated code (-
main-generator).

Why Use This Option

Use this option if you are verifying a module or library. A Code Prover analysis requires a main
function. When verifying a module or library, your code might not have a main.

When you use this option, Code Prover generates a main function if one does not exist. If a main
exists, the analysis uses the existing main.

Settings
 On (default)

Polyspace generates a main function if it does not find one in the source files. The generated
main:

1 Initializes variables specified by Variables to initialize (-main-generator-
writes-variables).

2 Before calling other functions, calls the functions specified by Initialization functions
(-functions-called-before-main).

3 In all possible orders, calls the functions specified by Functions to call (-main-
generator-calls).

4 (C++ only) Calls class methods specified by Class (-class-analyzer) and Functions
to call within the specified classes (-class-analyzer-calls).

If you do not specify the function and variable options above, the generated main:

• Initializes all global variables except those declared with keywords const and static.
• In all possible orders, calls all functions that are not called anywhere in the source files.

Polyspace considers that global variables can be written between two consecutive function
calls. Therefore, in each called function, global variables initially have the full range of values
allowed by their type.

1 Analysis Options

1-174

 Off
Polyspace stops if a main function is not present in the source files.

Tips
• If a main function is present in your source files, the verification uses that main function,

irrespective of whether you enable or disable this option.

The option is relevant only if a main function is not present in your source files.
• If you use the option Verify whole application (default on the command line), your code

must contain a main function. Otherwise you see the error:

Error: required main procedure not found

If your code does not contain a main function, use this option to generate a main function.
• If you specify multitasking options, the verification ignores your specifications for main

generation. Instead, the verification introduces an empty main function.

For more information on the multitasking options, see “Configuring Polyspace Multitasking
Analysis Manually”.

Command-Line Information
Parameter: -main-generator
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator

See Also
Class (-class-analyzer) | Functions to call (-main-generator-calls) | Functions
to call within the specified classes (-class-analyzer-calls) | Initialization
functions (-functions-called-before-main) | Variables to initialize (-main-
generator-writes-variables) | Verify whole application

Topics
“Specify Polyspace Analysis Options”
“Verify C Application Without main Function”

 Verify module or library (-main-generator)

1-175

Main entry point (-main)
Specify a Microsoft Visual C++ extensions of main

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify the function that you want to use as main. If the function does not exist, the verification stops
with an error message. Use this option to specify Microsoft Visual C++ extensions of main.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 1-176 for other options that you must also
enable.

Command line and options file: Use the option -main. See “Command-Line Information” on page
1-177.

Settings
Default: _tmain

_tmain
Use _tmain as entry point to your code.

wmain
Use wmain as entry point to your code.

_tWinMain
Use _tWinMain as entry point to your code.

wWinMain
Use wWinMain as entry point to your code.

WinMain
Use WinMain as entry point to your code.

DllMain
Use DllMain as entry point to your code.

Dependencies
This option is enabled only if you:

• Set Source code language (-lang) to CPP.
• Select Verify whole application.

1 Analysis Options

1-176

Command-Line Information
Parameter: -main
Value: _tmain | wmain | _tWinMain | wWinMain | WinMain | DllMain
Example (Code Prover): polyspace-code-prover -sources file_name -compiler
visual14.0 -main _tmain
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
compiler visual14.0 -main _tmain

See Also
Verify module or library (-main-generator) | Verify whole application

Topics
“Specify Polyspace Analysis Options”

 Main entry point (-main)

1-177

Variables to initialize (-main-generator-writes-
variables)
Specify global variables that you want the generated main to initialize

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify global variables that you want the generated main to initialize. Polyspace considers these
variables to have any value allowed by their type.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 1-179 for other options that you must also
enable.

Command line and options file: Use the option -main-generator-writes-variables. See
“Command-Line Information” on page 1-179.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one does not exist.
If a main exists, the analysis uses the existing main.

A Code Prover analysis of a module without a main function makes some default assumptions about
global variable initialization. The analysis assumes that global variables that are not explicitly
initialized can have the full range of values allowed by their data types upon each entry into an
uncalled function. For instance, in the example below, which does not have a main function, the
variable glob is assumed to have all possible int values both in foo and bar (despite the
modification in foo). The assumption is a conservative one since the call context of foo and bar,
including which function gets called earlier, is not known.

int glob;

int foo() {
 int locFoo = glob;
 glob++;
 return locFoo;
}

int bar() {
 int locBar = glob;
 return locBar;
}

To implement this assumption, the generation main initializes such global variables to full-range
values before calling each otherwise uncalled function. Use this option to modify this default
assumption and implement a different initialization strategy for global variables.

1 Analysis Options

1-178

Settings
Default:

• C code — public
• C++ Code — uninit

uninit
C++ Only

The generated main only initializes global variables that you have not initialized during
declaration.

none
The generated main does not initialize global variables.

Global variables are initialized according to the C/C+ standard. For instance, int or char
variables are initialized to 0, float variables to 0.0, and so on.

public
The generated main initializes all global variables except those declared with keywords static
and const.

all
The generated main initializes all global variables except those declared with keyword const.

custom

The generated main only initializes global variables that you specify. Click to add a field.
Enter a global variable name.

Dependencies
You can use this option only if the following are true:

• Your code does not contain a main function.
• Verify module or library (-main-generator) is selected.

The option is disabled if you enable the option Ignore default initialization of global
variables (-no-def-init-glob). Global variables are considered as uninitialized until you
explicitly initialize them in the code.

Tips
This option only affects global variables that are defined in the project. If a global variable is declared
as extern, the analysis considers that the variable can have any value allowed by its data type,
irrespective of the value of this option.

Command-Line Information
Parameter: -main-generator-writes-variables
Value: uninit | none | public | all | custom=variable1[,variable2[,...]]
Default: (C) public | (C++) uninit

 Variables to initialize (-main-generator-writes-variables)

1-179

Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-main-generator-writes-variables all
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -main-generator-writes-variables all

See Also
Verify module or library (-main-generator)

Topics
“Specify Polyspace Analysis Options”
“Verify C Application Without main Function”

1 Analysis Options

1-180

Initialization functions (-functions-called-
before-main)
Specify functions that you want the generated main to call ahead of other functions

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify functions that you want the generated main to call ahead of other functions.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 1-182 for other options that you must also
enable.

Command line and options file: Use the option -functions-called-before-main. See
“Command-Line Information” on page 1-182.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one does not exist.
If a main exists, the analysis uses the existing main.

Use this option along with the option Functions to call (-main-generator-calls) to specify
which functions the generated main must call. Unless a function is called directly or indirectly from
main, the software does not analyze the function.

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

If the function or method is not overloaded, specify the function name. Otherwise, specify the
function prototype with arguments. For instance, in the following code, you must specify the
prototypes func(int) and func(double).

int func(int x) {
 return(x * 2);
}
double func(double x) {
 return(x * 2);
}

 Initialization functions (-functions-called-before-main)

1-181

For C++, if the function is:

• A class method: The generated main calls the class constructor before calling this function.
• Not a class method: The generated main calls this function before calling class methods.

If you use the scope resolution operator to specify the function from a particular namespace, enter
the fully qualified name, for instance, myClass::init(int). If the function does not have a
parameter, use an empty parenthesis, for instance, myClass::init().

Dependencies
This option is enabled only if you select Verify module or library under Code Prover Verification
and your code does not contain a main function.

Tips
Although these functions are called ahead of other functions, they can be called in arbitrary order. If
you want to call your initialization functions in a specific order, manually write a main function to call
them.

Command-Line Information
Parameter: -functions-called-before-main
Value: function1[,function2[,...]]
No Default
Example 1 (Code Prover): polyspace-code-prover -sources file_name -main-
generator -functions-called-before-main myfunc
Example 2 (Code Prover): polyspace-code-prover -sources file_name -main-
generator -functions-called-before-main myClass::init(int)
Example 1 (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -functions-called-before-main myfunc
Example 2 (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -functions-called-before-main myClass::init(int)

See Also
Class (-class-analyzer) | Functions to call (-main-generator-calls) | Functions
to call within the specified classes (-class-analyzer-calls) | Variables to
initialize (-main-generator-writes-variables) | Verify module or library (-
main-generator)

Topics
“Specify Polyspace Analysis Options”
“Verify C Application Without main Function”
“Verify C++ Classes”

1 Analysis Options

1-182

Functions to call (-main-generator-calls)
Specify functions that you want the generated main to call after the initialization functions

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify functions that you want the generated main to call. The main calls these functions after the
ones you specify through the option Initialization functions (-functions-called-
before-main).

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 1-184 for other options that you must also
enable.

Command line and options file: Use the option -main-generator-calls. See “Command-Line
Information” on page 1-184.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one does not exist.
If a main exists, the analysis uses the existing main.

Use this option along with the option Initialization functions (-functions-called-
before-main) to specify which functions the generated main must call. Unless a function is called
directly or indirectly from main, the software does not analyze the function.

Settings
Default: unused

none
The generated main does not call any function.

unused
The generated main calls only those functions that are not called in the source code. It does not
call inlined functions.

all
The generated main calls all functions except inlined ones.

custom
The generated main calls functions that you specify.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

 Functions to call (-main-generator-calls)

1-183

• Click to list functions in your code. Choose functions from the list.

If you use the scope resolution operator to specify the function from a particular namespace,
enter the fully qualified name, for instance, myClass::myMethod(int). If the function does not
have a parameter, use an empty parenthesis, for instance, myClass::myMethod().

Dependencies
This option is available only if you select Verify module or library (-main-generator).

Tips
• Select unused when you use Code Prover Verification > Verify files independently.
• If you want the generated main to call an inlined function, select custom and specify the name of

the function.
• To verify a multitasking application without a main, select none.
• The generated main can call the functions in arbitrary order. If you want to call your functions in a
specific order, manually write a main function to call them.

• To specify instantiations of templates as arguments, run analysis once with the option argument
all. Search for the template name in the analysis log and use the template name as it appears in
the analysis log for the option argument.

For instance, to specify this template function instantiation as option argument:

template <class T>
T GetMax (T a, T b) {
 T result;
 result = (a>b)? a : b;
 return (result);
}
template int GetMax<int>(int, int); // explicit instantiation

Run an analysis with the option -main-generator-calls all. Search for getMax in the
analysis log. You see the function format:

T1 getMax<int>(T1, T1)

To call only this template instantiation, remove the space between the arguments and use the
option:

-main-generator-calls custom="T1 getMax<int>(T1,T1)"

Command-Line Information
Parameter: -main-generator-calls
Value: none | unused | all | custom=function1[,function2[,...]]
Default: unused
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-main-generator-calls all
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -main-generator-calls all

1 Analysis Options

1-184

See Also
Class (-class-analyzer) | Functions to call within the specified classes (-
class-analyzer-calls) | Initialization functions (-functions-called-before-
main) | Verify module or library (-main-generator)

Topics
“Specify Polyspace Analysis Options”
“Verify C Application Without main Function”

 Functions to call (-main-generator-calls)

1-185

Verify files independently (-unit-by-unit)
Verify each source file independently of other source files

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify that each source file must be verified independently of other source files. Each file is verified
individually, independent of other files in the module. Verification results can be viewed for the entire
project or for individual files.

After you open the verification result for one file, in the user interface of the Polyspace desktop
products, you can see a summary of results for all files on the Dashboard pane. You can open the
results for each file directly from this summary table.

Each result file (with name ps_results.pscp) is saved in a subfolder of the results folder. The
subfolder has the same name as the source file being analyzed.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 1-186 for other options that you must also
enable.

Command line and options file: Use the option -unit-by-unit. See “Command-Line
Information” on page 1-187.

Why Use This Option

There are many reasons you might want to verify each source file independently of other files.

For instance, if verification of a project takes very long, you can perform a file by file verification to
identify which file is slowing the verification.

Settings
 On

Polyspace creates a separate verification job for each source file.

 Off (default)
Polyspace creates a single verification job for all source files in a module.

Dependencies
This option is enabled only if you select Verify module or library (-main-generator).

1 Analysis Options

1-186

Tips
• Code Prover requires a main function as the starting point of verification. In the file-by-file mode,

because most files do not have a main, Code Prover generates a main function when required. By
default, the generated main calls uncalled functions (uncalled non-private methods and out-of-
class functions in C++). For more information, see:

• “Verify C Application Without main Function”
• “Verify C++ Classes”

• If you perform a file by file verification, you cannot specify multitasking options.
• If your verification for the entire project takes very long, perform a file by file verification. After

the verification is complete for a file, you can view the results while other files are still being
verified.

• You can generate a report of the verification results for each file or for all the files together. To
generate a single report for all files, perform the report generation after verification (and not
along with verification using analysis options).

To generate a single report for all the files in the Polyspace user interface (desktop product only):

1 Open the results for one file.
2 Select Reporting > Run Report. Before generating the report, select the option Generate a

single report including all unit results.
• When you perform a file-by-file verification, you can see many instances of unused variables. Some

of these variables might be used in other files but show as unused in a file-by-file verification.

If you want to ignore these results, use a review scope (named set of filters) that filters out unused
variables. See “Filter and Group Results in Polyspace Desktop User Interface”.

Command-Line Information
Parameter: -unit-by-unit
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -unit-by-unit
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
unit-by-unit

See Also
Common source files (-unit-by-unit-common-source)

Topics
“Specify Polyspace Analysis Options”

 Verify files independently (-unit-by-unit)

1-187

Common source files (-unit-by-unit-common-
source)
Specify files that you want to include with each source file during a file by file verification

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

For a file by file verification, specify files that you want to include with each source file verification.
These files are compiled once, and then linked to each verification.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 1-188 for other options that you must also
enable.

Command line and options file: Use the option -unit-by-unit-common-source. See
“Command-Line Information” on page 1-189.

Why Use This Option

There are many reasons you might want to verify each source file independently of other files. For
instance, if verification of a project takes very long, you can perform a file by file verification to
identify which file is slowing the verification.

If you perform a file by file verification, some of your files might be missing information present in the
other files. Place the missing information in a common file and use this option to specify the file for
verification. For instance, if multiple source files call the same function, use this option to specify a
file that contains the function definition or a function stub. Otherwise, Polyspace uses its own stubs
for functions that are called but not defined in the source files. The assumptions behind the Polyspace
stubs can be broader than what you want, leading to orange checks.

Settings
No Default

Click to add a field. Enter the full path to a file. Otherwise, use the button to navigate to the
file location.

Dependencies
This option is enabled only if you select Verify files independently (-unit-by-unit).

1 Analysis Options

1-188

Command-Line Information
Parameter: -unit-by-unit-common-source
Value: file1[,file2[,...]]
No Default
Example (Code Prover): polyspace-code-prover -sources file_name -unit-by-unit -
unit-by-unit-common-source definitions.c
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
unit-by-unit -unit-by-unit-common-source definitions.c

See Also
Verify files independently (-unit-by-unit)

Topics
“Specify Polyspace Analysis Options”

 Common source files (-unit-by-unit-common-source)

1-189

Verify model generated code (-main-generator)
Specify that a main function must be generated if it is not present in source files

Description
In Bug Finder, use this option only for code generated from MATLAB code or Simulink models.

Specify that Polyspace must generate a main function if it does not find one in the source files.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node.

Command line and options file: Use the option -main-generator. See “Command-Line
Information” on page 1-190.

Settings
This option is always enabled for code generated from models.

Polyspace generates a main function for the analysis. The generated main contains cyclic code that
executes in a loop. The loop can run an unspecified number of times.

The main performs the following functions before the loop begins:

• Initializes variables specified by Parameters (-variables-written-before-loop).
• Calls the functions specified by Initialization functions (-functions-called-before-

loop).

The main then performs the following functions in the loop:

• Calls the functions specified by Step functions (-functions-called-in-loop).
• Writes to variables specified by Inputs (-variables-written-in-loop).

Finally, the main calls the functions specified by Termination functions (-functions-
called-after-loop).

Command-Line Information
Parameter: -main-generator
Default: On
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-
generator ...
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator ...
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
main-generator ...
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator ...

1 Analysis Options

1-190

See Also
Initialization functions (-functions-called-before-loop) | Inputs (-variables-
written-in-loop) | Parameters (-variables-written-before-loop) | Step functions
(-functions-called-in-loop) | Termination functions (-functions-called-after-
loop) | Verify model generated code (-main-generator)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

 Verify model generated code (-main-generator)

1-191

Parameters (-variables-written-before-loop)
Specify variables that the generated main must initialize before the cyclic code loop

Description
Use this option only for code generated from MATLAB code or Simulink models.

Specify variables that the generated main must initialize before the cyclic code loop begins. Before
the loop begins, Polyspace considers these variables to have any value allowed by their type.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Code Prover Verification node. You see this option only if you open a project configuration from
Simulink.

Command line and options file: Use the option -variables-written-before-loop. See
“Command-Line Information” on page 1-192.

Settings
Default: none

none
The generated main does not initialize variables.

all
The generated main initializes all variables except those declared with keyword const.

custom

The generated main only initializes variables that you specify. Click to add a field. Enter
variable name. For C++ class members, use the syntax className::variableName.

Command-Line Information
Parameter: -variables-written-before-loop
Value: none | all | custom=variable1[,variable2[,...]]
Default: none
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-generator -
variables-written-before-loop all
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-variables-written-before-loop all
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
main-generator -variables-written-before-loop all
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -variables-written-before-loop all

See Also
Inputs (-variables-written-in-loop) | Verify model generated code (-main-
generator)

1 Analysis Options

1-192

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

 Parameters (-variables-written-before-loop)

1-193

Inputs (-variables-written-in-loop)
Specify variables that the generated main must initialize in the cyclic code loop

Description
Use this option only for code generated from MATLAB code or Simulink models.

Specify variables that the generated main must initialize at the beginning of every iteration of the
cyclic code loop. At the beginning of every loop iteration, Polyspace considers these variables to have
any value allowed by their type.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Code Prover Verification node. You see this option only if you open a project configuration from
Simulink.

Command line and options file: Use the option -variables-written-in-loop. See “Command-
Line Information” on page 1-194.

Settings
Default: none

none
The generated main does not initialize variables.

all
The generated main initializes all variables except those declared with keyword const.

custom

The generated main only initializes variables that you specify. Click to add a field. Enter
variable name. For C++ class members, use the syntax className::variableName.

Command-Line Information
Parameter: -variables-written-in-loop
Value: none | all | custom=variable1[,variable2[,...]]
Default: none
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-generator -
variables-written-in-loop all
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-variables-written-in-loop all
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
main-generator -variables-written-in-loop all
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -variables-written-in-loop all

1 Analysis Options

1-194

See Also
Parameters (-variables-written-before-loop) | Verify model generated code (-
main-generator)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

 Inputs (-variables-written-in-loop)

1-195

Initialization functions (-functions-called-
before-loop)
Specify functions that the generated main must call before the cyclic code loop

Description
Use this option only for code generated from MATLAB code or Simulink models.

Specify functions that the generated main must call before the cyclic code begins.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Code Prover Verification node. You see this option only if you open a project configuration from
Simulink.

Command line and options file: Use the option -functions-called-before-loop. See
“Command-Line Information” on page 1-196.

Settings
No Default

Click to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular namespace, enter
the fully qualified name, for instance, myClass::init(int). If the function does not have a
parameter, use an empty parenthesis, for instance, myClass::init().

Tips
• If you specify a function for the option Termination functions (-functions-called-

after-loop), you cannot specify it for this option.

Command-Line Information
Parameter: -functions-called-before-loop
No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-generator -
functions-called-before-loop myfunc
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-functions-called-before-loop myfunc
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
main-generator -functions-called-before-loop myfunc
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -functions-called-before-loop myfunc

1 Analysis Options

1-196

See Also
Step functions (-functions-called-in-loop) | Termination functions (-functions-
called-after-loop) | Verify model generated code (-main-generator)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

 Initialization functions (-functions-called-before-loop)

1-197

Step functions (-functions-called-in-loop)
Specify functions that the generated main must call in the cyclic code loop

Description
Use this option only for code generated from MATLAB code or Simulink models.

Specify functions that the generated main must call in each cycle of the cyclic code.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Code Prover Verification node. You see this option only if you open a project configuration from
Simulink.

Command line and options file: Use the option -functions-called-in-loop. See “Command-
Line Information” on page 1-198.

Settings
Default: none

none
The generated main does not call functions in the cyclic code.

all
The generated main calls all functions except inlined ones. If you specify certain functions for the
options Initialization functions or Termination functions, the generated main does not call
those functions in the cyclic code.

custom

The generated main calls functions that you specify. Click to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular namespace,
enter the fully qualified name, for instance, myClass::myMethod(int). If the function does not
have a parameter, use an empty parenthesis, for instance, myClass::myMethod().

Tips
If you have specified a function for the option Initialization functions (-functions-
called-before-loop) or Termination functions (-functions-called-after-loop), to
call it inside the cyclic code, use custom and specify the function name.

Command-Line Information
Parameter: -functions-called-in-loop
Value: none | all | custom=function1[,function2[,...]]
Default: none

1 Analysis Options

1-198

Example (Bug Finder): polyspace-bug-finder -sources file_name -main-generator -
functions-called-in-loop all
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-functions-called-in-loop all
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
main-generator -functions-called-in-loop all
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -functions-called-in-loop all

See Also
Initialization functions (-functions-called-before-loop) | Termination
functions (-functions-called-after-loop) | Verify model generated code (-main-
generator)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

 Step functions (-functions-called-in-loop)

1-199

Termination functions (-functions-called-
after-loop)
Specify functions that the generated main must call after the cyclic code loop

Description
Use this option only for code generated from MATLAB code or Simulink models.

Specify functions that the generated main must call after the cyclic code ends.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Code Prover Verification node. You see this option only if you open a project configuration from
Simulink.

Command line and options file: Use the option -functions-called-after-loop. See
“Command-Line Information” on page 1-200.

Settings
No Default

Click to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular namespace, enter
the fully qualified name, for instance, myClass::myMethod(int). If the function does not have a
parameter, use an empty parenthesis, for instance, myClass::myMethod().

Tips
• If you specify a function for the option Initialization functions (-functions-called-

before-loop), you cannot specify it for this option.

Command-Line Information
Parameter: -functions-called-after-loop
No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-generator -
functions-called-after-loop myfunc
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-functions-called-after-loop myfunc
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
main-generator -functions-called-after-loop myfunc
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -functions-called-after-loop myfunc

1 Analysis Options

1-200

See Also
Initialization functions (-functions-called-before-loop) | Step functions (-
functions-called-in-loop) | Verify model generated code (-main-generator)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

 Termination functions (-functions-called-after-loop)

1-201

Class (-class-analyzer)
Specify classes that you want to verify

Description
This option affects a Code Prover analysis only.

Specify classes that Polyspace uses to generate a main.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 1-202 for other options that you must also
enable.

Command line and options file: Use the option -class-analyzer. See “Command-Line
Information” on page 1-203.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one does not exist.
If a main exists, the analysis uses the existing main.

Use this option and the option Functions to call within the specified classes (-
class-analyzer-calls) to specify the class methods that the generated main must call. Unless a
class method is called directly or indirectly from main, the software does not analyze the method.

Settings
Default: all

all
Polyspace can use all classes to generate a main. The generated main calls methods that you
specify using Functions to call within the specified classes.

none
The generated main cannot call any class method.

custom
Polyspace can use classes that you specify to generate a main. The generated main calls methods
from classes that you specify using Functions to call within the specified classes.

Dependencies
You can use this option only if all of the following are true:

• Your code does not contain a main function.
• Source code language (-lang) is set to CPP or C-CPP.
• Verify module or library (-main-generator) is selected.

1 Analysis Options

1-202

Tips
If you select none for this option, Polyspace will not verify class methods that you do not call
explicitly in your code.

Command-Line Information
Parameter: -class-analyzer
Value: all | none | custom=class1[,class2,...]
Default: all
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-class-analyzer custom=myClass1,myClass2
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -class-analyzer custom=myClass1,myClass2

See Also
Analyze class contents only (-class-only) | Functions to call within the
specified classes (-class-analyzer-calls) | Skip member initialization check (-
no-constructors-init-check) | Verify module or library (-main-generator)

Topics
“Specify Polyspace Analysis Options”
“Verify C++ Classes”

 Class (-class-analyzer)

1-203

Functions to call within the specified classes (-
class-analyzer-calls)
Specify class methods that you want to verify

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify class methods that Polyspace uses to generate a main. The generated main can call static,
public and protected methods in classes that you specify using the Class option.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 1-205 for other options that you must also
enable.

Command line and options file: Use the option -class-analyzer-calls. See “Command-Line
Information” on page 1-205.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one does not exist.
If a main exists, the analysis uses the existing main.

Use this option and the option Class (-class-analyzer) to specify the class methods that the
generated main must call. Unless a class method is called directly or indirectly from main, the
software does not analyze the method.

Settings
Default: unused

all
The generated main calls all public and protected methods. It does not call methods inherited
from a parent class.

all-public
The generated main calls all public methods. It does not call methods inherited from a parent
class.

inherited-all
The generated main calls all public and protected methods including those inherited from a
parent class.

inherited-all-public
The generated main calls all public methods including those inherited from a parent class.

1 Analysis Options

1-204

unused
The generated main calls public and protected methods that are not called in the code.

unused-public
The generated main calls public methods that are not called in the code. It does not call methods
inherited from a parent class.

inherited-unused
The generated main calls public and protected methods that are not called in the code including
those inherited from a parent class.

inherited-unused-public
The generated main calls public methods that are not called in the code including those inherited
from a parent class.

custom
The generated main calls the methods that you specify.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

If you use the scope resolution operator to specify the function from a particular namespace,
enter the fully qualified name, for instance, myClass::myMethod(int). If the function does not
have a parameter, use an empty parenthesis, for instance, myClass::myMethod().

Dependencies
You can use this option only if:

• Source code language (-lang) is set to CPP or C-CPP.
• Verify module or library (-main-generator) is selected.

Command-Line Information
Parameter: -class-analyzer-calls
Value: all | all-public | inherited-all | inherited-all-public | unused | unused-
public | inherited-unused | inherited-unused-public | custom=method1[,method2,...]
Default: unused
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-class-analyzer custom=myClass1,myClass2 -class-analyzer-calls unused-public
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -class-analyzer custom=myClass1,myClass2 -class-analyzer-calls
unused-public

See Also
Class (-class-analyzer) | Verify module or library (-main-generator)

Topics
“Specify Polyspace Analysis Options”

 Functions to call within the specified classes (-class-analyzer-calls)

1-205

“Verify C++ Classes”

1 Analysis Options

1-206

Analyze class contents only (-class-only)
Do not analyze code other than class methods

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify that Polyspace must verify only methods of classes that you specify using the option Class
(-class-analyzer).

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 1-207 for other options that you must also
enable.

Command line and options file: Use the option -class-only. See “Command-Line Information”
on page 1-208.

Why Use This Option

Use this option to restrict the analysis to certain class methods only.

You specify these methods through the options:

• Class (-class-analyzer)
• Functions to call within the specified classes (-class-analyzer-calls)

When you analyze a module or library, Code Prover generates a main function if one does not exist.
The main function calls class methods using these two options and functions that are not class
methods using other options. Code Prover analyzes these methods and functions for robustness to all
inputs. If you use this option, Code Prover analyzes the methods only.

Settings
 On

Polyspace verifies the class methods only. It stubs functions out of class scope even if the
functions are defined in your code.

 Off (default)
Polyspace verifies functions out of class scope in addition to class methods.

Dependencies
You can use this option only if all of the following are true:

• Your code does not contain a main function.

 Analyze class contents only (-class-only)

1-207

• Source code language (-lang) is set to CPP or C-CPP.
• Verify module or library (-main-generator) is selected.

If you select this option, you must specify the classes using the Class (-class-analyzer) option.

Tips
Use this option:

• For robustness verification of class methods. Unless you use this option, Polyspace verifies
methods that you call in your code only for your input combinations.

• In case of scaling.

Command-Line Information
Parameter: -class-only
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-class-analyzer custom=myClass1,myClass2 -class-analyzer-calls unused-public
-class-only
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -class-analyzer custom=myClass1,myClass2 -class-analyzer-calls
unused-public -class-only

See Also
Class (-class-analyzer) | Functions to call within the specified classes (-
class-analyzer-calls) | Verify module or library (-main-generator)

Topics
“Specify Polyspace Analysis Options”
“Verify C++ Classes”

1 Analysis Options

1-208

Skip member initialization check (-no-
constructors-init-check)
Do not check if class constructor initializes class members

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must not check whether each class constructor initializes all class members.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 1-209 for other options that you must also
enable.

Command line and options file: Use the option -no-constructors-init-check. See
“Command-Line Information” on page 1-210.

Why Use This Option

Use this option to disable checks for initialization of class members in constructors.

Settings
 On

Polyspace does not check whether each class constructor initializes all class members.

 Off (default)
Polyspace checks whether each class constructor initializes all class members. It uses the
functions check_NIV() and check_NIP() in the generated main to perform these checks. It
checks for initialization of:

• Integer types such as int, char and enum, both signed or unsigned.
• Floating-point types such as float and double.
• Pointers.

Dependencies
You can use this option only if all of the following are true:

• Your code does not contain a main function.
• Source code language (-lang) is set to CPP or C-CPP.
• Verify module or library (-main-generator) is selected.

If you select this option, you must specify the classes using theClass (-class-analyzer) option.

 Skip member initialization check (-no-constructors-init-check)

1-209

Command-Line Information
Parameter: -no-constructors-init-check
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-class-analyzer custom=myClass1,myClass2 -class-analyzer-calls unused-public
-no-constructors-init-check
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -class-analyzer custom=myClass1,myClass2 -class-analyzer-calls
unused-public -no-constructors-init-check

See Also
Class (-class-analyzer) | Verify module or library (-main-generator)

Topics
“Specify Polyspace Analysis Options”
“Verify C++ Classes”

1 Analysis Options

1-210

Respect types in fields (-respect-types-in-
fields)
Do not cast nonpointer fields of a structure to pointers

Description
This option affects a Code Prover analysis only.

Specify that structure fields not declared initially as pointers will not be cast to pointers later.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Verification Assumptions node.

Command line and options file: Use the option -respect-types-in-fields. See “Command-
Line Information” on page 1-212.

Why Use This Option

Use this option to identify and forbid casts from nonpointer structure fields to pointers.

Settings
 On

The verification assumes that structure fields not declared initially as pointers will not be cast to
pointers later.

Code with option off Code with option on
struct {
 unsigned int x1;
 unsigned int x2;
} S;

void funct(void) {
 int var, *tmp;
 S.x1 = &var;
 tmp = (int*)S.x1;
 *tmp = 1;
 assert(var==1);
}

In this example, the fields of S are declared
as integers but S.x1 is cast to a pointer. With
the option turned off, Polyspace allows the
cast.

struct {
 unsigned int x1;
 unsigned int x2;
} S;

void funct(void) {
 int var, *tmp;
 S.x1 = &var;
 tmp = (int*)S.x1;
 *tmp = 1;
 assert(var==1);
}

In this example, the fields of S are declared
as integers but S.x1 is cast to a pointer. With
the option turned on, Polyspace ignores the
cast. Therefore, it ignores the initialization of
var through the pointer (int*)S.x1 and
produces a red Non-initialized local
variable error when var is read.

 Respect types in fields (-respect-types-in-fields)

1-211

 Off (default)
The verification assumes that structure fields can be cast to pointers even when they are not
declared as pointers.

Command-Line Information
Parameter: -respect-types-in-fields
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -respect-types-
in-fields
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
respect-types-in-fields

See Also
Non-initialized local variable | Respect types in global variables (-respect-
types-in-globals)

Topics
“Specify Polyspace Analysis Options”

1 Analysis Options

1-212

Respect types in global variables (-respect-
types-in-globals)
Do not cast nonpointer global variables to pointers

Description
This option affects a Code Prover analysis only.

Specify that global variables not declared initially as pointers will not be cast to pointers later.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Verification Assumptions node.

Command line and options file: Use the option -respect-types-in-globals. See “Command-
Line Information” on page 1-214.

Why Use This Option

Use this option to identify and forbid casts from nonpointer global variables to pointers.

Settings
 On

The verification assumes that global variables not declared initially as pointers will not be cast to
pointers later.

 Off (default)
The verification assumes that global variables can be cast to pointers even when they are not
declared as pointers.

Tips
If you select this option, the number of checks in your code can change. You can use this option and
the change in results to identify cases where you cast nonpointer variables to pointers.

For instance, in the following example, when you select the option, the results have one less orange
check and one more red check.

 Respect types in global variables (-respect-types-in-globals)

1-213

Code with option off Code with option on
int global;
void main(void) {
 int local;
 global = (int)&local;
 (int)global = 5;
 assert(local==5);
}

In this example, global is declared as an int
variable but cast to a pointer. With the option
turned off, Polyspace allows the cast.

int global;
void main(void) {
 int local;
 global = (int)&local;
 (int)global = 5;
 assert(local==5);
}

In this example, global is declared as an int
variable but cast to a pointer. With the option
turned on, Polyspace ignores the cast. Therefore,
it ignores the initialization of local through the
pointer (int*)global and produces a red Non-
initialized local variable error when local is
read.

Command-Line Information
Parameter: -respect-types-in-globals
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -respect-types-
in-globals
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
respect-types-in-globals

See Also
Non-initialized local variable | Respect types in fields (-respect-types-in-
fields)

Topics
“Specify Polyspace Analysis Options”

1 Analysis Options

1-214

Consider environment pointers as unsafe (-
stubbed-pointers-are-unsafe)
Specify that environment pointers can be unsafe to dereference unless constrained otherwise

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify that the verification must consider environment pointers as unsafe unless otherwise
constrained. Environment pointers are pointers that can be assigned values outside your code.

Environment pointers include:

• Global or extern pointers.
• Pointers returned from stubbed functions.

A function is stubbed if your code does not contain the function definition or you override a
function definition by using the option Functions to stub (-functions-to-stub).

• Pointer parameters of functions whose calls are generated by the software.

A function call is generated if you verify a module or library and the module or library does not
have an explicit call to the function. You can also force a function call to be generated with the
option Functions to call (-main-generator-calls).

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Verification Assumptions node.

Command line and options file: Use the option -stubbed-pointers-are-unsafe. See
“Command-Line Information” on page 1-217.

Why Use This Option

Use this option so that the verification makes more conservative assumptions about pointers from
external sources.

If you specify this option, the verification considers that environment pointers can have a NULL value.
If you read an environment pointer without checking for NULL, the Illegally dereferenced pointer
check shows a potential error in orange. The message associated with the orange check shows the
pointer can be NULL.

Settings
 On

The verification considers that environment pointers can have a NULL value.

 Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)

1-215

 Off (default)
The verification considers that environment pointers:

• Cannot have a NULL value.
• Points within allowed bounds.

Tips
• Enable this option during the integration phase. In this phase, you provide complete code for
verification. Even if an orange check originates from external sources, you are likely to place
protections against unsafe pointers from such sources. For instance, if you obtain a pointer from
an unknown source, you check the pointer for NULL value.

Disable this option during the unit testing phase. In this phase, you focus on errors originating
from your unit.

• If you are verifying code implementation of AUTOSAR runnables, Code Prover assumes that
pointer arguments to runnables and pointers returned from Rte_ functions are not NULL. You
cannot use this option to change the assumption. See “Run Polyspace on AUTOSAR Code with
Conservative Assumptions”.

• If you enable this option, the number of orange checks in your code might increase.

Environment Pointers Safe Environment Pointers Unsafe
The Illegally dereferenced pointer check is
green. The verification assumes that env_ptr
is not NULL and any dereference is within
allowed bounds. The verification assumes that
the result of the dereference is full range. For
instance, in this case, the return value has the
full range of type int.

 int func (int *env_ptr) {
 return *env_ptr;
 }

The Illegally dereferenced pointer check is
orange. The verification assumes that
env_ptr can be NULL.

 int func (int *env_ptr) {
 return *env_ptr;
 }

If you enable this option, the number of gray checks might decrease.

Environment Pointers Safe Environment Pointers Unsafe
The verification assumes that env_ptr is not
NULL. The if condition is always true and the
else block is unreachable.

 #include <stdlib.h>
 int func (int *env_ptr) {
 if(env_ptr!=NULL)
 return *env_ptr;
 else
 return 0;
 }

The verification assumes that env_ptr can be
NULL. The if condition is not always true and
the else block can be reachable.

 #include <stdlib.h>
 int func (int *env_ptr) {
 if(env_ptr!=NULL)
 return *env_ptr;
 else
 return 0;
 }

• Instead of considering all environment pointers as safe or unsafe, you can individually constrain
some of the environment pointers. See the description of Initialize Pointer in “External
Constraints for Polyspace Analysis”.

1 Analysis Options

1-216

When you individually constrain a pointer, you first specify an Init Mode, and then specify
through the Initialize Pointer option whether the pointer is Null, Not Null, or Maybe Null.
Depending on the Init Mode, you can either override the global specification for all environment
pointers or not.

• If you set the Init Mode of the pointer to INIT or PERMANENT, your selection for Initialize
Pointer overrides your specification for this option. For instance, if you specify Not NULL for
an environment pointer ptr, the verification assumes that ptr is not NULL even if you specify
that environment pointers must be considered unsafe.

• If you set the Init Mode to MAIN GENERATOR, the verification uses your specification for this
option.

For pointers returned from stubbed functions, the option MAIN GENERATOR is not available. If
you override the global specification for such a pointer through the Initialize Pointer option
in constraints, you cannot toggle back to the global specification without changing the
Initialize Pointer option too.

• If you disable this option, the verification considers that dereferences at all pointer depths are
valid.

For instance, all the dereferences are considered valid in this code:

int*** stub(void);

void func2() {
 int ***ptr = stub();
 int **ptr2 = *ptr;
 int *ptr3 = *ptr2;
}

Command-Line Information
Parameter: -stubbed-pointers-are-unsafe
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -stubbed-
pointers-are-unsafe
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
stubbed-pointers-are-unsafe

See Also
Constraint setup (-data-range-specifications)

Topics
“Specify Polyspace Analysis Options”
“Specify External Constraints”
“External Constraints for Polyspace Analysis”

Introduced in R2016b

 Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)

1-217

Consider volatile qualifier on fields (-consider-
volatile-qualifier-on-fields)
Assume that volatile qualified structure fields can have all possible values at any point in code

Description
This option affects a Code Prover analysis only.

Specify that the verification must take into account the volatile qualifier on fields of a structure.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Verification Assumptions node.

Command line and options file: Use the option -consider-volatile-qualifier-on-fields.
See “Command-Line Information” on page 1-220.

Why Use This Option

The volatile qualifier on a variable indicates that the variable value can change between
successive operations even if you do not explicitly change it in your code. For instance, if var is a
volatile variable, the consecutive operations res = var; res =var; can result in two different
values of var being read into res.

Use this option so that the verification emulates the volatile qualifier for structure fields. If you
select this option, the software assumes that a volatile structure field has a full range of values at
any point in the code. The range is determined only by the data type of the structure field.

Settings
 On

The verification considers the volatile qualifier on fields of a structure.

In the following example, the verification considers that the field val1 can have all values
allowed for the int type at any point in the code.

struct myStruct {
 volatile int val1;
 int val2;
};

Even if you write a specific value to val1 and read the variable in the next operation, the variable
read results in any possible value.

struct myStruct myStructInstance;
myStructInstance.val1 = 1;
assert (myStructInstance.val1 == 1); // Assertion can fail

1 Analysis Options

1-218

 Off (default)
The verification ignores the volatile qualifier on fields of a structure.

In the following example, the verification ignores the qualifier on field val1.

struct myStruct {
 volatile int val1;
 int val2;
};

If you write a specific value to val1 and read the variable in the next operation, the variable read
results in that specific value.

struct myStruct myStructInstance;
myStructInstance.val1 = 1;
assert (myStructInstance.val1 == 1); // Assertion passes

Tips
• If your volatile fields do not represent values read from hardware and you do not expect their

values to change between successive operations, disable this option. You are using the volatile
qualifier for some other reason and the verification does not need to consider full range for the
field values.

• If you enable this option, the number of red, gray, and green checks in your code can decrease.
The number of orange checks can increase.

In the following example, a red or green check changes to orange or a gray check goes away when
the option is used. Considering the volatile qualifier changes the check color. These examples
use the following structure definition:

struct myStruct {
 volatile int field1;
 int field2;
};

Color
Without
Option

Result Without Option Result With Option

Green void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 == 1);
}

void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 ==1);
}

Red void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 != 1);
}

void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 !=1);
}

 Consider volatile qualifier on fields (-consider-volatile-qualifier-on-fields)

1-219

Color
Without
Option

Result Without Option Result With Option

Gray void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 if (structVal.field1 != 1)
 {
 /* Perform operation */
 }
}

void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 if (structVal.field1 != 1)
 {
 /* Perform operation */
 }
}

• In C++ code, the option also applies to class members.

Command-Line Information
Parameter: -consider-volatile-qualifier-on-fields
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -consider-
volatile-qualifier-on-fields
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
consider-volatile-qualifier-on-fields

See Also
Topics
“Specify Polyspace Analysis Options”

Introduced in R2016b

1 Analysis Options

1-220

Float rounding mode (-float-rounding-mode)
Specify rounding modes to consider when determining the results of floating point arithmetic

Description
This option affects a Code Prover analysis only.

Specify the rounding modes to consider when determining the results of floating-point arithmetic.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Verification Assumptions node.

Command line and options file: Use the option -float-rounding-mode. See “Command-Line
Information” on page 1-223.

Why Use This Option

The default verification uses the round-to-nearest mode.

Use the rounding mode all if your code contains routines such as fesetround to specify a rounding
mode other than round-to-nearest. Although the verification ignores the fesetround specification, it
considers all rounding modes including the rounding mode that you specified. Alternatively, for
targets that can use extended precision (for instance, using the flag -mfpmath=387), use the
rounding mode all. However, for your Polyspace analysis results to agree with run-time behavior,
you must prevent use of extended precision through a flag such as -ffloat-store.

Otherwise, continue to use the default rounding mode to-nearest. Because all rounding modes are
considered when you specify all, you can have many orange Overflow checks resulting from
overapproximation.

Settings
Default: to-nearest

to-nearest
The verification assumes the round-to-nearest mode.

all
The verification assumes all rounding modes for each operation involving floating-point variables.
The following rounding modes are considered: round-to-nearest, round-towards-zero, round-
towards-positive-infinity, and round-towards-negative-infinity.

Tips
• The Polyspace analysis uses floating-point arithmetic that conforms to the IEEE® 754 standard.

For instance, the arithmetic uses floating point instructions present in the SSE instruction set. The
GNU C flag -mfpmath=sse enforces use of this instruction set. If you use the GNU C compiler

 Float rounding mode (-float-rounding-mode)

1-221

https://www.cplusplus.com/reference/cfenv/fesetround/

with this flag to compile your code, your Polyspace analysis results agree with your run-time
behavior.

However, if your code uses extended precision, for instance using the GNU C flag -mfpmath=387,
your Polyspace analysis results might not agree with your run-time behavior in some corner cases.
See some examples of these corner cases in codeprover_limitations.pdf in polyspaceroot
\polyspace\verifier\code_prover_desktop. Here, polyspaceroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2019a.

To prevent use of extended precision, on targets without SSE support, you can use a flag such as -
ffloat-store. For your Polyspace analysis, use all for rounding mode to account for double
rounding.

• The Overflow check uses the rounding modes that you specify. For instance, the following table
shows the difference in the result of the check when you change your rounding modes.

1 Analysis Options

1-222

Rounding mode: to-nearest Rounding mode: all
If results of floating-point operations are
rounded to nearest values:

• In the first addition operation, eps1 is just
large enough that the value nearest to
FLT_MAX + eps1 is greater than
FLT_MAX. The Overflow check is red.

• In the second addition operation, eps2 is
just small enough that the value nearest to
FLT_MAX + eps2 is FLT_MAX. The
Overflow check is green.

#include <float.h>
#define eps1 0x1p103
#define eps2 0x0.FFFFFFp103

float func(int ch) {
 float left_op = FLT_MAX;
 float right_op_1 = eps1, \
right_op_2 = eps2;
 switch(ch) {
 case 1:
 return (left_op +\
right_op_1);
 case 2:
 return (left_op +\
right_op_2);
 default:
 return 0;
 }
}

Besides to-nearest mode, the Overflow check
also considers other rounding modes.

• In the first addition operation, in to-nearest
mode, the value nearest to FLT_MAX +
eps1 is greater than FLT_MAX, so the
addition overflows. But if rounded towards
negative infinity, the result is FLT_MAX, so
the addition does not overflow. Combining
these two rounding modes, the Overflow
check is orange.

• In the second addition operation, in to-
nearest mode, the value nearest to
FLT_MAX + eps2 is FLT_MAX, so the
addition does not overflow. But if rounded
towards positive infinity, the result is
greater than FLT_MAX, so the addition
overflows. Combining these two rounding
modes, the Overflow check is orange.

#include <float.h>
#define eps1 0x1p103
#define eps2 0x0.FFFFFFp103

float func(int ch) {
 float left_op = FLT_MAX;
 float right_op_1 = eps1, \
 right_op_2 = eps2;
 switch(ch) {
 case 1:
 return (left_op +\
right_op_1);
 case 2:
 return (left_op +\
right_op_2);
 default:
 return 0;
 }
}

If you set the rounding mode to all and obtain an orange Overflow check, to determine how the
overflow can occur, consider all rounding modes.

Command-Line Information
Parameter: -float-rounding-mode
Value: to-nearest | all
Default: to-nearest
Example (Code Prover): polyspace-code-prover -sources file_name -float-rounding-
mode all

 Float rounding mode (-float-rounding-mode)

1-223

Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
float-rounding-mode all

See Also
Overflow

Topics
“Specify Polyspace Analysis Options”

Introduced in R2016a

1 Analysis Options

1-224

Allow negative operand for left shifts (-allow-
negative-operand-in-shift)
Allow left shift operations on a negative number

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow left shift operations on a negative number.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -allow-negative-operand-in-shift. See
“Command-Line Information” on page 1-225.

Why Use This Option

According to the C99 standard (sec 6.5.7), the result of a left shift operation on a negative number is
undefined. Following the standard, the verification produces a red check on left shifts of negative
numbers.

If your compiler has a well-defined behavior for left shifts of negative numbers, set this option. Note
that allowing left shifts of negative numbers can reduce the cross-compiler portability of your code.

Settings
 On

The verification allows shift operations on a negative number, for instance, -2 << 2.
 Off (default)

If a shift operation is performed on a negative number, the verification generates an error.

Command-Line Information
Parameter: -allow-negative-operand-in-shift
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -allow-negative-
operand-in-shift
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
allow-negative-operand-in-shift

See Also
Invalid shift operations

Topics
“Specify Polyspace Analysis Options”

 Allow negative operand for left shifts (-allow-negative-operand-in-shift)

1-225

“Modify or Disable Code Prover Run-Time Checks”

1 Analysis Options

1-226

Overflow mode for signed integer (-signed-
integer-overflows)
Specify whether result of overflow is wrapped around or truncated

Description
This option affects a Code Prover analysis only.

Specify whether Polyspace flags signed integer overflows and whether the analysis wraps the result
of an overflow or restricts it to its extremum value.

Set Option

User interface (desktop products only): In the Configuration pane, the option is on the Check
Behavior node under Code Prover Verification.

Command line and options file: Use the option -signed-integer-overflows. See “Command-
Line Information” on page 1-230.

Why Use This Option

Use this option to specify whether to check for signed integer overflows and to specify the
assumptions the analysis makes following an overflow.

Settings
Default: forbid

forbid
Polyspace flags signed integer overflows. If the Overflow check on an operation is:

• Red, Polyspace does not analyze the remaining code in the current scope.
• Orange, Polyspace analyzes the remaining code in the current scope. Polyspace considers

that:

• After a positive Overflow, the result of the operation has an upper bound. This upper
bound is the maximum value allowed by the type of the result.

• After a negative Overflow, the result of the operation has a lower bound. This lower bound
is the minimum value allowed by the type of the result.

This behavior conforms to the ANSI C (ISO C++) standard.

In the following code, j has values in the range [1..231-1] before the orange overflow.
Polyspace considers that j has even values in the range [2 .. 2147483646] after the overflow.
Polyspace does not analyze the printf() statement after the red overflow.

 Overflow mode for signed integer (-signed-integer-overflows)

1-227

#include<stdio.h>

int getVal();

void func1()
{
 int i = 1;
 i = i << 30;
 // Result of * operation overflows
 i = i * 2;
 // Remaing code in current scope not analyzed
 printf("%d", i);
}
void func2()
{

 int j = getVal();
 if (j > 0) {
 // Range of j: [1..231-1]
 // Result of * operation may overflow
 j = j * 2;
 // Range of j: even values in [2 .. 2147483646]
 printf("%d", j);
 }
}

Note that tooltips on operations with signed integers show (result is truncated) to indicate
the analysis mode. The message appears even if the Overflow check is green.

allow
Polyspace does not flag signed integer overflows. If an operation results in an overflow, Polyspace
analyzes the remaining code but wraps the result of the overflow.

In this code, the analysis does not flag any overflow in the code. However, the range of j wraps
around to even values in the range [-231..2] or [2..231-2] and the value of i wraps around
to -231.

1 Analysis Options

1-228

#include<stdio.h>

int getVal();

void func1()
{
 int i = 1;
 i = i << 30;
 // i = 230
 i = i * 2;
 // i = -231
 printf("%d", i);
}
void func2()
{

 int j = getVal();
 if (j > 0) {
 // Range of j: [1..231-1]
 j = j * 2;
 // Range of j: even values in [-231..2] or [2..231-2]
 printf("%d", j);
 }
}

Note that tooltips on operations with signed integers show (result is wrapped) to indicate
the analysis mode. The message appears even if the analysis in this mode does not flag signed
integer overflows.

warn-with-wrap-around
Polyspace flags signed integer overflows. If an operation results in an overflow, Polyspace
analyzes the remaining code but wraps the result of the overflow.

In the following code, j has values in the range [1..231-1] before the orange overflow.
Polyspace considers that j has even values in the range [-231..2] or [2..231-2] after the
overflow.

Similarly, i has value 230 before the red overflow and value -231 after it .

 Overflow mode for signed integer (-signed-integer-overflows)

1-229

#include<stdio.h>

int getVal();

void func1()
{
 int i = 1;
 i = i << 30;
 // i = 230
 // Result of * operation overflows
 i = i * 2;
 // i = -231
 printf("%d", i);
}
void func2()
{

 int j = getVal();
 if (j > 0) {
 // Range of j: [1..231-1]
 // Result of * operation may overflow
 j = j * 2;
 // Range of j: even values in [-231..2] or [2..231-2]
 printf("%d", j);
 }
}

Note that tooltips on operations with signed integers show (result is wrapped) to indicate
the analysis mode. The message appears even if the Overflow check is green.

In wrap-around mode, an overflowing value propagates and can lead to a similar overflow several
lines later. By default, Code Prover shows only the first of similar overflows. To see all overflows,
use the option -show-similar-overflows.

Tips
• To check for overflows on conversions from unsigned to signed integers of the same size, set
Overflow mode for unsigned integer to forbid or warn-with-wrap-around. If you allow
unsigned integer overflows, Polyspace does not flag overflows on conversions and wraps the result
of an overflow, even if you check for signed integer overflows.

• In Polyspace Code Prover, overflowing signed constants are wrapped around. This behavior
cannot be changed by using the options. If you want to detect overflows with signed constants,
use the Polyspace Bug Finder checker Integer constant overflow.

Command-Line Information
Parameter: -signed-integer-overflows
Value: forbid | allow | warn-with-wrap-around
Default: forbid
Example (Code Prover): polyspace-code-prover -sources file_name -signed-integer-
overflows allow
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
signed-integer-overflows allow

1 Analysis Options

1-230

See Also
-show-similar-overflows | Overflow | Overflow mode for unsigned integer (-
unsigned-integer-overflows)

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks”

Introduced in R2018b

 Overflow mode for signed integer (-signed-integer-overflows)

1-231

Overflow mode for unsigned integer (-unsigned-
integer-overflows)
Specify whether result of overflow is wrapped around or truncated

Description
This option affects a Code Prover analysis only.

Specify whether Polyspace flags unsigned integer overflows and whether the analysis wraps the
result of an overflow or restricts it to its extremum value.

Set Option

User interface (desktop products only): In the Configuration pane, the option is on the Check
Behavior node under Code Prover Verification.

Command line and options file: Use the option -unsigned-integer-overflows. See
“Command-Line Information” on page 1-235.

Why Use This Option

Use this option to specify whether to check for unsigned integer overflows and to specify the
assumptions the analysis makes following an overflow.

Settings
Default: allow

forbid
Polyspace flags unsigned integer overflows. If the Overflow check on an operation is:

• Red, Polyspace does not analyze the remaining code in the current scope.
• Orange, Polyspace analyzes the remaining code in the current scope. Polyspace considers

that:

• After a positive Overflow, the result of the operation has an upper bound. This upper
bound is the maximum value allowed by the type of the result.

• After a negative Overflow, the result of the operation has a lower bound. This lower bound
is the minimum value allowed by the type of the result.

In the following code, j has values in the range [1..232-1] before the orange overflow.
Polyspace considers that j has even values in the range [2 .. 4294967294] after the overflow.
Polyspace does not analyze the printf() statement after the red overflow.

1 Analysis Options

1-232

#include<stdio.h>

unsigned int getVal();

void func1()
{
 unsigned int i = 1;
 i = i << 31;
 // Result of * operation overflows
 i = i * 2;
 // Remaing code in current scope not analyzed
 printf("%u", i);
}
void func2()
{

 unsigned int j = getVal();
 if (j > 0) {
 // Range of j: [1..232-1]
 // Result of * operation may overflow
 j = j * 2;
 // Range of j: even values in [2 .. 4294967294]
 printf("%u", j);
 }
}

Note that tooltips on operations with unsigned integers show (result is truncated) to
indicate the analysis mode. The message appears even if the Overflow check is green.

allow
Polyspace does not flag unsigned integer overflows. If an operation results in an overflow,
Polyspace analyzes the remaining code but wraps the result of the overflow. For instance,
MAX_INT + 1 wraps to MIN_INT. This behavior conforms to the ANSI C (ISO C++) standard.

In this code, the analysis does not flag any overflow in the code. However, the range of j wraps
around to even values in the range [0..232-2]] and the value of i wraps around to 0.

 Overflow mode for unsigned integer (-unsigned-integer-overflows)

1-233

#include<stdio.h>

unsigned int getVal();

void func1()
{
 unsigned int i = 1;
 i = i << 31;
 // i = 231
 i = i * 2;
 // i = 0
 printf("%u", i);
}
void func2()
{

 unsigned int j = getVal();
 if (j > 0) {
 // Range of j: [1..232-1]
 j = j * 2;
 // Range of j: even values in [0 .. 4294967294]
 printf("%u", j);
 }
}

Note that tooltips on operations with unsigned integers show (result is wrapped) to indicate
the analysis mode. The message appears even if the analysis does not flag unsigned integer
overflows.

warn-with-wrap-around
Polyspace flags unsigned integer overflows. If an operation results in an overflow, Polyspace
analyzes the remaining code but wraps the result of the overflow. For instance, INT_MAX + 1
wraps to 0.

In the following code, j has values in the range [1..232-1] before the orange overflow.
Polyspace considers that j has even values in the range [0 .. 4294967294] after the overflow.

Similarly, i has value 231 before the red overflow and value 0 after it.

1 Analysis Options

1-234

#include<stdio.h>

unsigned int getVal();

void func1()
{
 unsigned int i = 1;
 i = i << 31;
 // i = 231
 i = i * 2;
 // i = 0
 printf("%u", i);
}
void func2()
{

 unsigned int j = getVal();
 if (j > 0) {
 // Range of j: [1..232-1]
 j = j * 2;
 // Range of j: even values in [0 .. 4294967294]
 printf("%u", j);
 }
}

Note that tooltips on operations with unsigned integers show (result is wrapped) to indicate
the analysis mode. The message appears even if the Overflow check is green.

In wrap-around mode, an overflowing value propagates and can lead to a similar overflow several
lines later. By default, Code Prover shows only the first of similar overflows. To see all overflows,
use the option -show-similar-overflows.

Tips
• To check for overflows on conversions from unsigned to signed integers of the same size, set
Overflow mode for unsigned integer to forbid or warn-with-wrap-around. If you allow
unsigned integer overflows, Polyspace does not flag overflows on conversions and wraps the result
of an overflow, even if you check for signed integer overflows.

• In Polyspace Code Prover, overflowing unsigned constants are wrapped around. This behavior
cannot be changed by using the options. If you want to detect overflows with unsigned constants,
use the Polyspace Bug Finder checker Unsigned integer constant overflow.

• Code Prover does not show an overflow on bitwise operations on unsigned variables, for instance,
in this example:

volatile unsigned char Y;
Y = ~Y;

The verification considers that such bitwise operations are deliberate on your part and you intend
an automatic wrap-around in case the result of the operation overflows.

Command-Line Information
Parameter: -unsigned-integer-overflows
Value: forbid | allow | warn-with-wrap-around

 Overflow mode for unsigned integer (-unsigned-integer-overflows)

1-235

Default: allow
Example (Code Prover): polyspace-code-prover -sources file_name -unsigned-
integer-overflows allow
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
unsigned-integer-overflows allow

See Also
-show-similar-overflows | Overflow | Overflow mode for signed integer (-signed-
integer-overflows)

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks”

Introduced in R2018b

1 Analysis Options

1-236

Disable checks for non-initialization (-disable-
initialization-checks)
Disable checks for non-initialized variables and pointers

Description
This option affects a Code Prover analysis only.

Specify that Polyspace Code Prover must not check for non-initialization in your code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -disable-initialization-checks. See
“Command-Line Information” on page 1-238.

Why Use This Option

Use this option if you do not want to detect instances of non-initialized variables.

Settings
 On

Polyspace Code Prover does not perform the following checks:

• Non-initialized local variable: Local variable is not initialized before being read.
• Non-initialized variable: Variable other than local variable is not initialized before

being read.
• Non-initialized pointer: Pointer is not initialized before being read.
• Return value not initialized: C function does not return value when expected.

Polyspace assumes that, at declaration:

• Variables have full-range of values allowed by their type.
• Pointers can be NULL-valued or point to a memory block at an unknown offset.

 Off (default)
Polyspace Code Prover checks for non-initialization in your code. The software displays red
checks if, for instance, a variable is not initialized and orange checks if a variable is initialized
only on some execution paths.

Tips
• If you select this option, the software does not report most violations of MISRA C:2004 rule 9.1,

and MISRA C:2012 Rule 9.1.

 Disable checks for non-initialization (-disable-initialization-checks)

1-237

• If you select this option, the number and type of orange checks in your code can change.

For instance, the following table shows an additional orange check with the option enabled.

Checks for Non-initialization Enabled Checks for Non-initialization Disabled
void func(int flag) {
 int var1,var2;
 if(flag==0) {
 var1=var2;
 }
 else {
 var1=0;
 }
 var2=var1 + 1;
}

In this example, the software produces:

• A red Non-initialized local variable
check on var2 in the if branch. The
verification continues as if only the else
branch of the if statement exists.

• A green Non-initialized local variable
check on var1 in the last statement. var1
has the assigned value 0.

• A green Overflow check on the +
operation.

void func(int flag) {
 int var1,var2;
 if(flag==0) {
 var1=var2;
 }
 else {
 var1=0;
 }
 var2=var1 + 1;
}

In this example, the software:

• Does not produce Non-initialized local
variable checks. At initialization, the
software assumes that var2 has full range
of int values. Following the if statement,
because the software considers both if
branches, it assumes that var1 also has
full range of int values.

• Produces an orange Overflow check on the
+ operation. For instance, if var1 has the
maximum int value, adding 1 to it can
cause an overflow.

Command-Line Information
Parameter: -disable-initialization-checks
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -disable-
initialization-checks
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
disable-initialization-checks

See Also
Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks”

1 Analysis Options

1-238

Check that global variables are initialized after
warm reboot (-check-globals-init)
Check that global variables are assigned values in designed initialization code

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must check whether all non-const global variables (and local static variables)
are explicitly initialized at declaration or within a section of code marked as initialization code.

To indicate the end of initialization code, you enter the line

#pragma polyspace_end_of_init

in the main function (only once). The initialization code starts from the beginning of main and
continues up to this pragma.

Since compilers ignore unrecognized pragmas, the presence of this pragma does not affect program
execution.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -check-globals-init. See “Command-Line
Information” on page 1-242.

Why Use This Option

In a warm reboot, to save time, the bss segment of a program, which might hold variable values from
a previous state, is not loaded. Instead, the program is supposed to explicitly initialize all non-const
variables without default values before execution. You can use this option to delimit the initialization
code and verify that all non-const global variables are indeed initialized in a warm reboot.

For instance, in this simple example, the global variable aVar is initialized in the initialization code
section but the variable anotherVar is not.

int aVar;
const int aConst = -1;
int anotherVar;

int main() {
 aVar = aConst;
#pragma polyspace_end_of_init
 return 0;
}

 Check that global variables are initialized after warm reboot (-check-globals-init)

1-239

Settings
 On

Polyspace checks whether all global variables are initialized in the designated initialization code.
The initialization code starts from the beginning from main and continues up to the pragma
polyspace_end_of_init.

The results are reported using the check Global variable not assigned a value in
initialization code.

 Off (default)
Polyspace does not check for initialization of global variables in a designated code section.

However, the verification continues to check if a variable is initialized at the time of use. The
results are reported using the check Non-initialized variable.

Dependencies
You can use this option and designate a section of code as initialization code only if:

• Your program contains a main function and you use the option Verify whole application
(implicitly set by default at command line).

• You set Source code language (-lang) to C.

Note that the pragma must appear only once in the main function. The pragma can appear before or
after variable declarations but must appear after type definitions (typedef-s).

You cannot use this option with the following options:

• Disable checks for non-initialization (-disable-initialization-checks)
• Verify files independently (-unit-by-unit)
• Show global variable sharing and usage only (-shared-variables-mode)

Tips
• You can use this option along with the option Verify initialization section of code

only (-init-only-mode) to check the initialization code before checking the remaining
program.

This approach has the following benefits compared to checking the entire code in one run:

• Run-time errors in the initialization code can invalidate analysis of the remaining code. You can
run a comparatively quicker check on the initialization code before checking the remaining
program.

• You can review results of the checker Global variable not assigned a value in
initialization code relatively easily.

Consider this example. There is an orange check on var because var might remain
uninitialized when the if and else if statements are skipped.

int var;

1 Analysis Options

1-240

int checkSomething(void);
int checkSomethingElse(void);

int main() {
 int local_var;
 if(checkSomething())
 {
 var=0;
 }
 else if(checkSomethingElse()) {
 var=1;
 }
 #pragma polyspace_end_of_init
 var=2;
 local_var = var;
 return 0;
}

To review this check and understand when x might be non-initialized, you have to browse
through all instances of x on the Variable Access pane. If you check the initialization code
alone, only the code in bold gets checked and you have to browse through only the instances in
the initialization code.

• The check is only as good as your placement of the pragma polyspace_end_of_init. For
instance:

• Place the pragma only after initialization code ends.

Otherwise, a variable might appear falsely uninitialized.
• Try to place the pragma directly in the main function, that is, outside a block. If you place the

pragma in a block, the check considers only those paths that end in the block.

All paths that end in the block might have a variable initialized but paths that skip the block
might let the variable go uninitialized. If you do place the pragma in a block, make sure that it
is okay if a variable stays uninitialized outside the block.

For instance, in this example, the variable var is initialized on all paths that end at the location
of the pragma. The check is green despite the fact that the if block might be skipped, letting
the variable go uninitialized.

int var;

int func();

int main() {
 int err = func();
 if(err) {
 var = 0;
 #pragma polyspace_end_of_init
 }
 int a = var;
 return 0;
}

The issue is detected by the checker if you place the pragma after the if block ends.

 Check that global variables are initialized after warm reboot (-check-globals-init)

1-241

• Do not place the pragma in a loop.

If you place the pragma in a loop, you can see results that are difficult to interpret. For
instance, in this example, both aVar and anotherVar are initialized in one iteration of the
loop. However, the pragma only considers the first iteration of the loop when it shows a green
check for initialization. If a variable is initialized on a later iteration, the check is orange.

int aVar;
int anotherVar;

void main() {
 for(int i=0; i<=1; i++) {
 if(i == 0)
 aVar = 0;
 else
 anotherVar = 0;
 #pragma polyspace_end_of_init
 }
}

The check is red if you verify initialization code alone and do not initialize a variable in the first
loop iteration. To avoid these incorrect red or orange checks, do not place the pragma in a
loop.

• To determine the initialization of a structure, a regular Code Prover analysis only considers
fields that are used.

If you check initialization code only using the option Verify initialization section of
code only (-init-only-mode), the analysis covers only a portion of the code and cannot
determine if a variable is used beyond this portion. Therefore, the checks for initialization
consider all structure fields, whether used or not.

Command-Line Information
Parameter: -check-globals-init
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -check-globals-
init
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
check-globals-init

See Also
Global variable not assigned a value in initialization code | Verify
initialization section of code only (-init-only-mode)

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks”
“Assumptions About Global Variable Initialization” on page 4-15

Introduced in R2020a

1 Analysis Options

1-242

Detect stack pointer dereference outside scope (-
detect-pointer-escape)
Find cases where a function returns a pointer to one of its local variables

Description
This option affects a Code Prover analysis only.

Specify that the verification must detect cases where you access a variable outside its scope via
dangling pointers. Such an access can happen, for example, when a function returns a pointer to a
local variable and you dereference the pointer outside the function. The dereference causes
undefined behavior because the local variable that the pointer points to does not live outside the
function.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -detect-pointer-escape. See “Command-Line
Information” on page 1-244.

Why Use This Option

Use this option to enable detection of pointer escape.

Settings
 On

The Illegally dereferenced pointer check performs an additional task, besides its usual
specifications. When you dereference a pointer, the check also determines if you are accessing a
variable outside its scope through the pointer. The check is:

• Red, if all the variables that the pointer points to are accessed outside their scope.

For instance, you dereference a pointer ptr in a function func that is called twice in your
code. In both calls, when you perform the dereference *ptr, ptr is pointing to variables
outside their scope. Therefore, the Illegally dereferenced pointer check is red.

• Orange, if only some of the variables that the pointer points to are accessed outside their
scope.

• Green, if none of the variables that the pointer points to are accessed outside their scope, and
other requirements of the check are also satisfied.

In the following code, if you enable this option, Polyspace Code Prover produces a red Illegally
dereferenced pointer check on *ptr. Otherwise, the Illegally dereferenced pointer check on
*ptr is green.

void func2(int *ptr) {
 *ptr = 0;

 Detect stack pointer dereference outside scope (-detect-pointer-escape)

1-243

}

int* func1(void) {
 int ret = 0;
 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

The Result Details pane displays a message indicating that ret is accessed outside its scope.

 Off (default)
When you dereference a pointer, the Illegally dereferenced pointer check does not check for
whether you are accessing a variable outside its scope. The check is green even if the pointer
dereference is outside the variable scope, as long as it satisfies these requirements:

• The pointer is not NULL.
• The pointer points within the memory buffer.

Tips
The detection of stack pointer deference outside scope does not apply to certain types of pointers. For
specific limitations, see “Limitations of Polyspace Verification” on page 4-41.

Command-Line Information
Parameter: -detect-pointer-escape
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -detect-pointer-
escape
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
detect-pointer-escape

See Also
Illegally dereferenced pointer

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks”

Introduced in R2015a

1 Analysis Options

1-244

Enable pointer arithmetic across fields (-allow-
ptr-arith-on-struct)
Allow arithmetic on pointer to a structure field so that it points to another field

Description
This option affects a Code Prover analysis only.

Specify that a pointer assigned to a structure field can point outside its bounds as long as it points
within the structure.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node. See “Dependency” on page 1-246 for other options you must also enable.

Command line and options file: Use the option -allow-ptr-arith-on-struct. See “Command-
Line Information” on page 1-246.

Why Use This Option

Use this option to relax the check for illegally dereferenced pointers. Once you assign a pointer to a
structure field, you can perform pointer arithmetic and use the result to access another structure
field.

Settings
 On

A pointer assigned to a structure field can point outside the bounds imposed by the field as long
as it points within the structure. For instance, in the following code, unless you use this option,
the verification will produce a red Illegally dereferenced pointer check:

void main(void) {
struct S {char a; char b; int c;} x;
char *ptr = &x.b;
ptr ++;
*ptr = 1; // Red on the dereference, because ptr points outside x.b
}

 Off (default)
A pointer assigned to a structure field can point only within the bounds imposed by the field.

Tips
• The verification does not allow a pointer with negative offset values. This behavior occurs

irrespective of whether you choose the option Enable pointer arithmetic across fields.
• Using this option can slightly increase the number of orange checks. The option relaxes the

constraint that a pointer to a structure field cannot point to other fields of the structure. In

 Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct)

1-245

exchange for relaxing this constraint, the verification loses precision on the boundary of fields
within a structure and treats the structure as a whole. Pointer dereferences that were previously
green can now turn orange.

Use this option if you follow a policy of reviewing red checks only and you need to work around
red checks from pointer arithmetic within a structure.

• Before using this option, consider the costs of using pointer arithmetic across different fields of a
structure.

Unlike an array, members of a structure can have different data types. For efficient storage,
structures use padding to accommodate this difference. When you increment a pointer pointing to
a structure member, you might not point to the next member. When you dereference this pointer,
you cannot rely on what you are reading or writing to.

Dependency
This option is available only if you set Source code language (-lang) to C.

Command-Line Information
Parameter: -allow-ptr-arith-on-struct
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -allow-ptr-
arith-on-struct
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
allow-ptr-arith-on-struct

See Also
Allow incomplete or partial allocation of structures (-size-in-bytes) |
Illegally dereferenced pointer

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks”

1 Analysis Options

1-246

Allow incomplete or partial allocation of structures
(-size-in-bytes)
Allow a pointer with insufficient memory buffer to point to a structure

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow dereferencing a pointer that points to a structure but has a
sufficient buffer for only some of the structure’s fields.

This type of pointer results when a pointer to a smaller structure is cast to a pointer to a larger
structure. The pointer resulting from the cast has sufficient buffer for only some fields of the larger
structure.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -size-in-bytes. See “Command-Line
Information” on page 1-248.

Why Use This Option

Use this option to relax the check for illegally dereferenced pointers. You can point to a structure
even when the buffer allowed for the pointer is not sufficient for all the structure fields.

Settings
 On

When a pointer with insufficient buffer is dereferenced, Polyspace does not produce an Illegally
dereferenced pointer error, as long as the dereference occurs within allowed buffer.

For instance, in the following code, the pointer p has sufficient buffer for the first two fields of the
structure BIG. Therefore, with the option on, Polyspace considers that the first two dereferences
are valid. The third dereference takes p outside its allowed buffer. Therefore, Polyspace produces
an Illegally dereferenced pointer error on the third dereference.

#include <stdlib.h>

typedef struct _little { int a; int b; } LITTLE;
typedef struct _big { int a; int b; int c; } BIG;

void main(void) {
 BIG *p = malloc(sizeof(LITTLE));

 if (p!= ((void *) 0)) {
 p->a = 0 ;
 p->b = 0 ;

 Allow incomplete or partial allocation of structures (-size-in-bytes)

1-247

 p->c = 0 ; // Red IDP check
 }
}

 Off (default)
Polyspace does not allow dereferencing a pointer to a structure if the pointer does not have
sufficient buffer for all fields of the structure. It produces an Illegally dereferenced pointer
error the first time you dereference the pointer.

For instance, in the following code, even though the pointer p has sufficient buffer for the first
two fields of the structure BIG, Polyspace considers that dereferencing p is invalid.

#include <stdlib.h>

typedef struct _little { int a; int b; } LITTLE;
typedef struct _big { int a; int b; int c; } BIG;

void main(void) {
 BIG *p = malloc(sizeof(LITTLE));

 if (p!= ((void *) 0)) {
 p->a = 0 ; // Red IDP check
 p->b = 0 ;
 p->c = 0 ;
 }
}

Tips
• If you do not turn on this option, you cannot point to the field of a partially allocated structure.

For instance, in the preceding example, if you do not turn on the option and perform the
assignment

int *ptr = &(p->a);

Polyspace considers that the assignment is invalid. If you dereference ptr, it produces an
Illegally dereferenced pointer error.

• Using this option can slightly increase the number of orange checks.

Command-Line Information
Parameter: -size-in-bytes
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -size-in-bytes
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
size-in-bytes

See Also
Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct) |
Illegally dereferenced pointer

Topics
“Specify Polyspace Analysis Options”

1 Analysis Options

1-248

“Modify or Disable Code Prover Run-Time Checks”

 Allow incomplete or partial allocation of structures (-size-in-bytes)

1-249

Permissive function pointer calls (-permissive-
function-pointer)
Allow type mismatch between function pointers and the functions they point to

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow function pointer calls where the type of the function pointer
does not match the type of the function.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node. See “Dependency” on page 1-252 for other options you must also enable.

Command line and options file: Use the option -permissive-function-pointer. See
“Command-Line Information” on page 1-252.

Why Use This Option

By default, Code Prover does not recognize calls through function pointers when a type mismatch
occurs. Fix the type mismatch whenever possible.

Use this option if:

• You cannot fix the type mismatch, and
• The analysis does not cover a significant portion of your code because calls via function pointers

are not recognized.

Settings
 On

The verification must allow function pointer calls where the type of the function pointer does not
match the type of the function. For instance, a function declared as int f(int*) can be called
by a function pointer declared as int (*fptr)(void*).

Only type mismatches between pointer types are allowed. Type mismatches between nonpointer
types cause compilation errors. For instance, a function declared as int f(int) cannot be
called by a function pointer declared as int (*fptr)(double).

 Off (default)
The verification must require that the argument and return types of a function pointer and the
function it calls are identical.

Type mismatches are detected with the check Correctness condition.

1 Analysis Options

1-250

Tips
• With sources that use function pointers extensively, enabling this option can cause loss in

performance. This loss occurs because the verification has to consider more execution paths.
• Using this option can increase the number of orange checks. Some of these orange checks can

reveal a real issue with the code.

Consider these examples where a type mismatch occurs between the function pointer type and the
function that it points to:

• In this example, the function pointer obj_fptr has an argument that is a pointer to a three-
element array. However, it points to a function whose corresponding argument is a pointer to a
four-element array. In the body of foo, four array elements are read and incremented. The
fourth element does not exist and the ++ operation reads a meaningless value.

typedef int array_three_elements[3];
typedef void (*fptr)(array_three_elements*);

typedef int array_four_elements[4];
void foo(array_four_elements*);

void main() {
 array_three_elements arr[3] = {0,0,0};
 array_three_elements *ptr;
 fptr obj_fptr;

 ptr = &arr;
 obj_fptr = &foo;

 //Call via function pointer
 obj_fptr(&ptr);
}

void foo(array_four_elements* x) {
 int i = 0;
 int *current_pos;

 for(i = 0; i< 4; i++) {
 current_pos = (*x) + i;
 (*current_pos)++;
 }
}

Without this option, an orange Correctness condition check appears on the call
obj_fptr(&ptr) and the function foo is not verified. If you use this option, the body of foo
contains several orange checks. Review the checks carefully and make sure that the type
mismatch does not cause issues.

• In this example, the function pointer has an argument that is a pointer to a structure with
three float members. However, the corresponding function argument is a pointer to an
unrelated structure with one array member. In the function body, the strlen function is used
assuming the array member. Instead the strlen call reads the float members and can read
meaningless values, for instance, values stored in the structure padding.

 Permissive function pointer calls (-permissive-function-pointer)

1-251

#include <string.h>
struct point {
 float x;
 float y;
 float z;
};
struct message {
 char msg[10] ;
};
void foo(struct message*);

void main() {
 struct point pt = {3.14, 2048.0, -1.0} ;
 void (*obj_fptr)(struct point *) ;

 obj_fptr = &foo;

 //Call via function pointer
 obj_fptr(&pt);
}

void foo(struct message* x) {
 int y = strlen(x->msg) ;
}

Without this option, an orange Correctness condition check appears on the call
obj_fptr(&pt) and the function foo is not verified. If you use this option, the function
contains an orange check on the strlen call. Review the check carefully and make sure that
the type mismatch does not cause issues.

Dependency
This option is available only if you set Source code language (-lang) to C.

Command-Line Information
Parameter: -permissive-function-pointer
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -lang c -
permissive-function-pointer
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
lang c -permissive-function-pointer

See Also
Correctness condition

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks”

1 Analysis Options

1-252

Consider non finite floats (-allow-non-finite-
floats)
Enable an analysis mode that incorporates infinities and NaNs

Description
Enable an analysis mode that incorporates infinities and NaNs for floating point operations.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -allow-non-finite-floats. See “Command-
Line Information” on page 1-255.

Why Use This Option
Code Prover

By default, the analysis does not incorporate infinities and NaNs. For instance, the analysis
terminates the execution thread where a division by zero occurs and does not consider that the result
could be infinite.

If you use functions such as isinf or isnan and account for infinities and NaNs in your code, set
this option. When you set this option and a division by zero occurs for instance, the execution thread
continues with infinity as the result of the division.

Set this option alone if you are sure that you have accounted for infinities and NaNs in your code.
Using the option alone effectively disables many numerical checks on floating point operations. If you
have generally accounted for infinities and NaNs, but you are not sure that you have considered all
situations, set these additional options:

• Infinities (-check-infinite): Use warn-first.
• NaNs (-check-nan): Use warn-first.

Bug Finder

If the analysis flags comparisons using isinf or isnan as dead code, use this option. By default, a
Bug Finder analysis does not incorporate infinities and NaNs.

Settings
 On

The analysis allows infinities and NaNs. For instance, in this mode:

• The analysis assumes that floating-point operations can produce results such as infinities and
NaNs.

 Consider non finite floats (-allow-non-finite-floats)

1-253

By using options Infinities (-check-infinite) and NaNs (-check-nan), you can
choose to highlight operations that produce nonfinite results and stop the execution threads
where the nonfinite results occur. These options are not available for a Bug Finder analysis.

• The analysis assumes that floating-point variables with unknown values can have any value
allowed by their type, including infinite or NaN. Floating-point variables with unknown values
include volatile variables and return values of stubbed functions.

 Off (default)
The analysis does not allow infinities and NaNs. For instance, in this mode:

• The Code Prover analysis produces a red check on a floating-point operation that produces an
infinity or a NaN as the only possible result on all execution paths. The verification produces
an orange check on a floating-point operation that can potentially produce an infinity or NaN.

• The Code Prover analysis assumes that floating-point variables with unknown values are full-
range but finite.

• The Bug Finder analysis shows comparisons with infinity using isinf as dead code.

Tips
• The IEEE 754 Standard allows special quantities such as infinities and NaN so that you can handle

certain numerical exceptions without aborting the code. Some implementations of the C standard
support infinities and NaN.

• If your compiler supports infinities and NaNs and you account for them explicitly in your code,
use this option so that the verification also allows them.

For instance, if a division results in infinity, in your code, you specify an alternative action.
Therefore, you do not want the verification to highlight division operations that result in
infinity.

• If your compiler supports infinities and NaNs but you are not sure if you account for them
explicitly in your code, use this option so that the verification incorporates infinities and NaNs.
Use the options -check-nan and -check-infinite with argument warn so that the
verification highlights operations that result in infinities and NaNs, but does not stop the
execution thread. These options are not available for a Bug Finder analysis.

• If you run a Code Prover analysis and use this option, checkers for overflow, division by zero and
other numerical run-time errors are disabled. See “Numerical Checks”.

If you run a Bug Finder analysis and use this option:

• The checkers for overflow and division by zero are disabled. See “Numerical Defects”.
• The checker Floating point comparison with equality operators can show false

positives.
• If you select this option, the number and type of Code Prover checks in your code can change.

For instance, in the following example, when you select the option, the results have one less red
check and three more green checks.

1 Analysis Options

1-254

Infinities and NaNs Not Allowed Infinities and NaNs Allowed
Code Prover produces a Division by zero
error and stops verification.

double func(void) {
 double x=1.0/0.0;
 double y=1.0/x;
 double z=x-x;
 return z;
}

If you select this option, Code Prover does not
check for a Division by zero error.

double func(void) {
 double x=1.0/0.0;
 double y=1.0/x;
 double z=x-x;
 return z;
}

The analysis assumes that dividing by zero
results in:

• Value of x equal to Inf
• Value of y equal to 0.0
• Value of z equal to NaN

In your analysis results in the Polyspace user
interface, if you place your cursor on y and z,
you can see the nonfinite values Inf and NaN
respectively in the tooltip.

Command-Line Information
Parameter: -allow-non-finite-floats
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -allow-non-finite-
floats
Example (Code Prover): polyspace-code-prover -sources file_name -allow-non-
finite-floats
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
allow-non-finite-floats
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
allow-non-finite-floats

See Also
“Numerical Defects” | “Numerical Checks” | Infinities (-check-infinite) | NaNs (-check-
nan)

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks”

Introduced in R2016a

 Consider non finite floats (-allow-non-finite-floats)

1-255

Infinities (-check-infinite)
Specify how to handle floating-point operations that result in infinity

Description
This option affects a Code Prover analysis only.

Specify how the analysis must handle floating-point operations that result in infinities.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node. See “Dependencies” on page 1-257 for other options you must also enable.

Command line and options file: Use the option -check-infinite. See “Command-Line
Information” on page 1-257.

Why Use This Option

Use this option to enable detection of floating-point operations that result in infinities.

If you specify that the analysis must consider nonfinite floats, by default, the analysis does not flag
these operations. Use this option to detect these operations while still incorporating nonfinite floats.

Settings
Default: allow

allow
The verification does not produce a check on the operation.

For instance, in the following code, there is no Overflow check.

double func(void) {
 double x=1.0/0.0;
 return x;
}

warn-first
The verification produces a check on the operation. The check determines if the result of the
operation is infinite when the operands themselves are not infinite. The verification does not
terminate the execution thread that produces infinity.

If the verification detects an operation that produces infinity as the only possible result on all
execution paths and the operands themselves are never infinite, the check is red. If the operation
can potentially result in infinity, the check is orange.

For instance, in the following code, there is a nonblocking Overflow check for infinity.

double func(void) {
 double x=1.0/0.0;

1 Analysis Options

1-256

 return x;
}

Even though the Overflow check on the / operation is red, the verification continues. For
instance, a green Non-initialized local variable check appears on x in the return statement.

forbid
The verification produces a check on the operation and terminates the execution thread that
produces infinity.

If the check is red, the verification does not continue for the remaining code in the same scope as
the check. If the check is orange, the verification continues but removes from consideration the
variable values that produced infinity.

For instance, in the following code, there is a blocking Overflow check for infinity.

double func(void) {
 double x=1.0/0.0;
 return x;
}

The verification stops because the Overflow check on the / operation is red. For instance, a Non-
initialized local variable check does not appear on x in the return statement.

Dependencies
To use this option, you must enable the verification mode that incorporates infinities and NaNs. See
Consider non finite floats (-allow-non-finite-floats).

Command-Line Information
Parameter: -check-infinite
Value: allow | warn-first | forbid
Default: allow
Example (Code Prover): polyspace-code-prover -sources file_name -check-infinite
forbid
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
check-infinite forbid

See Also
Polyspace Analysis Options
Consider non finite floats (-allow-non-finite-floats) | NaNs (-check-nan)

Polyspace Results
Overflow

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks”

Introduced in R2016a

 Infinities (-check-infinite)

1-257

NaNs (-check-nan)
Specify how to handle floating-point operations that result in NaN

Description
This option affects a Code Prover analysis only.

Specify how the analysis must handle floating-point operations that result in NaN.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node. See “Dependencies” on page 1-259 for other options you must also enable.

Command line and options file: Use the option -check-nan. See “Command-Line Information” on
page 1-259.

Why Use This Option

Use this option to enable detection of floating-point operations that result in NaN-s.

If you specify that the analysis must consider nonfinite floats, by default, the analysis does not flag
these operations. Use this option to detect these operations while still incorporating nonfinite floats.

Settings
Default: allow

allow
The verification does not produce a check on the operation.

For instance, in the following code, there is no Invalid operation on floats check.

double func(void) {
 double x=1.0/0.0;
 double y=x-x;
 return y;
}

warn-first
The verification produces a check on the operation. The check determines if the result of the
operation is NaN when the operands themselves are not NaN. For instance, the check flags the
operation val1 + val2 only if the result can be NaN when both val1 and val2 are not NaN.
The verification does not terminate the execution thread that produces NaN.

If the verification detects an operation that produces NaN as the only possible result on all
execution paths and the operands themselves are never NaN, the check is red. If the operation
can potentially result in NaN, the check is orange.

For instance, in the following code, there is a nonblocking Invalid operation on floats check for
NaN.

1 Analysis Options

1-258

double func(void) {
 double x=1.0/0.0;
 double y=x-x;
 return y;
}

Even though the Invalid operation on floats check on the - operation is red, the verification
continues. For instance, a green Non-initialized local variable check appears on y in the
return statement.

forbid
The verification produces a check on the operation and terminates the execution thread that
produces NaN.

If the check is red, the verification does not continue for the remaining code in the same scope as
the check. If the check is orange, the verification continues but removes from consideration the
variable values that produced a NaN.

For instance, in the following code, there is a blocking Invalid operation on floats check for
NaN.

double func(void) {
 double x=1.0/0.0;
 double y=x-x;
 return y;
}

The verification stops because the Invalid operation on floats check on the - operation is red.
For instance, a Non-initialized local variable check does not appear on y in the return
statement.

The Invalid operation on floats check for NaN also appears on the / operation and is green.

Dependencies
To use this option, you must enable the verification mode that incorporates infinities and NaNs. See
Consider non finite floats (-allow-non-finite-floats).

Command-Line Information
Parameter: -check-nan
Value: allow | warn-first | forbid
Default: allow
Example (Code Prover): polyspace-code-prover -sources file_name -check-nan
forbid
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
check-nan forbid

See Also
Polyspace Analysis Options
Consider non finite floats (-allow-non-finite-floats) | Infinities (-check-
infinite)

 NaNs (-check-nan)

1-259

Polyspace Results
Invalid operation on floats

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks”

Introduced in R2016a

1 Analysis Options

1-260

Subnormal detection mode (-check-subnormal)
Detect operations that result in subnormal floating-point values

Description
This option affects a Code Prover analysis only.

Specify that the verification must check floating-point operations for subnormal results.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -check-subnormal. See “Command-Line
Information” on page 1-263.

Why Use This Option

Use this option to detect floating-point operations that result in subnormal values.

Subnormal numbers have magnitudes less than the smallest floating-point number that can be
represented without leading zeros in the significand. The presence of subnormal numbers indicates
loss of significant digits. This loss can accumulate over subsequent operations and eventually result
in unexpected values. Subnormal numbers can also slow down the execution on targets without
hardware support.

Settings
Default: allow

allow
The verification does not check operations for subnormal results.

forbid
The verification checks for subnormal results.

The verification stops the execution path with the subnormal result and prevents subnormal
values from propagating further. Therefore, in practice, you see only the first occurrence of the
subnormal value.

warn-all
The verification checks for subnormal results and highlights all occurrences of subnormal values.
Even if a subnormal result comes from previous subnormal values, the result is highlighted.

The verification continues even if the check is red.
warn-first

The verification checks for subnormal results but only highlights first occurrences of subnormal
values. If a subnormal value propagates to further subnormal results, those subsequent results
are not highlighted.

 Subnormal detection mode (-check-subnormal)

1-261

The verification continues even if the check is red.

For details of the result colors in each mode, see Subnormal float.

Tips
• If you want to see only those operations where a subnormal value originates from non-subnormal

operands, use the warn-first mode.

For instance, in the following code, arg1 and arg2 are unknown. The verification assumes that
they can take all values allowed for the type double. This assumption can lead to subnormal
results from certain operations. If you use the warn-first mode, the first operation causing the
subnormal result is highlighted.

warn-all warn-first
void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, all four operations can have
subnormal results. The four checks for
subnormal results are orange.

void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, difference1 and
difference2 can be subnormal if arg1 and
arg2 are sufficiently close. The first two
checks for subnormal results are orange.
val1 and val2 cannot be subnormal unless
difference1 and difference2 are
subnormal. The last two checks for subnormal
results are green.

Through red/orange checks, you see only the
first instance where a subnormal value
appears. You do not see red/orange checks
from those subnormal values propagating to
subsequent operations.

• If you want to see where a subnormal value originates and do not want to see subnormal results
arising from the same cause more than once, use the forbid mode.

For instance, in the following code, arg1 and arg2 are unknown. The verification assumes that
they can take all values allowed for the type double. This assumption can lead to subnormal
results for arg1-arg2. If you use the forbid mode and perform the operation arg1-arg2 twice
in succession, only the first operation is highlighted. The second operation is not highlighted
because the subnormal result for the second operation arises from the same cause as the first
operation.

1 Analysis Options

1-262

warn-all forbid
void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, all four operations can have
subnormal results. The four checks for
subnormal results are orange.

void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, difference1 can be
subnormal if arg1 and arg2 are sufficiently
close. The first check for subnormal results is
orange. Following this check, the verification
excludes from consideration:

• The close values of arg1 and arg2 that led
to the subnormal value of difference1.

In the subsequent operation arg1 -
arg2, the check is green and
difference2 is not subnormal. The result
of the check on difference2 * 2 is
green for the same reason.

• The subnormal value of difference1.

In the subsequent operation difference1
* 2, the check is green.

Command-Line Information
Parameter: -check-subnormal
Value: allow | warn-first | warn-all | forbid
Default: allow
Example (Code Prover): polyspace-code-prover -sources file_name -check-subnormal
forbid
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
check-subnormal forbid

See Also
Polyspace Results
Subnormal float

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks”

Introduced in R2016b

 Subnormal detection mode (-check-subnormal)

1-263

Detect uncalled functions (-uncalled-function-
checks)
Detect functions that are not called directly or indirectly from main or another entry point function

Description
This option affects a Code Prover analysis only.

Detect functions that are not called directly or indirectly from main or another entry point function
during run-time.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -uncalled-function-checks. See “Command-
Line Information” on page 1-264.

Why Use This Option

Typically, after verification, the Dashboard pane shows functions that are not called during
verification. However, you do not see them in your analysis results or reports. You cannot comment on
them or justify them.

If you want to see these uncalled functions in your analysis results and reports, use this option.

Settings
Default: none

none
The verification does not generate checks for uncalled functions.

never-called
The verification generates checks for functions that are defined but not called.

called-from-unreachable
The verification generates checks for functions that are defined and called from an unreachable
part of the code.

all
The verification generates checks for functions that are:

• Defined but not called
• Defined and called from an unreachable part of the code.

Command-Line Information
Parameter: -uncalled-function-checks

1 Analysis Options

1-264

Value: none | never-called | called-from-unreachable | all
Default: none
Example (Code Prover): polyspace-code-prover -sources file_name -uncalled-
function-checks all
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
uncalled-function-checks all

See Also
Function not called | Function not reachable

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks”

 Detect uncalled functions (-uncalled-function-checks)

1-265

Precision level (-O)
Specify a precision level for the verification

Description
This option affects a Code Prover analysis only.

Specify the precision level that the verification must use.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Precision node.

Command line and options file: Use the option -O#, for instance, -O0 or -O1. See “Command-Line
Information” on page 1-267.

Why Use This Option

Higher precision leads to greater number of proven results but also requires more verification time.
Each precision level corresponds to a different algorithm used for verification.

In most cases, you see the optimal balance between precision and verification time at level 2.

Settings
Default: 2

0
This option corresponds to a static interval verification.

1
This option corresponds to a more complex static interval verification.

2
This option corresponds to a complex polyhedron model of domain values with additional
precision for interprocedural analysis depending on the option Improve precision of
interprocedural analysis (-path-sensitivity-delta).

3
This option is only suitable for code having less than 1000 lines. Using this option, the percentage
of proven results can be very high.

Tips
• For best results in reasonable time, use the default level 2. If the verification takes a long time,

reduce precision. However, the number of unproven checks can increase. Likewise, to reduce
orange checks, you can improve your precision. But the verification can take significantly longer
time.

1 Analysis Options

1-266

• The precision levels 2 and below begin to take effect only from verification levels higher than
Software Safety Analysis level 0. See also Verification level (-to).

For instance, to reduce analysis time, you might have reduced the verification level to Software
Safety Analysis level 0. Do not try to reduce the precision level below 2 to lower the
analysis time further.

Note that algorithms used in precision level 3 can also apply to the verification level Software
Safety Analysis level 0.

Command-Line Information
Parameter: -O0 | -O1 | -O2 | -O3
Default: -O2
Example (Code Prover): polyspace-code-prover -sources file_name -O1
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -O1

See Also
Specific precision (-modules-precision) | Verification level (-to)

Topics
“Specify Polyspace Analysis Options”
“Improve Verification Precision”

 Precision level (-O)

1-267

Verification level (-to)
Specify number of times the verification process runs on your code

Description
This option affects a Code Prover analysis only.

Specify the number of times the Polyspace verification process runs on your source code. Each run
can lead to greater number of proven results but also requires more verification time.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Precision node.

Command line and options file: Use the option -to. See “Command-Line Information” on page 1-
270.

Why Use This Option

There are many reasons you might want to increase or decrease the verification level. For instance:

• Coding rules are checked early during the compilation phase, with some exception only. If you
check for coding rules alone, you can lower the verification level. See “Check for Coding Standard
Violations”.

• If you see many orange checks after verification, try increasing the verification level. However,
increasing the verification level also increases verification time.

In most cases, you see the optimal balance between precision and verification time at level 2.

Settings
Default: Software Safety Analysis level 2

Source Compliance Checking
Polyspace checks for compilation errors only. Most coding rule violations are also found in this
phase.

Software Safety Analysis level 0
The verification process performs some simple analysis. The analysis is designed to reach
completion despite complexities in the code.

If the verification gets stuck at a higher level, try running to this level and review the results.
Software Safety Analysis level 1

The verification process analyzes each function once with algorithms whose complexity depends
on the precision level. See Precision level (-O). The analysis starts from the top of the
function call hierarchy (an actual or generated main function) and propagates to the leaves of the
call hierarchy.

1 Analysis Options

1-268

Software Safety Analysis level 2
The verification process analyzes each function twice. In the first pass, the analysis propagates
from the top of the function call hierarchy to the leaves. In the second pass, the analysis
propagates from the leaves back to the top. Each pass uses information gathered from the
previous pass.

Use this option for most accurate results in reasonable time.
Software Safety Analysis level 3

The verification process runs three times on each function: from the top of the function call
hierarchy to the leaves, from the leaves to the top, and from the top to the leaves again. Each
pass uses information gathered from the previous pass.

Software Safety Analysis level 4
The verification process runs four passes on each function: from the top of the function call
hierarchy to the leaves twice. Each pass uses information gathered from the previous pass.

other
If you use this option, Polyspace verification will make 20 passes unless you stop it manually.

Tips
• Use a higher verification level for fewer orange checks.

In some cases, if the verification can detect that results of maximum precision are available after
an earlier level, the verification stops and does not proceed to the level that you specify.

Difference between Level 0 and 1

The following example illustrates the difference between Software Safety Analysis level
0 and Software Safety Analysis level 1. In level 1, Code Prover can establish the success
of the final assertion that involves a relation between two array elements even without knowing
the actual elements of the array.

Software Safety Analysis Level 0 Software Safety Analysis Level 1
extern int tab[];

int main() {

 int i = tab[3];
 int j = tab[1];

 if (i > j) {
 int l = i-j;
 assert(l > 0);
 }
}

extern int tab[];

int main() {

 int i = tab[3];
 int j = tab[1];

 if (i > j) {
 int l = i-j;
 assert(l > 0);
 }
}

In the table, verification produces an orange Division by Zero check during level 0
verification. The check turns green during level 1. The verification acquires more precise
knowledge of x in the higher level.

If a higher verification level fails because the verification runs out of memory, but results are
available at a lower level, Polyspace displays the results from the lower level.

 Verification level (-to)

1-269

• For best results, use the option Software Safety Analysis level 2. If the verification takes
too long, use a lower Verification level. Fix red errors and gray code before rerunning the
verification with higher verification levels.

• Use the option Other sparingly since it can increase verification time by an unreasonable amount.
Using Software Safety Analysis level 2 provides optimal verification of your code in most
cases.

• If the Verification Level is set to Source Compliance Checking, do not run verification on a
remote server. The source compliance checking, or compilation, phase takes place on your local
computer anyway. Therefore, if you are running verification only to the end of compilation, run
verification on your local computer.

• If you want to see global variable sharing and usage only use Show global variable sharing
and usage only (-shared-variables-mode) to run a less extensive analysis.

Command-Line Information
Parameter: -to
Value: compile | pass0 | pass1 | pass2 | pass3 | pass4 | other
Default: pass2
Example (Code Prover): polyspace-code-prover -sources file_name -to pass2
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -to
pass2

You can also use these additional values not available in the user interface:

• C projects: c-to-il (C to intermediate language conversion phase)
• C++ projects: cpp-to-il (C++ to intermediate language conversion phase), cpp-normalize (C

++ compilation), cpp-link (C++ compilation)

Use these values only if you have specific reasons to do so. For instance, to generate a blank
constraints (DRS) template for C++ projects, run an analysis up to the compilation by using cpp-
link or cpp-normalize.

The values cpp-link and cpp-normalize will be removed in a future release. Use compile
instead.

See Also
Precision level (-O) | Show global variable sharing and usage only (-shared-
variables-mode)

Topics
“Specify Polyspace Analysis Options”
“Improve Verification Precision”

1 Analysis Options

1-270

Verification time limit (-timeout)
Specify a time limit on your verification

Description
This option affects a Code Prover analysis only.

Specify a time limit for the verification in hours. If the verification does not complete within that limit,
it stops.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Precision node.

Command line and options file: Use the option -timeout. See “Command-Line Information” on
page 1-271.

Why Use This Option

Use this option to impose a time limit on the verification.

By default, if an internal step in the verification lasts for more than 24 hours, the verification stops.
You can use this option to reduce the time limit even further. Note that you can have verification
results despite the verification timing out. For instance, if a step in Software Safety Analysis level 1
times out, you still get the results from level 0. See Verification level (-to).

The option is useful only in very specific cases. Suppose your code has certain constructs that might
slow down the verification. To check this, you can impose a time limit on the verification so that the
verification stops if it takes too long.

Typically, Technical Support asks you to use this option as needed.

Settings
Enter the time in hours. For fractions of an hour, specify decimal form.

Command-Line Information
Parameter: -timeout
Value: time
Example (Code Prover): polyspace-code-prover -sources file_name -timeout 5.75
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
timeout 5.75

See Also
Topics
“Specify Polyspace Analysis Options”
“Improve Verification Precision”

 Verification time limit (-timeout)

1-271

Sensitivity context (-context-sensitivity)
Store call context information to identify function call that caused errors

Description
This option affects a Code Prover analysis only.

Specify the functions for which the verification must store call context information. If the function is
called multiple times, using this option helps you to distinguish between the different calls.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Precision node.

Command line and options file: Use the option -context-sensitivity. See “Command-Line
Information” on page 1-273.

Why Use This Option

Suppose a function is called twice in your code. The check color on each operation in the function
body is a combined result of both calls. If you want to distinguish between the colors in the two calls,
use this option.

For instance, if a function contains a red or orange check and a green check on the same operation
for two different calls, the software combines the contexts and displays an orange check on the
operation. If you use this option, the check turns dark orange and the result details show the color of
the check for each call.

For a tutorial on using this option, see “Identify Function Call with Run-Time Error”.

Settings
Default: none

none
The software does not store call context information for functions.

auto
The software stores call context information for checks in:

• Functions that form the leaves of the call tree. These functions are called by other functions,
but do not call functions themselves.

1 Analysis Options

1-272

• Small functions. The software uses an internal threshold to determine whether a function is
small.

custom
The software stores call context information for functions that you specify. To enter the name of a

function, click .

Tips
• If you select this option, you do not see tooltips in the body of the functions that benefit from this

option (and keep the call contexts separate).
• If you select this option, the analysis can show some code operations in grey (unreachable code)

even when you can identify execution paths leading to the operations. In this case, the grey code
indicates operations that might be unreachable only in a particular call context.

For instance, suppose this function is called with the arguments -1 and 1 :

int isPositive (int num) {
 if(num < 0)
 return 0;
 return 1;
}

If you use the option with this function as argument, there are two unreachable code checks:

• The check on if is grey because when the function is called with argument -1, the if condition
is always true.

• The check on the code inside the if branch is grey because when the function is called with
argument 1, the if condition is always false.

Each unreachable code check indicates code that is unreachable only in a particular call context.
You see the call context in the result details.

Command-Line Information
Parameter: -context-sensitivity
Value: function1[,function2,...]
Default: none
Example (Code Prover): polyspace-code-prover -sources file_name -context-
sensitivity myFunc1,myFunc2
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
context-sensitivity myFunc1,myFunc2

To allow the software to determine which functions receive call context storage, use the option -
context-sensitivity-auto.

See Also
Topics
“Specify Polyspace Analysis Options”
“Identify Function Call with Run-Time Error”

 Sensitivity context (-context-sensitivity)

1-273

Improve precision of interprocedural analysis (-
path-sensitivity-delta)
Avoid certain verification approximations for code with fewer lines

Description
This option affects a Code Prover analysis only.

For smaller code, use this option to improve the precision of cross-functional analysis.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Precision node.

Command line and options file: Use the option -path-sensitivity-delta. See “Command-Line
Information” on page 1-274.

Why Use This Option

Use this option to avoid certain software approximations on execution paths. Avoiding these
approximations results in fewer orange checks but a much longer verification time.

For instance, for deep function call hierarchies or nested conditional statements, to complete
verification in a reasonable amount of time, the software combines many execution paths and stores
less information at each stage of verification. If you use this option, the software stores more
information about the execution paths, resulting in a more precise verification.

Settings
Default: Off

Enter a positive integer to turn on this option.

Entering a higher value leads to a greater number of proven results, but also increases verification
time exponentially. For instance, a value of 10 can result in very long verification times.

Tips
Use this option only when you have less than 1000 lines of code.

Command-Line Information
Parameter: -path-sensitivity-delta
Value: Positive integer
Example (Code Prover): polyspace-code-prover -sources file_name -path-
sensitivity-delta 1
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
path-sensitivity-delta 1

1 Analysis Options

1-274

See Also
Topics
“Specify Polyspace Analysis Options”
“Improve Verification Precision”

 Improve precision of interprocedural analysis (-path-sensitivity-delta)

1-275

Specific precision (-modules-precision)
Specify source files you want to verify at higher precision than the remaining verification

Description
This option affects a Code Prover analysis only.

Specify source files that you want to verify at a precision level higher than that for the entire
verification.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Precision node. See “Dependency” on page 1-276 for other options you must also enable.

Command line and options file: Use the option -modules-precision. See “Command-Line
Information” on page 1-276.

Why Use This Option

If a specific file is verified imprecisely leading to many orange checks in the file and elsewhere, you
can improve the precision for that file.

Note that increasing precision also increases verification time.

Settings
Default: All files are verified with the precision you specified using Precision > Precision level.

Click to enter the name of a file without the extension .c and the corresponding precision level.

Dependency
This option is available only if you set Source code language (-lang) to C or C-CPP.

Command-Line Information
Parameter: -modules-precision
Value: file:O0 | file:O1 | file:O2 | file:O3
Example (Code Prover): polyspace-code-prover -sources file_name -O1 -modules-
precision My_File:02
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -O1
-modules-precision My_File:02

See Also
Precision level (-O)

Topics
“Specify Polyspace Analysis Options”

1 Analysis Options

1-276

“Improve Verification Precision”

 Specific precision (-modules-precision)

1-277

Inline (-inline)
Specify functions that must be cloned internally for each function call

Description
This option affects a Code Prover analysis only.

Specify the functions that the verification must clone internally for every function call.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Scaling node.

Command line and options file: Use the option -inline. See “Command-Line Information” on
page 1-280.

Why Use This Option

Use this option sparingly. Sometimes, using the option helps to work around scaling issues during
verification. If your verification takes too long, Technical Support can ask you to use this option for
certain functions.

Do not use this option to understand results. For instance, suppose a function is called twice in your
code. The check color on each operation in the function body is a combined result of both calls. If you
want to distinguish between the colors in the two calls, use the option Sensitivity context (-
context-sensitivity).

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

The verification internally clones the function for each call. For instance, if you specify the function
func for inlining and func is called twice, the software internally creates two copies of func for
verification.

However, for each run-time check in the function body, you see only one color in your verification
results. The semantics of the check color is different from the normal specification.

Red checks:

• Normally, if a function is called twice and an operation causes a definite error only in one of the
calls, the check color is orange.

• If you use this option, the color changes to dark orange (shown with an orange exclamation mark
in the results list).

1 Analysis Options

1-278

Gray checks:

• Normally, if a function is called twice and an if statement branch is unreachable in only one of
the calls, the branch is shown as reachable.

• If you use this option, the worst color is shown for the check. Therefore, the if branch appears
gray.

Below each check in an inlined function, you see information specific to each calling context. For
instance, if a dark orange Division by zero occurs because a specific function call leads to a definite
division by zero, you can identify the call along with values resulting from that call.

Do not use this option to understand results. Use this option only if a certain function causes scaling
issues.

Tips
• Using this option can sometimes duplicate a lot of code and lead to scaling problems. Therefore

choose functions to inline carefully.
• Choose functions to inline based on hints provided by the alias verification.
• Do not use this option for entry point functions, including main.
• Using this option can increase the number of gray Unreachable code checks.

For example, in the following code, if you enter max for Inline, you obtain two Unreachable code
checks, one for each call to max.

int max(int a, int b) {
 return a > b ? a : b;
}

void main() {
 int i=3, j=1, k;
 k=max(i,j);
 i=0;
 k=max(i,j);
}

 Inline (-inline)

1-279

• If you use the keyword inline before a function definition, place the definition in a header file
and call the function from multiple source files, you have the same result as using the option
Inline.

• For C++ code, this option applies to all overloaded methods of a class.

Command-Line Information
Parameter: -inline
Value: function1[,function2[,...]]
No Default
Example (Code Prover): polyspace-code-prover -sources file_name -inline
func1,func2
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
inline func1,func2

See Also
Topics
“Specify Polyspace Analysis Options”

1 Analysis Options

1-280

Depth of verification inside structures (-k-
limiting)
Limit the depth of analysis for nested structures

Description
This option affects a Code Prover analysis only.

Specify a limit to the depth of analysis for nested structures.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Scaling node.

Command line and options file: Use the option -k-limiting. See “Command-Line Information”
on page 1-281.

Why Use This Option

Use this option if the analysis is slow because your code has a structure that is many levels deep.

Typically, you see a warning message when a structure with a deep hierarchy is slowing down the
verification.

Settings
Default: Full depth of nested structures is analyzed.

Enter a number to specify the depth of analysis for nested structures. For instance, if you specify 0,
the analysis does not verify a structure inside a structure.

If you specify a number less than 2, the verification could be less precise.

Command-Line Information
Parameter: -k-limiting
Value: positive integer
Example (Code Prover): polyspace-code-prover -sources file_name -k-limiting 3
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -k-
limiting 3

See Also
Topics
“Specify Polyspace Analysis Options”

 Depth of verification inside structures (-k-limiting)

1-281

Generate report
Specify whether to generate a report after the analysis

Description
Specify whether to generate a report along with analysis results.

Depending on the format you specify, you can view this report using an external software. For
example, if you specify the format PDF, you can view the report in a pdf reader.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Reporting node.

Command line and options file: See “Command-Line Information” on page 1-283.

Why Use This Option

You can generate a report from your analysis results for archiving purposes. You can provide this
report to your management or clients as proof of code quality.

Using other analysis options, you can tailor the report content and format for your specific needs. See
Bug Finder and Code Prover report (-report-template) and Output format (-
report-output-format).

Settings
 On

Polyspace generates an analysis report using the template and format you specify.

The report is stored in the Polyspace-Doc subfolder of your results folder.

In Polyspace desktop products, to open your results folder from the user interface, on the Project
Browser pane, right-click the results node and select Open Folder with File Manager.

1 Analysis Options

1-282

To change the results folder location, see “Project and Results Folder Contents”.

On the command-line, the results folder is the argument of the option -results-dir.
 Off (default)

Polyspace does not generate an analysis report. You can still view your results in the Polyspace
interface.

Tips
This option allows you to specify report generation before starting an analysis.

To generate a report after an analysis is complete, in the user interface of the Polyspace desktop
products, select Reporting > Run Report. Alternatively, at the command line, use the polyspace-
report-generator command.

After analysis, you can also export the result as a text file for further customization. Use the option -
generate-results-list-file with the polyspace-report-generator command.

Command-Line Information
There is no command-line option to solely turn on the report generator. However, using the options -
report-template for template and -report-output-format for output format automatically
turns on the report generator.

See Also
Bug Finder and Code Prover report (-report-template) | Output format (-report-
output-format) | polyspace-report-generator

Topics
“Specify Polyspace Analysis Options”
“Generate Reports”

 Generate report

1-283

Bug Finder and Code Prover report (-report-
template)
Specify template for generating analysis report

Description
Specify template for generating analysis report.

.rpt files for the report templates are available in polyspaceroot\toolbox\polyspace
\psrptgen\templates\. Here, polyspaceroot is the Polyspace installation folder, for instance,
C:\Program Files\Polyspace\R2019a.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Reporting node. You have separate options for Bug Finder and Code Prover analysis. See
“Dependencies” on page 1-289 for other options you must also enable.

Command line and options file: Use the option -report-template. See “Command-Line
Information” on page 1-290.

Why Use This Option

Depending on the template that you use, the report contains information about certain types of
results from the Results List pane. The template also determines what information is presented in
the report and how the information is organized. See the template descriptions below.

Settings – Bug Finder
Default: BugFinderSummary

BugFinder
The report lists:

• Polyspace Bug Finder Summary: Number of results in the project. The results are
summarized by file. The files that are partially analyzed because of compilation errors are
listed in a separate table.

• Code Metrics: Summary of the various code complexity metrics. For more information, see
“Code Metrics”.

• Coding Rules: Coding rule violations in the source code. For each rule violation, the report
lists the:

• Rule number and description.
• Function containing the rule violation.
• Review information, such as Severity, Status and comments.

• Defects: Defects found in the source code. For each defect, the report lists the:

1 Analysis Options

1-284

• Function containing the defect.
• Defect information on the Result Details pane.
• Review information, such as Severity, Status and comments.

• Configuration Settings: List of analysis options that Polyspace uses for analysis. If you
configured your project for multitasking, this section also lists the Concurrency Modeling
Summary. If your project has source files with compilation errors, these files are also listed.

If you check for coding rules, an additional Coding Rules Configuration section states the
rules along with the information whether they were enabled or disabled.

BugFinderSummary
The report lists:

• Polyspace Bug Finder Summary: Number of results in the project. The results are
summarized by file. The files that are partially analyzed because of compilation errors are
listed in a separate table.

• Code Metrics: Summary of the various code complexity metrics. For more information, see
“Code Metrics”.

• Coding Rules Summary: Coding rules along with number of violations.
• Defect Summary: Defects that Polyspace Bug Finder looks for. For each defect, the report

lists the:

• Defect group.
• Defect name.
• Number of instances of the defect found in the source code.

• Configuration Settings: List of analysis options that Polyspace uses for analysis. If you
configured your project for multitasking, this section also lists the Concurrency Modeling
Summary. For more information, see “Analysis Options in Polyspace Bug Finder”. If your
project has source files with compilation errors, these files are also listed.

If you check for coding rules, an additional Coding Rules Configuration section states the
rules along with the information whether they were enabled or disabled.

CodeMetrics
The report lists the following:

• Code Metrics Summary: Various quantities related to the source code. For more
information, see “Code Metrics”.

• Code Metrics Details: Various quantities related to the source code with the information
broken down by file and function.

• Configuration Settings: List of analysis options that Polyspace uses for analysis. If you
configured your project for multitasking, this section also lists the Concurrency Modeling
Summary. If your project has source files with compilation errors, these files are also listed.

If you check for coding rules, an additional Coding Rules Configuration section states the
rules along with the information whether they were enabled or disabled.

 Bug Finder and Code Prover report (-report-template)

1-285

CodingStandards
The report contains separate chapters for each coding standard enabled in the analysis (for
instance, MISRA C: 2012, CERT C, custom rules, and so on). Each chapter contains the following
information:

• Summary - Violations by File: Graph showing each file with number of rule violations.
• Summary - Violations by Rule: Graph showing each rule with number of violations. If a rule

is not enabled or not violated, it does not appear in the graph.
• Summary for all Files: Table showing each file with number of rule violations.
• Summary for Enabled Guidelines or Summary for Enabled Rules: Table showing each

guideline or rule with number of violations.
• Violations: Tables listing each rule violation, along with information such as ID, function

name, severity, status, and so on. One table is created per file.

An appendix lists the options used in the Polyspace analysis.
SecurityCWE

The report contains the same information as the BugFinder report. However, in the Defects
chapter, an additional column lists the CWE™ rules mapped to each defect. The Configuration
Settings appendix also includes a Security Standard to Polyspace Result Map.

Metrics
Only available for results downloaded from the Polyspace Metrics interface.

The report lists information useful to quality engineers and available on the Polyspace Metrics
interface, including:

• Information about whether the project satisfies quality objectives
• Time taken in each phase of analysis
• Metrics about the whole project. For each metric, the report lists the quality threshold and

whether the metric satisfies this threshold.
• Coding rule violations in the project. For each rule, the report lists the number of violations
justified and whether the justifications satisfy quality objectives.

• Definite as well as possible run-time errors in the project. For each type of run-time error, the
report lists the number of errors justified and whether the justifications satisfy quality
objectives.

The appendices contain further details of Polyspace configuration settings, code metrics, coding
rule violations, and run-time errors.

Settings – Code Prover
Default: Developer

CodeMetrics
The report contains a summary of code metrics, followed by the complete metrics for an
application.

1 Analysis Options

1-286

CodingStandards
The report contains separate chapters for each coding standard enabled in the analysis (for
instance, MISRA C: 2012, custom rules, and so on). Each chapter contains the following
information:

• Summary - Violations by File: Graph showing each file with number of rule violations.
• Summary - Violations by Rule: Graph showing each rule with number of violations. If a rule

is not enabled or not violated, it does not appear in the graph.
• Summary for all Files: Table showing each file with number of rule violations.
• Summary for Enabled Guidelines or Summary for Enabled Rules: Table showing each

guideline or rule with number of violations.
• Violations: Tables listing each rule violation, along with information such as ID, function

name, severity, status, and so on. One table is created per file.

An appendix lists the options used in the Polyspace analysis.
Developer

The report lists information useful to developers, including:

• Summary of results
• Coding rule violations
• List of proven run-time errors or red checks
• List of unproven run-time errors or orange checks
• List of unreachable procedures or gray checks
• Global variable usage in code. See “Global Variables”.

The report also contains the Polyspace configuration settings and modifiable assumptions used in
the analysis. If your project has source files with compilation errors, these files are also listed.

DeveloperReview
The report lists the same information as the Developer report. However, the reviewed results
are sorted by severity and status, and unreviewed results are sorted by file location.

Developer_withGreenChecks
The report lists the same information as the Developer report. In addition, the report lists code
proven to be error-free or green checks.

Quality
The report lists information useful to quality engineers, including:

• Summary of results
• Statistics about the code
• Graphs showing distributions of checks per file

The report also contains the Polyspace configuration settings and modifiable assumptions used in
the analysis. If your project has source files with compilation errors, these files are also listed.

VariableAccess
The report displays the global variable access in your source code. The report first displays the
number of global variables of each type. For information on the types, see “Global Variables”. For
each global variable, the report displays the following information:

 Bug Finder and Code Prover report (-report-template)

1-287

• Variable name.

The entry for each variable is denoted by |.
• Type of the variable.
• Number of read and write operations on the variable.
• Details of read and write operations. For each read or write operation, the table displays the

following information:

• File and function containing the operation in the form file_name.function_name.

The entry for each read or write operation is denoted by ||. Write operations are denoted
by < and read operations by >.

• Line and column number of the operation.

This report captures the information available on the Variable Access pane in the Polyspace user
interface.

CallHierarchy
The report displays the call hierarchy in your source code. For each function call in your source
code, the report displays the following information:

• Level of call hierarchy, where the function is called.

Each level is denoted by |. If a function call appears in the table as |||->
file_name.function_name, the function call occurs at the third level of the hierarchy.
Beginning from main or an entry point, there are three function calls leading to the current
call.

• File containing the function call.

In addition, the line and column is also displayed.
• File containing the function definition.

In addition, the line and column where the function definition begins is also displayed.

In addition, the report also displays uncalled functions.

This report captures the information available on the Call Hierarchy pane in the Polyspace user
interface.

SoftwareQualityObjectives
The report lists information useful to quality engineers and available on the Polyspace Metrics
interface, including:

• Information about whether the project satisfies quality objectives
• Time taken in each phase of verification
• Metrics about the whole project. For each metric, the report lists the quality threshold and

whether the metric satisfies this threshold.
• Coding rule violations in the project. For each rule, the report lists the number of violations
justified and whether the justifications satisfy quality objectives.

• Definite as well as possible run-time errors in the project. For each type of run-time error, the
report lists the number of errors justified and whether the justifications satisfy quality
objectives.

1 Analysis Options

1-288

The appendices contain further details of Polyspace configuration settings, code metrics, coding
rule violations, and run-time errors.

This template is available only if you generate a report from results uploaded to the Polyspace
Access web interface or from results uploaded to the Polyspace Metrics web interface (and then
downloaded to the Polyspace user interface) . In each case, you have to set the objectives
explicitly in the web interface and then generate the reports.

For more information on the predefined Software Quality Objectives, see “Software Quality
Objectives”.

SoftwareQualityObjectives_Summary
The report contains the same information as the SoftwareQualityObjectives report.
However, it does not have the supporting appendices with details of code metrics, coding rule
violations and run-time errors.

This template is available only if you generate a report from results uploaded to the Polyspace
Access web interface or from results uploaded to the Polyspace Metrics web interface (and then
downloaded to the Polyspace user interface). In each case, you have to set a quality objective
level explicitly in the web interface and then generate the reports.

For more information on the predefined Software Quality Objectives, see “Software Quality
Objectives”.

Dependencies
In the user interface of the Polyspace desktop products, this option is enabled only if you select the
Generate report option.

Tips
• This option allows you to specify report generation before starting an analysis.

To generate a report after an analysis is complete, in the user interface of the Polyspace desktop
products, select Reporting > Run Report. Alternatively, at the command line, use the
polyspace-report-generator command.

After analysis, you can also export the result as a text file for further customization. Use the option
-generate-results-list-file with the polyspace-report-generator command.

• In Bug Finder, the report does not contain the line or column number for a result. Use the report
for archiving, gathering statistics and checking whether results have been reviewed and
addressed (for certification purposes or otherwise). To review a result in your source code, use the
Polyspace user interface or your IDE if you are using a Polyspace plugin.

• If you use the SoftwareQualityObjectives_Summary and SoftwareQualityObjectives
templates to generate reports, the pass/fail status depends on whether you set the quality
objectives level in Polyspace Metrics or Polyspace Access:

• In Polyspace Access, the pass/fail status is determined based on all results. For instance, if you
use the level SQO-4 which sets a threshold of 60% on orange overflow checks, your project has
a FAIL status if the percentage of green and justified orange overflow checks is less than 60%
of all green and orange overflow checks.

• In Polyspace Metrics, the pass/fail status is determined based on a file-by-file basis. The overall
status is FAIL if one of the files have a FAIL status. For instance, if you use the level SQO-4

 Bug Finder and Code Prover report (-report-template)

1-289

which sets a threshold of 60% on orange overflow checks, your project has a FAIL status if the
percentage of green and justified orange overflow checks in any file is less than 60% of green
and orange overflow checks in that file.

• The first chapter of the reports contain a summary of the relevant results. You can enter a Pass/
Fail status in that chapter for your project based on the summary. If you use the template
SoftwareQualityObjectives or SoftwareQualityObjectives_Summary, the status is
automatically assigned based on your objectives and the verification results. For more information
on enforcing objectives using Polyspace Metrics, see “Compare Metrics Against Software Quality
Objectives”.

Command-Line Information
Parameter: -report-template
Value: Full path to template.rpt
Example (Bug Finder): polyspace-bug-finder -sources file_name -report-template
polyspaceroot\toolbox\polyspace\psrptgen\templates\bug_finder\BugFinder.rpt
Example (Code Prover): polyspace-code-prover -sources file_name -report-template
polyspaceroot\toolbox\polyspace\psrptgen\templates\Developer.rpt
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
report-template polyspaceroot\toolbox\polyspace\psrptgen\templates\bug_finder
\BugFinder.rpt
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
report-template polyspaceroot\toolbox\polyspace\psrptgen\templates
\Developer.rpt

See Also
Generate report | Output format (-report-output-format) | polyspace-report-
generator

Topics
“Specify Polyspace Analysis Options”
“Generate Reports”

1 Analysis Options

1-290

Output format (-report-output-format)
Specify output format of generated report

Description
Specify output format of analysis report.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Reporting node. See “Dependencies” on page 1-291 for other options you must also enable.

Command line and options file: Use the option -report-output-format. See “Command-Line
Information” on page 1-292.

Why Use This Option

Use this option to specify whether you want a report in PDF, HTML or another format.

Settings
Default: Word

HTML
Generate report in .html format

PDF
Generate report in .pdf format

Word
Generate report in .docx format.

Tips
• This option allows you to specify report generation before starting an analysis.

To generate a report after an analysis is complete, in the user interface of the Polyspace desktop
products, select Reporting > Run Report. Alternatively, at the command line, use the
polyspace-report-generator command.

After analysis, you can also export the result as a text file for further customization. Use the option
-generate-results-list-file with the polyspace-report-generator command.

• If the table of contents or graphics in a .docx report appear outdated, select the content of the
report and refresh the document. Use keyboard shortcuts Ctrl+A to select the content and F9 to
refresh it.

Dependencies
In the user interface of the Polyspace desktop products, this option is enabled only if you select the
Generate report option.

 Output format (-report-output-format)

1-291

Command-Line Information
Parameter: -report-output-format
Value: html | pdf | word
Default: word
Example (Bug Finder): polyspace-bug-finder -sources file_name -report-output-
format pdf
Example (Code Prover): polyspace-code-prover -sources file_name -report-output-
format pdf
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
report-output-format pdf
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
report-output-format pdf

See Also
Bug Finder and Code Prover report (-report-template) | Generate report |
polyspace-report-generator

Topics
“Specify Polyspace Analysis Options”
“Generate Reports”

1 Analysis Options

1-292

Run Bug Finder or Code Prover analysis on a
remote cluster (-batch)
Enable batch remote analysis

Description
Specify that the analysis must be offloaded to a remote server.

To offload a Polyspace analysis, you need these products:

• A Polyspace product on the client side to submit an analysis job. Typically, you use a desktop
product such as Polyspace Bug Finder to submit jobs, but you can also use a server product such
as Polyspace Bug Finder Server™ to offload an analysis from one server to another.

• A Polyspace server product (Polyspace Bug Finder Server or Polyspace Code Prover Server) on the
server side to run the analysis.

• MATLAB Parallel Server™ to hold jobs from multiple clients in queue and allocate the jobs as
Polyspace Server instances become available.

For details, see “Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Run
Settings node. You have separate options for a Bug Finder and a Code Prover analysis.

Command line and options file: Use the option -batch. See “Command-Line Information” on page
1-294.

Why Use This Option

Use this option if you want the analysis to run on a remote cluster instead of your local desktop.

For instance, you can run remote analysis when:

• You want to shut down your local machine but not interrupt the analysis.
• You want to free execution time on your local machine.
• You want to transfer the analysis to a more powerful computer.

Settings
 On

Run batch analysis on a remote computer. In this remote analysis mode, the analysis is queued on
a cluster after the compilation phase. Therefore, on your local computer, after the analysis is
queued:

• If you are running the analysis from the Polyspace user interface, you can close the user
interface.

 Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

1-293

• If you are running the analysis from the command line, you can close the command-line
window.

You can manage the queue from the Polyspace Job Monitor. To use the Polyspace Job Monitor:

• In the Polyspace user interface, select Tools > Open Job Monitor. See “Send Polyspace
Analysis from Desktop to Remote Servers”.

• On the DOS or UNIX® command line, use the polyspace-jobs-manager command. For
more information, see “Send Polyspace Analysis from Desktop to Remote Servers Using
Scripts”.

• On the MATLAB command line, use the polyspaceJobsManager function.

After the analysis, you might have to manually download the results from the cluster.

If you use a Polyspace Server product to offload an analysis from one server to another, the
results are automatically downloaded after analysis.

 Off (default)
Do not run batch analysis on a remote computer.

Dependencies
• If you use a third-party scheduler instead of the MATLAB Job Scheduler, add the option -no-

credentials-check. The credentials check performed in the product is only compatible with
the MATLAB Job Scheduler. In the Polyspace user interface, add this option to the Other field.

• Do not run a Code Prover analysis on a remote cluster if you run up to the Verification Level of
Source Compliance Checking. For both local and remote analysis, the source compliance
checking or compilation phase takes place on your local computer. Therefore, if you are running
only up to this phase, run on your local computer.

• If you use a Polyspace Server product to offload an analysis from one server to another, the
offloading uses the MATLAB Job Scheduler that comes by default with MATLAB Parallel Server.
You cannot use a third-party scheduler.

Command-Line Information
To run a remote analysis from the command line, use with the -scheduler option.
Parameter: -batch
Value: -scheduler host_name if you have not set the Job scheduler host name in the Polyspace
user interface
Default: Off
Example (Bug Finder): polyspace-bug-finder -batch -scheduler NodeHost or
polyspace-bug-finder -batch -scheduler MJSName@NodeHost
Example (Code Prover): polyspace-code-prover -batch -scheduler NodeHost or
polyspace-code-prover -batch -scheduler MJSName@NodeHost
Example (Bug Finder Server): polyspace-bug-finder-server -batch -scheduler
NodeHost
Example (Code Prover Server): polyspace-code-prover-server -batch -scheduler
NodeHost

See Also
-scheduler

1 Analysis Options

1-294

Topics
“Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”
“Specify Polyspace Analysis Options”
“Send Polyspace Analysis from Desktop to Remote Servers”
“Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”

 Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

1-295

Upload results to Polyspace Metrics (-add-to-
results-repository)
Upload analysis results for viewing on Polyspace Metrics web dashboard

Description
This option applies to the Polyspace desktop products only.

Specify upload of analysis results to the Polyspace Metrics results repository, allowing Web-based
reporting of results and code metrics.

Set Option

User interface: In your project configuration, the option is on the Run Settings node. You have
separate options for a Bug Finder and a Code Prover analysis. See “Dependencies” on page 1-296 for
other options that you must also enable.

Command line and options file: Use the option -add-to-results-repository. See “Command-
Line Information” on page 1-297.

Why Use This Option

Polyspace Metrics is a web dashboard that generates code quality metrics from your analysis results.
Using this dashboard, you can:

• Provide your management a high-level overview of your code quality.
• Compare your code quality against predefined standards.
• Establish a process where you review in detail only those results that fail to meet standards.
• Track improvements or regression in code quality over time.

See “Generate Code Quality Metrics”.

Settings
 On

Analysis results are stored in the Polyspace Metrics results repository. This allows you to use a
Web browser to view results and code metrics.

The results are not downloaded automatically to your desktop.

 Off (default)
Analysis results are stored locally.

Dependencies
The option to upload to Polyspace Metrics is available only if you select Run Bug Finder or Code
Prover analysis on a remote cluster (-batch).

1 Analysis Options

1-296

If you perform a local analysis on your desktop, you can later upload your results to Polyspace
Metrics. Right-click your results file and select Upload to Metrics.

Command-Line Information
Parameter: -add-to-results-repository
Default: Off
Example (Bug Finder): polyspace-bug-finder -batch -scheduler NodeHost -add-to-
results-repository -password passwordName
Example (Code Prover): polyspace-code-prover -batch -scheduler NodeHost -add-to-
results-repository -password passwordName

The password is optional.

The upload uses the Polyspace Metrics server that you set up in the Polyspace user interface. See
“Set Up Polyspace Metrics”. If you want to explicitly specify the Polyspace Metrics server during
upload, use the option -polyspace-metrics-server serverName:portNumber. For instance:

-add-to-results-repository -polyspace-metrics-server localhost:12427

See Also
Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

Topics
“Set Up Polyspace Metrics”
“Generate Code Quality Metrics”

 Upload results to Polyspace Metrics (-add-to-results-repository)

1-297

Command/script to apply after the end of the code
verification (-post-analysis-command)
Specify command or script to be executed after analysis

Description
Specify a command or script to be executed after the analysis.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Advanced
Settings node.

Command line and options file: Use the option -post-analysis-command. See “Command-Line
Information” on page 1-299.

Why Use This Option

Create scripts for tasks that you want performed after the Polyspace analysis.

For instance, you want to be notified by email that the Polyspace analysis is over. Create a script that
sends an email and use this option to execute the script after the Polyspace analysis.

Settings
No Default

Enter full path to the command or script, or click to navigate to the location of the command or
script. After the analysis, this script is executed.

The script is executed in the Polyspace results folder. In your script, consider the results folder as the
current folder for relative paths to other files.

For a Perl script, in Windows, specify the full path to the Perl executable followed by the full path to
the script. For example, to specify a Perl script send_email.pl that sends an email once the
analysis is over, enter polyspaceroot\sys\perl\win32\bin\perl.exe <absolute_path>
\send_email.pl. Here, polyspaceroot is the location of the current Polyspace installation, such
as C:\Program Files\Polyspace\R2019a\, and <absolute_path> is the location of the Perl
script.

Tips
Running post analysis commands on the server

If you perform verification on a remote server, after verification, the software executes your command
on the server, not on the client desktop. If your command executes a script, the script must be
present on the server.

For instance, if you specify the command, /local/utils/send_mail.sh, the Shell script
send_email.sh must be present on the server in /local/utils/. The software does not copy the

1 Analysis Options

1-298

script send_email.sh from your desktop to the server before executing the command. If the script
is not present on the server, you encounter an error. Sometimes, there are multiple servers that the
MATLAB Job Scheduler can run the verification on. Place the script on each of the servers because
you do not control which server eventually runs your verification.

Running post analysis commands in the Polyspace user interface

To test the use of this option, run the following Perl script from a folder containing a Polyspace
project (.psprj file). The script parses the latest Polyspace log file in the folder
Module_1\CP_Result and writes the current project name and date to a file report.txt. The file
is saved in Module_1\CP_Result.

foreach my $file (`ls Module_1\\CP_Result\\Polyspace_*.log`) {
 open (FH, $file);

while ($line = <FH>) {
 if ($line =~ m/Ending at: (.*)/) {
 $date=$1;
 }
 if ($line =~ m/-prog=(.*)/) {
 $project=$1;
 }
 }
}

my $filename = 'report.txt';
open(my $fh, '>', $filename) or die "Could not open file '$filename' $!";

print $fh "date=$date\n";
print $fh "project=$project\n";

close $fh;

In Linux, you can specify the Perl script for this option.

In Windows, instead of specifying the Perl script directly, specify a .bat file that invokes Perl and
runs this script. For instance, the .bat file can contain the following line (assuming that the .bat file
and .pl file are in the Polyspace project folder). Depending on your MATLAB installation, change the
path to perl.exe appropriately.

"C:\Program Files\MATLAB\R2018b\sys\perl\win32\bin\perl.exe" command.pl

Run Code Prover. Check that the folder Module_1\CP_Result contains the file report.txt with
the project name and date.

Command-Line Information
Parameter: -post-analysis-command
Value: Path to executable file or command in quotes
No Default
Example in Linux (Bug Finder): polyspace-bug-finder -sources file_name -post-
analysis-command `pwd`/send_email.pl
Example in Linux (Code Prover) : polyspace-code-prover -sources file_name -post-
analysis-command `pwd`/send_email.pl

 Command/script to apply after the end of the code verification (-post-analysis-command)

1-299

Example in Linux (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -post-analysis-command `pwd`/send_email.pl
Example in Linux (Code Prover Server): polyspace-code-prover-server -sources
file_name -post-analysis-command `pwd`/send_email.pl
Example in Windows: polyspace-bug-finder -sources file_name -post-analysis-
command "C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin\perl.exe"
"C:\My_Scripts\send_email"

Note that in Windows, you use the full path to the Perl executable.

See Also
Command/script to apply to preprocessed files (-post-preprocessing-command)

Topics
“Specify Polyspace Analysis Options”

1 Analysis Options

1-300

Automatic Orange Tester (-automatic-orange-
tester)
(To be removed) Specify that Automatic Orange Tester must be executed after verification

Note The Automatic Orange Tester will be removed in a future release. See “Compatibility
Considerations”.

Description
This option affects a Code Prover analysis only. Use this option only if you review the Code Prover
results in the Polyspace desktop products.

Specify that the Automatic Orange Tester must be executed at the end of the verification.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Advanced
Settings node. See “Dependency” on page 1-301 for other options you must also enable.

Command line and options file: Use the option -automatic-orange-tester. See “Command-
Line Information” on page 1-302.

Why Use This Option

The Automatic Orange Tester runs dynamic tests on your code. The dynamic tests help you determine
if an orange check represents a real run-time error or an imprecision of Polyspace analysis. For a
tutorial, see “Test Orange Checks for Run-Time Errors”.

To run the Automatic Orange Tester after verification, you must select this option before verification.
During verification, Polyspace generates additional source code to test each orange check for errors.
When you run the Automatic Orange Tester later, the software uses this instrumented code for
testing.

Settings
 On

After verification, when you run the Automatic Orange Tester, Polyspace creates tests for
unproven code and runs them.

 Off (default)
You cannot launch the Automatic Orange Tester after verification.

Dependency
This option is available only if you set Source code language (-lang) to C or C-CPP.

 Automatic Orange Tester (-automatic-orange-tester)

1-301

Tips
• To launch the Automatic Orange Tester, after verification, open your results. Select Tools >

Automatic Orange Tester.
• When using the automatic orange tester, you cannot:

• Select Division round down under Target & Compiler.
• Select the options c18, tms320c3c. x86_64 or sharc21x61 for Target & Compiler >

Target processor type.
• Specify the type char as 16-bit or short as 8-bit using the option mcpu...(Advanced) for

Target & Compiler > Target processor type. For the same option, you must specify the type
pointer as 32-bit.

• Specify global asserts in the code, having the form Pst_Global_Assert(A,B). In global
assert mode, you cannot use Constraint setup under Inputs & Stubbing.

• Select these options related to floating-point verification: Subnormal detection mode and
Consider non finite floats.

Command-Line Information
Parameter: -automatic-orange-tester
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -lang c -
automatic-orange-tester

Compatibility Considerations
Automatic Orange Tester will be removed
Not recommended starting in R2020b

The Automatic Orange Tester will be removed in a future release. In the desktop interface, you set
this option in the Configuration pane under the Advanced Settings node.

If you use these command-line options in your scripts, remove them:

• -automatic-orange-tester
• -automatic-orange-tester-loop-max-iteration
• -automatic-orange-tester-tests-number
• -automatic-orange-tester-timeout

See Also
Maximum loop iterations (-automatic-orange-tester-loop-max-iteration) | Maximum
test time (-automatic-orange-tester-timeout) | Number of automatic tests (-
automatic-orange-tester-tests-number)

Topics
“Specify Polyspace Analysis Options”
“Test Orange Checks for Run-Time Errors”
“Limitations of Automatic Orange Tester”

1 Analysis Options

1-302

Number of automatic tests (-automatic-orange-
tester-tests-number)
(To be removed) Specify number of tests that Automatic Orange Tester must run

Note The Automatic Orange Tester will be removed in a future release. See “Compatibility
Considerations”.

Description
This option affects a Code Prover analysis only. Use this option only if you review the Code Prover
results in the Polyspace desktop products.

Specify number of tests that you want the Automatic Orange Tester to run. The more the number of
tests, the greater the possibility of finding a run-time error, but longer it takes to complete.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Advanced
Settings node. See “Dependencies” on page 1-303 for other options you must also enable.

Command line and options file: Use the option -automatic-orange-tester-tests-number.
See “Command-Line Information” on page 1-303.

Settings
Default: 500

Enter number of tests up to a maximum of 100,000.

Dependencies
This option is enabled only if you set the following options:

• Set Source code language (-lang) to C or C-CPP.
• Specify the option Automatic Orange Tester (-automatic-orange-tester).

Command-Line Information
Parameter: -automatic-orange-tester-tests-number
Value: positive integer
Default: 500
Example (Code Prover): polyspace-code-prover -sources file_name -lang c -
automatic-orange-tester -automatic-orange-tester-tests-number 500

Compatibility Considerations
Automatic Orange Tester will be removed
Not recommended starting in R2020b

 Number of automatic tests (-automatic-orange-tester-tests-number)

1-303

The Automatic Orange Tester will be removed in a future release. In the desktop interface, you set
this option in the Configuration pane under the Advanced Settings node.

If you use these command-line options in your scripts, remove them:

• -automatic-orange-tester
• -automatic-orange-tester-loop-max-iteration
• -automatic-orange-tester-tests-number
• -automatic-orange-tester-timeout

See Also
Automatic Orange Tester (-automatic-orange-tester)

Topics
“Specify Polyspace Analysis Options”
“Test Orange Checks for Run-Time Errors”

1 Analysis Options

1-304

Maximum loop iterations (-automatic-orange-
tester-loop-max-iteration)
(To be removed) Specify number of loop iterations after which Automatic Orange Tester considers
infinite loop

Note The Automatic Orange Tester will be removed in a future release. See “Compatibility
Considerations”.

Description
This option affects a Code Prover analysis only. Use this option only if you review the Code Prover
results in the Polyspace desktop products.

Specify number of loop iterations after which the Automatic Orange Tester considers the loop to be
infinite. Specifying a large number decreases the possibility of identifying an infinite loop incorrectly,
but takes more time to complete.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Advanced
Settings node. See “Dependencies” on page 1-305 for other options you must also enable.

Command line and options file: Use the option -automatic-orange-tester-loop-max-
iteration. See “Command-Line Information” on page 1-305.

Settings
Default: 1000

Enter number of loop iterations. The maximum value that the software supports is 1000.

Dependencies
This option is enabled only if you set the following options:

• Set Source code language (-lang) to C or C-CPP.
• Specify the option Automatic Orange Tester (-automatic-orange-tester).

Command-Line Information
Parameter: -automatic-orange-tester-loop-max-iteration
Value: positive integer
Default: 1000
Example (Code Prover): polyspace-code-prover -sources file_name -lang c -
automatic-orange-tester -automatic-orange-tester-loop-max-iteration 500

 Maximum loop iterations (-automatic-orange-tester-loop-max-iteration)

1-305

Compatibility Considerations
Automatic Orange Tester will be removed
Not recommended starting in R2020b

The Automatic Orange Tester will be removed in a future release. In the desktop interface, you set
this option in the Configuration pane under the Advanced Settings node.

If you use these command-line options in your scripts, remove them:

• -automatic-orange-tester
• -automatic-orange-tester-loop-max-iteration
• -automatic-orange-tester-tests-number
• -automatic-orange-tester-timeout

See Also
Automatic Orange Tester (-automatic-orange-tester)

Topics
“Specify Polyspace Analysis Options”
“Test Orange Checks for Run-Time Errors”

1 Analysis Options

1-306

Maximum test time (-automatic-orange-tester-
timeout)
(To be removed) Specify time in seconds allowed for a single test in Automatic Orange Tester

Note The Automatic Orange Tester will be removed in a future release. See “Compatibility
Considerations”.

Description
This option affects a Code Prover analysis only. Use this option only if you review the Code Prover
results in the Polyspace desktop products.

Specify time in seconds allowed for a single test. After this time is over, the Automatic Orange Tester
proceeds to the next test. Increasing this time reduces number of tests that do not complete, but
increases total verification time.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Advanced
Settings node. See “Dependencies” on page 1-307 for other options you must also enable.

Command line and options file: Use the option -automatic-orange-tester-timeout. See
“Command-Line Information” on page 1-307.

Settings
Default: 5

Enter time in seconds. The maximum value that the software supports is 60.

Dependencies
This option is enabled only if you set the following options:

• Set Source code language (-lang) to C or C-CPP.
• Specify the option Automatic Orange Tester (-automatic-orange-tester).

Command-Line Information
Parameter: -automatic-orange-tester-timeout
Value: time
Default: 5
Example (Code Prover): polyspace-code-prover -sources file_name -lang c -
automatic-orange-tester -automatic-orange-tester-test-timeout 10

 Maximum test time (-automatic-orange-tester-timeout)

1-307

Compatibility Considerations
Automatic Orange Tester will be removed
Not recommended starting in R2020b

The Automatic Orange Tester will be removed in a future release. In the desktop interface, you set
this option in the Configuration pane under the Advanced Settings node.

If you use these command-line options in your scripts, remove them:

• -automatic-orange-tester
• -automatic-orange-tester-loop-max-iteration
• -automatic-orange-tester-tests-number
• -automatic-orange-tester-timeout

See Also
Automatic Orange Tester (-automatic-orange-tester)

Topics
“Specify Polyspace Analysis Options”
“Test Orange Checks for Run-Time Errors”

1 Analysis Options

1-308

Other
Specify additional flags for analysis

Description
This option is useful only if you run an analysis in the user interface of the Polyspace desktop
products.

Enter command-line-style flags such as -max-processes.

Set Option

In your project configuration, the option is on the Advanced Settings node. You can enter multiple
options in this field. If you enter the same option multiple times with different arguments, the analysis
uses your last argument.

Why Use This Option

Use this option to add nonofficial or command-line only options to the analyzer.

If you have to add several command line options, you can save them in a text file and specify the file
using the option -options-file. You can reuse the options file across projects.

Tip
Nonofficial options: In rare circumstances, to work around very specific issues, MathWorks Technical
Support might provide you some undocumented options. If you are running verification from the user
interface, you use the Other field in the Configuration pane to enter the options. Sometimes, the
options and their arguments have to be preceded by extra flags. When providing you the option,
Technical Support will let you know if the extra flags are required.
Possible Flags: -extra-flags | -c-extra-flags | -cpp-extra-flags | -cfe-extra-
flags | -il-extra-flags
Example (Bug Finder): polyspace-bug-finder -extra-flags -option-name -extra-
flags option_param
Example (Code Prover): polyspace-code-prover -extra-flags -option-name -extra-
flags option_param
Example (Bug Finder Server): polyspace-bug-finder-server -extra-flags -option-
name -extra-flags option_param
Example (Code Prover Server): polyspace-code-prover-server -extra-flags -option-
name -extra-flags option_param

 Other

1-309

Analysis Options, Command-Line Only

2

-asm-begin -asm-end
Exclude compiler-specific asm functions from analysis

Syntax
-asm-begin "mark1[,mark2,...]" -asm-end "mark1[,mark2,...]"

Description
-asm-begin "mark1[,mark2,...]" -asm-end "mark1[,mark2,...]" excludes compiler-
specific assembly language source code functions from the analysis. You must use these two options
together.

Polyspace recognizes most inline assemblers by default. Use the option only if compilation errors
occur due to introduction of assembly code. For more information, see “Assumptions About Assembly
Code” on page 4-33.

Mark the offending code block by two #pragma directives, one at the beginning of the assembly code
and one at the end. In the command usage, give these marks in the same order for -asm-begin as
they are for -asm-end.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
A block of code is delimited by #pragma start1 and #pragma end1. These names must be in the
same order for their respective options. Either:

-asm-begin "start1" -asm-end "end1"

or

-asm-begin "mark1,...markN,start1" -asm-end "mark1,...markN,end1"

The following example marks two functions for exclusion, foo_1 and foo_2.

Code:

#pragma asm_begin_foo
int foo(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm_end_foo

#pragma asm_begin_bar
void bar(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm_end_bar

Polyspace Command:

• Bug Finder:

2 Analysis Options, Command-Line Only

2-2

polyspace-bug-finder -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

• Code Prover:

polyspace-code-prover -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

• Bug Finder Server:

polyspace-bug-finder-server -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

• Code Prover Server:

polyspace-code-prover-server -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

asm_begin_foo and asm_begin_bar mark the beginning of the assembly source code sections to
be ignored. asm_end_foo and asm_end_bar mark the end of those respective sections.

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

See Also
Topics
“Specify Polyspace Analysis Options”

 -asm-begin -asm-end

2-3

-author
Specify project author

Syntax
-author "value"

Description
-author "value" assigns an author to the Polyspace project. The name appears as the project
owner in Polyspace Metrics and on generated reports.

The default value is the user name of the current user, given by the DOS or UNIX command whoami.

In the user interface of the Polyspace desktop products, select to specify the Project name,
Version, and Author parameters in the Polyspace Project – Properties dialog box.

Examples
Assign a project author to your Polyspace Project.

• Bug Finder:

polyspace-bug-finder -author "John Smith"

• Code Prover:

polyspace-code-prover -author "John Smith"

• Bug Finder Server:

polyspace-bug-finder-server -author "John Smith"

• Code Prover Server:

polyspace-code-prover-server -author "John Smith"

Tips
This option is not required for a Polyspace as You Code analysis.

See Also
-date | -prog

Topics
“Specify Polyspace Analysis Options”

2 Analysis Options, Command-Line Only

2-4

-code-behavior-specifications
Map imprecisely analyzed function to standard function for precise analysis

Syntax
-code-behavior-specifications file

Description
-code-behavior-specifications file allows you to associate certain behaviors with elements
of your code and modify the results of checks on those elements. Here, file is an XML file that
assigns specific behaviors to code elements such as functions.

For instance, you can:

• Map your library functions to corresponding standard functions that Polyspace recognizes.
Mapping to standard library functions can help with precision improvement or automatic
detection of new threads.

• Specify that a function has a special behavior or must be subjected to special checks.

For instance, you can specify that a function must only take addresses of initialized variables as
arguments, or that a function must not be used altogether.

If you run verification from the command line, specify the absolute path to the XML files or path
relative to the folder from which you run the command. If you run verification from the user interface
(desktop products only), specify the option along with an absolute path to the XML file in the Other
field. See Other. Note that a report generated from the analysis results only show the use of this
option and not the details of which behaviors were associated with code elements.

A sample template file code-behavior-specifications-template.xml shows the XML syntax.
The file is in polyspaceroot\polyspace\verifier\cxx\ where polyspaceroot is the
Polyspace installation folder.

If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

Using Option for Precision Improvement

XML Syntax: <function name="custom_function" std="std_function"> </function>

Use this entry in the XML file to reduce the number of orange checks from imprecise Code Prover
analysis of your function (or false negatives from an imprecise Bug Finder analysis). Sometimes, the
verification does not analyze certain kinds of functions precisely because of inherent limitations in
static verification. In those cases, if you find a standard function that is a close analog of your
function, use this mapping. Though your function itself is not analyzed, the analysis is more precise at
the locations where you call the function. For instance, if the verification cannot analyze your function
cos32 precisely and considers full range for its return value, map it to the cos function for a return
value in [-1,1].

The verification ignores the body of your function. However, the verification emulates your function
behavior in the following ways:

 -code-behavior-specifications

2-5

• The verification assumes the same return values for your function as the standard function.

For instance, if you map your function cos32 to the standard function cos, the verification
assumes that cos32 returns values in [-1,1].

• The verification checks for the same issues as it checks with the standard function.

For instance, if you map your function acos32 to the standard function acos, the Invalid use
of standard library routine check determines if the argument of acos32 is in [-1,1].

The functions that you can map to include:

• Standard library functions from math.h.
• Memory management functions from string.h.
• __ps_meminit: A function specific to Polyspace that initializes a memory area.

Sometimes, the verification does not recognize your memory initialization function and produces
an orange Non-initialized local variable check on a variable that you initialized through
this function. If you know that your memory initialization function initializes the variable through
its address, map your function to __ps_meminit. The check turns green.

• __ps_lookup_table_clip: A function specific to Polyspace that returns a value within the
range of the input array.

Sometimes, the verification considers full range for the return values of functions that look up
values in large arrays (look-up table functions). If you know that the return value of a look-up table
function must be within the range of values in its input array, map the function to
__ps_lookup_table_clip.

In code generated from models, the verification by default makes this assumption for look-up table
functions. To identify if the look-up table uses linear interpolation and no extrapolation, the
verification uses the function names. Use the mapping only for handwritten functions, for
instance, functions in a C/C++ S-Function block. The names of those functions do not follow
specific conventions. You must explicitly specify them.

See also “Extend Bug Finder Checkers for Standard Library Functions to Custom Libraries”.

Using Option for Concurrency Detection

XML Syntax: <function name="custom_function" std="std_function"> </function>

Use this entry in the XML file for automatic detection of thread-creation functions and functions that
begin and end critical sections. Polyspace supports automatic detection for certain families of
multitasking primitives only. Extend the support using this XML entry.

If your thread-creation function, for instance, does not belong to one of the supported families, map
your function to a supported concurrency primitive.

See “Extend Concurrency Defect Checkers to Unsupported Multithreading Environments”.

Using Option for Blacklisting Functions

This section applies only to a Bug Finder analysis.

XML Syntax:

2 Analysis Options, Command-Line Only

2-6

<function name="function_name">
 <behavior name="FORBIDDEN_FUNC">
</function>

Use this entry in the XML file to specify if the function must not be used in your source code.

See “Flag Deprecated or Unsafe Functions Using Bug Finder Checkers”.

Using Option for Extending Initialization Checks

XML Syntax:

<function name="function_name">
 <check name="ARGUMENT_POINTS_TO_INITIALIZED_VALUE" arg="n"/>
</function>

The number n specifies which argument must be checked for buffer initialization.

Use this entry in the XML file to specify if the pointer argument to a function must point to an
initialized buffer.

See .

Using Option for Modifying Global Behavior

XML Syntax:

 <global_scope>
 <parameter name="MAX_NUMBER_NESTED_LEVEL_CONTROL_FLOW" value="n1"/>
 <parameter name="MAX_NUMBER_NESTED_LEVEL_INCLUDES" value="n2"/>
 <parameter name="MAX_NUMBER_CONSTANT_IN_ENUMERATION" value="n3"/>
 <parameter name="MAX_NUMBER_MACROS_TRANSLATION_UNIT" value="n4"/>
 <parameter name="MAX_NUMBER_MEMBERS_IN_STRUCT" value="n5"/>
 <parameter name="MAX_NUMBER_NESTED_MEMBERS_IN_STRUCT" value="n6"/>
 <parameter name="NUMBER_SIGNIFICANT_CHARACTER_EXTERNAL_IDENTIFIER" value="n7"/>
 <parameter name="NUMBER_SIGNIFICANT_CHARACTER_INTERNAL_IDENTIFIER" value="n8"/>
 </global_scope>

Here, n1,..,n8 specifies numerical values.

Use the entries n1,..,n6 for the following parameters to specify limits on certain aspects of your
program. The modifications affect the checking of MISRA C:2012 Rule 1.1.

• • MAX_NUMBER_NESTED_LEVEL_CONTROL_FLOW: Maximum depth of nesting allowed in control
flow statements.

• MAX_NUMBER_NESTED_LEVEL_INCLUDES: Maximum levels of inclusion allowed using include
files.

• MAX_NUMBER_CONSTANT_IN_ENUMERATION: Maximum number of constants allowed in an
enumeration.

• MAX_NUMBER_MACROS_TRANSLATION_UNITMaximum number of macros allowed in a
translation unit.

• MAX_NUMBER_MEMBERS_IN_STRUCT: Maximum number of members allowed in a structure.
• MAX_NUMBER_NESTED_MEMBERS_IN_STRUCT: Maximum levels of nesting allowed in a

structure.

 -code-behavior-specifications

2-7

Use the entries n7 and n8 to specify how many characters must be compared to determine if two
identifiers as identical. The modifications affect the checking of Rules 5.x.

• NUMBER_SIGNIFICANT_CHARACTER_EXTERNAL_IDENTIFIER: Number of characters to compare
for external identifiers. External identifiers are ones declared with global scope or storage class
extern.

• NUMBER_SIGNIFICANT_CHARACTER_INTERNAL_IDENTIFIER: Number of characters to compare
for internal identifiers.

Examples
The examples in the next sections refer to a Code Prover analysis. For Bug Finder examples, see:

• “Extend Bug Finder Checkers for Standard Library Functions to Custom Libraries”
• “Flag Deprecated or Unsafe Functions Using Bug Finder Checkers”
• “Extend Concurrency Defect Checkers to Unsupported Multithreading Environments”

Specify Mapping to Standard Function

You can adapt the sample mapping XML file provided with your Polyspace installation and map your
function to a standard function.

Suppose the default verification produces an orange User assertion check on this code:

double x = acos32(1.0) ;
assert(x <= 2.0);

Suppose you know that the function acos32 behaves like the function acos and the return value is 0.
You expect the check on the assert statement to be green. However, the verification considers that
acos32 returns any value in the range of type double because acos32 is not precisely analyzed. The
check is orange. To map your function acos32 to acos:

1 Copy the file code-behavior-specifications-template.xml from polyspaceroot
\polyspace\verifier\cxx\ to another location, for instance, "C:\Polyspace_projects
\Common\Config_files". Change the write permissions on the file.

2 To map your function to a standard function, modify the contents of the XML file. To map your
function acos32 to the standard library function acos, change the following code:

<function name="my_lib_cos" std="acos"> </function>

To:

<function name="acos32" std="acos"> </function>
3 Specify the location of the file for verification:

• Code Prover:

polyspace-code-prover -code-behavior-specifications
 "C:\Polyspace_projects\Common\Config_files
 \code-behavior-specifications-template.xml"

• Code Prover Server:

2 Analysis Options, Command-Line Only

2-8

polyspace-code-prover-server -code-behavior-specifications
 "C:\Polyspace_projects\Common\Config_files
 \code-behavior-specifications-template.xml"

Specify Mapping to Standard Function with Argument Remapping

Sometimes, the arguments of your function do not map one-to-one with arguments of the standard
function. In those cases, remap your function argument to the standard function argument. For
instance:

• __ps_lookup_table_clip:

This function specific to Polyspace takes only a look-up table array as argument and returns values
within the range of the look-up table. Your look-up table function might have additional arguments
besides the look-up table array itself. In this case, use argument remapping to specify which
argument of your function is the look-up table array.

For instance, suppose a function my_lookup_table has the following declaration:

double my_lookup_table(double u0, const real_T *table,
 const double *bp0);

The second argument of your function my_lookup_table is the look-up table array. In the file
code-behavior-specifications-template.xml, add this code:

<function name="my_lookup_table" std="__ps_lookup_table_clip">
 <mapping std_arg="1" arg="2"></mapping>
</function>

When you call the function:

res = my_lookup_table(u, table10, bp);

The verification interprets the call as:

res =__ps_lookup_table_clip(table10);

The verification assumes that the value of res lies within the range of values in table10.
• __ps_meminit:

This function specific to Polyspace takes a memory address as the first argument and a number of
bytes as the second argument. The function assumes that the bytes in memory starting from the
memory address are initialized with a valid value. Your memory initialization function might have
additional arguments. In this case, use argument remapping to specify which argument of your
function is the starting address and which argument is the number of bytes.

For instance, suppose a function my_meminit has the following declaration:

 void my_meminit(enum InitKind k, void* dest, int is_aligned,
 unsigned int size);

The second argument of your function is the starting address and the fourth argument is the
number of bytes. In the file code-behavior-specifications-template.xml, add this code:

<function name="my_meminit" std="__ps_meminit">
 <mapping std_arg="1" arg="2"></mapping>
 <mapping std_arg="2" arg="4"></mapping>
</function>

 -code-behavior-specifications

2-9

When you call the function:

my_meminit(INIT_START_BY_END, &buffer, 0, sizeof(buffer));

The verification interprets the call as:

__ps_meminit(&buffer, sizeof(buffer));

The verification assumes that sizeof(buffer) number of bytes starting from &buffer are
initialized.

• memset: Variable number of arguments.

If your function has variable number of arguments, you cannot map it directly to a standard
function without explicit argument remapping. For instance, say your function is declared as:

void* my_memset(void*, int, size_t, ...)

To map the function to the memset function, use the following mapping:

<function name="my_memset" std="memset">
 <mapping std_arg="1" arg="1"></mapping>
 <mapping std_arg="2" arg="2"></mapping>
 <mapping std_arg="3" arg="3"></mapping>
</function>

Effect of Mapping on Precision

These examples show the result of mapping certain functions to standard functions:

• my_acos → acos:

If you use the mapping, the User assertion check turns green. The verification assumes that
the return value of my_acos is 0.

• Before mapping:

double x = my_acos(1.0);
assert(x <= 2.0);

• Mapping specification:

<function name="my_acos" std="acos">
</function>

• After mapping:

double x = my_acos(1.0);
assert(x <= 2.0);

• my_sqrt → sqrt:

If you use the mapping, the Invalid use of standard library routine check turns red.
Otherwise, the verification does not check whether the argument of my_sqrt is nonnegative.

• Before mapping:

res = my_sqrt(-1.0);

• Mapping specification:

2 Analysis Options, Command-Line Only

2-10

<function name="my_sqrt" std="sqrt">
</function>

• After mapping:

res = my_sqrt(-1.0);
• my_lookup_table (argument 2) →__ps_lookup_table_clip (argument 1):

If you use the mapping, the User assertion check turns green. The verification assumes that
the return value of my_lookup_table is within the range of the look-up table array table.

• Before mapping:

double table[3] = {1.1, 2.2, 3.3}
.
.
double res = my_lookup_table(u, table, bp);
assert(res >= 1.1 && res <= 3.3);

• Mapping specification:

<function name="my_lookup_table" std="__ps_lookup_table_clip">
 <mapping std_arg="1" arg="2"></mapping>
</function>

• After mapping:

double table[3] = {1.1, 2.2, 3.3}
.
.
res_real = my_lookup_table(u, table9, bp);
assert(res_real >= 1.1 && res_real <= 3.3);

• my_meminit →__ps_meminit:

If you use the mapping, the Non-initialized local variable check turns green. The
verification assumes that all fields of the structure x are initialized with valid values.

• Before mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(struct X));
return x.field1;

• Mapping specification:

<function name="my_meminit" std="__ps_meminit">
 <mapping std_arg="1" arg="1"></mapping>
 <mapping std_arg="2" arg="2"></mapping>
</function>

• After mapping:

struct X {
 int field1 ;
 int field2 ;

 -code-behavior-specifications

2-11

};
.
.
struct X x;
my_meminit(&x, sizeof(struct X));
return x.field1;

• my_meminit →__ps_meminit:

If you use the mapping, the Non-initialized local variable check turns red. The
verification assumes that only the field field1 of the structure x is initialized with valid values.

• Before mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(int));
return x.field2;

• Mapping specification:

<function name="my_meminit" std="__ps_meminit">
</function>

• After mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(int));
return x.field2;

See Also
Topics
“Specify Polyspace Analysis Options”

Introduced in R2016b

2 Analysis Options, Command-Line Only

2-12

-consider-external-array-access-unsafe
Remove the default assumption that external arrays of unspecified size can be safely accessed at any
index

Syntax
-consider-external-array-access-unsafe

Description
-consider-external-array-access-unsafe removes the default Code Prover assumption that
external arrays of unspecified size can be safely accessed at any index. By default, because of this
assumption, Code Prover shows green Out of bounds array index checks on external array
accesses code despite their size being unknown. If you use this option, the same check is orange
indicating that the access is not proven safe and requires manual inspection.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
Run Code Prover on this example with and without the option.

extern int arr[];

int getFifthElement(void) {
 return arr[5];
}

The array access shows a green Out of bounds array index check without the option but an orange
check with the option.

See Also
Generic target options | Out of bounds array index | Target processor type (-
target)

Topics
“Specify Polyspace Analysis Options”

 -consider-external-array-access-unsafe

2-13

-custom-target
Create a custom target processor with specific data type sizes

Syntax
-custom-target target_sizes

Description
-custom-target target_sizes defines a custom target processor for the Polyspace analysis. The
target processor definition includes sizes in bytes of fundamental data types, signedness of plain
char, alignment of structures and underlying types of standard typedef-s such as size_t,
ptrdiff_t and wchar_t.

target_sizes is a comma-separated list specifying these values. From left to right, the values are
the following. If a data type is not supported, -1 is used for its size.

Specification Possible Values
Whether plain char is signed true or false
Size of char in bits

Other sizes are in bytes.

Number

Size of short Number
Size of int Number
Size of short long Number
Size of long Number
Size of long long Number
Size of float Number
Size of double Number
Size of long double Number
Size of pointer Number
Maximum alignment of all integer types Number
Maximum alignment of variables of type struct
or union

Number

Endianness little or big
Underlying type of size_t unknown, unsigned_char, unsigned_short,

unsigned_int, unsigned_long, or
unsigned_long_long

Underlying type of ptrdiff_t unknown, signed_char, short, int, long, or
long_long

Underlying type of wchar_t unknown, short, unsigned_short, int,
unsigned_int, long, or unsigned_long

2 Analysis Options, Command-Line Only

2-14

Typically, this option is used when the polyspace-configure command creates an options file for
the subsequent Polyspace analysis. However, you can directly enter this option when manually
writing options files. This option is useful in situations where your target specifications are not
covered by one of the predefined target processors. See Target processor type (-target).

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
An usage of the option looks like this:

-custom-target false,8,2,4,-1,4,8,4,8,8,4,8,1,little,unsigned_int,int,unsigned_int

The option argument translates to the following target specification.

Specification Possible Values
Whether plain char is signed false
Size of char 8 bits
Size of short 2 bytes
Size of int 4 bytes
Size of short long short long is not supported.
Size of long 4 bytes
Size of long long 8 bytes
Size of float 4 bytes
Size of double 8 bytes
Size of long double 8 bytes
Size of pointer 4 bytes
Maximum alignment of all integer types 8 bytes
Maximum alignment of variables of type struct
or union

1 byte

Endianness little
Underlying type of size_t unsigned_int
Underlying type of ptrdiff_t int
Underlying type of wchar_t unsigned_int

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

See Also
Generic target options | Target processor type (-target)

 -custom-target

2-15

Topics
“Specify Polyspace Analysis Options”

2 Analysis Options, Command-Line Only

2-16

-date
Specify date of analysis

Syntax
-date "date"

Description
-date "date" specifies the date stamp for the analysis in the format dd/mm/yyyy. By default the
value is the date the analysis starts.

Examples
Assign a date to your Polyspace Project:

• Bug Finder:

polyspace-bug-finder -date "15/03/2012"
• Code Prover:

polyspace-code-prover -date "15/03/2012"
• Bug Finder Server:

polyspace-bug-finder-server -date "15/03/2012"
• Code Prover Server:

polyspace-code-prover-server -date "15/03/2012"

Tips
This option is not required for a Polyspace as You Code analysis.

See Also
-author | -date

Topics
“Specify Polyspace Analysis Options”

 -date

2-17

-doc | -documentation
Display Polyspace documentation in help browser

Syntax
-doc
-documentation

Description
-doc and -documentation opens Polyspace documentation in a help browser. You can see
information such as getting started, workflows and reference pages for commands and analysis
options. You can also search through the documentation in the help browser.

Examples
Display Polyspace documentation in a help browser:

• Bug Finder:

polyspace-bug-finder -doc
polyspace-bug-finder -documentation

• Code Prover:

polyspace-code-prover -doc
polyspace-code-prover -documentation

• Bug Finder Server:

polyspace-bug-finder-server -doc
polyspace-bug-finder-server -documentation

• Code Prover Server:

polyspace-code-prover-server -doc
polyspace-code-prover-server -documentation

See Also
-h[elp]

2 Analysis Options, Command-Line Only

2-18

-dump-preprocessing-info
Show all macros implicitly defined during a particular analysis

Syntax
-dump-preprocessing-info

Description
-dump-preprocessing-info prints all the macros implicitly defined (or undefined) during a
particular Polyspace analysis. The macro definitions come from:

• Your specification for the option Compiler (-compiler)

Polyspace emulates a compiler by defining the compiler-specific macros.
• Macros defined (or undefined) in the Polyspace implementation of Standard Library headers
• Macros that you explicitly define (or undefine) using the options Preprocessor definitions

(-D) and Disabled preprocessor definitions (-U)

Use this option only if you want to know how Polyspace defines a specific macro. In case you want to
use a different definition for the macro, you can then override the current definition.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other. On the Output
Summary pane, you can see each macro definition on a separate line. You can search for the macro
name in the user interface and click the line with the macro name to see further details in the Detail
pane.

Examples
Suppose that you use the ARM v6 compiler for building your source code. For the Polyspace analysis,
you use the value armclang for the option Compiler (-compiler). Suppose that you want to
know what Polyspace uses as definition for the macro __ARM_ARCH.

1 Enter the following command and pipe the console output to a file that you can search later:

polyspace-bug-finder -sources aFile.c -compiler armclang -dump-preprocessing-info

aFile.c can be a simple C file. You can also replace polyspace-bug-finder with
polyspace-code-prover, polyspace-bug-finder-server or polyspace-code-prover-
server.

2 Search for __ARM_ARCH in the file containing the console output. You can see the line with the
macro definition:

Remark: Definition of macro __ARM_ARCH (pre-processing __polyspace__stdstubs.c)
|#define __ARM_ARCH 8
|defined by syntax extension xml file
|predefined macro

 -dump-preprocessing-info

2-19

In this example, the macro is set to the value 8.

• To override this macro definition, use the option Preprocessor definitions (-D).
• To undefine this macro, use the option Disabled preprocessor definitions (-U).

See Also
Compiler (-compiler)

Topics
“Specify Polyspace Analysis Options”

2 Analysis Options, Command-Line Only

2-20

-generate-launching-script-for
Extract information from project file

Syntax
-generate-launching-script-for PRJFILE

Description
-generate-launching-script-for PRJFILE extracts information from a project file PRJFILE
(created in the user interface of the Polyspace desktop products) so that you can run an analysis from
the command line. For each project module and each configuration in each module, a folder is
created containing the following files::

• source_command.txt — List of source files for the -sources-list-file option.
• options_command.txt — List of the analysis options for the -options-file option.
• temporal_exclusions.txt — List of temporal exclusions, generated only if you specify the

Temporally exclusive tasks (-temporal-exclusions-file) option.
• .polyspace_conf.psprj — A copy of the project file Polyspace used to generate the scripting
files.

• launchingCommand.sh (UNIX) or launchingCommand.bat (DOS) — shell script that calls the
correct commands. The script also calls any options that cannot be given to the -options-file
command, such as -batch or -add-to-results-repository. You can give this file additional
analysis options as parameters.

After you set up a project in the Polyspace user interface, you can create this script from the resulting
project file (with extension .psprj). The script that Polyspace generates runs the same analysis as a
run in the user interface. If your project runs without errors in the Polyspace user interface, the
script runs without errors at the command line.

To generate the script, you must run the command from the same folder as the project file.

Examples
Extract information to run myproject from the command line. Use this option with the desktop
binary polyspace:

• Bug Finder:

polyspace -generate-launching-script-for myproject.psprj -bug-finder
• Code Prover:

polyspace -generate-launching-script-for myproject.psprj

 -generate-launching-script-for

2-21

See Also
Topics
“Configure Polyspace Analysis Options in User Interface and Generate Scripts”

2 Analysis Options, Command-Line Only

2-22

-h | -help
Display list of possible options

Syntax
-h
-help

Description
-h and -help display the list of possible options in the command window along with option argument
syntax.

Examples
Display the command-line help:

• Bug Finder:

polyspace-bug-finder -h
polyspace-bug-finder -help

• Code Prover:

polyspace-code-prover -h
polyspace-code-prover -help

• Bug Finder Server:

polyspace-bug-finder-server -h
polyspace-bug-finder-server -help

• Code Prover Server:

polyspace-code-prover-server -h
polyspace-code-prover-server -help

See Also
-doc | -documentation

 -h | -help

2-23

-I
Specify include folder for compilation

Syntax
-I folder

Description
-I folder specifies a folder that contains include files required for compiling your sources. You can
specify only one folder for each instance of -I. However, you can specify this option multiple times.

The analysis looks for include files relative to the folder paths that you specify. For instance, if your
code contains the preprocessor directive #include<../mylib.h> and you include the folder:

C:\My_Project\MySourceFiles\Includes

the folder C:\My_Project\MySourceFiles must contain a file mylib.h.

The analysis automatically includes the ./sources folder (if it exists) after the include folders that
you specify.

Examples
Include two folders with the analysis:

• Bug Finder:

polyspace-bug-finder -I /com1/inc -I /com1/sys/inc

• Code Prover:

polyspace-code-prover -I /com1/inc -I /com1/sys/inc

• Bug Finder Server:

polyspace-bug-finder-server -I /com1/inc -I /com1/sys/inc

• Code Prover Server:

polyspace-code-prover-server -I /com1/inc -I /com1/sys/inc

The source folder is implicitly included. Include files in the source folder can be found automatically
without explicit inclusion of the source folder with the -I option.

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

2 Analysis Options, Command-Line Only

2-24

See Also
Topics
“Specify Polyspace Analysis Options”

 -I

2-25

-import-comments
Import review information from previous analysis

Syntax
-import-comments resultsFolder

Description
-import-comments resultsFolder imports the review information (status, severity and
additional notes) from a previous analysis, as specified by the results folder.

You can import review information from the same type of results only. For instance:

• You cannot import review information from a results of a Bug Finder checker to a Code Prover
run-time check. Even when the checker names sound similar, the underlying semantics of Bug
Finder and Code Prover can be different. The only exception is checkers for coding rules. You can
import comments between Bug Finder and Code Prover for coding rule violations.

• You cannot import review information from results of a file-by-file verification in Code Prover to
results of a regular Code Prover verification.

You can also use this option to create a baseline for the analysis results. In the Polyspace user
interface, if you click the New button, only the analysis results that are new compared to the baseline
remain in the results list.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
Import review information from the previous results:

• Bug Finder:

polyspace-bug-finder -sources filename
 -import-comments C:\Results\myProj\1.2

• Code Prover:

polyspace-code-prover -sources filename
 -import-comments C:\Results\myProj\1.2

• Bug Finder Server:

polyspace-bug-finder-server -sources filename
 -import-comments C:\Results\myProj\1.2

• Code Prover Server:

polyspace-code-prover-server -sources filename
 -import-comments C:\Results\myProj\1.2

2 Analysis Options, Command-Line Only

2-26

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

See Also
-v[ersion] | polyspace-comments-import

Topics
“Import Review Information from Previous Polyspace Analysis”

 -import-comments

2-27

-list-all-values
Display valid option arguments for a given command-line option

Syntax
-list-all-values option

Description
-list-all-values option displays all the valid option arguments for the command-line option
option.

Examples
Display the valid option arguments for option -misra3:

• Polyspace Bug Finder:

polyspace-bug-finder -list-all-values -misra3
• Polyspace Code Prover:

polyspace-code-prover -list-all-values -misra3
• Polyspace Bug Finder Server:

polyspace-bug-finder-server -list-all-values -misra3
• Polyspace Code Prover Server:

polyspace-code-prover-server -list-all-values -misra3

See Also
Topics
“Specify Polyspace Analysis Options”

Introduced in R2020a

2 Analysis Options, Command-Line Only

2-28

-max-processes
Specify maximum number of processors for analysis

Syntax
-max-processes num

Description
-max-processes num specifies the maximum number of processes that you want the analysis to
use. On a multicore system, the software parallelizes the analysis and creates the specified number of
processes to speed up the analysis. The valid range of num is 1 to 128.

Unless you specify this option, a Code Prover verification uses up to four processes. If you have fewer
than four processes, the verification uses the maximum available number. To increase or restrict the
number of processes, use this option.

Unless you specify this option, a Bug Finder analysis uses the maximum number of available
processes. Use this option to restrict the number of processes used.

To use this option effectively, determine the number of processors available for use. If the number of
processes you create is greater than the number of processors available, the analysis does not benefit
from the parallelization. Check the system information in your operating system.

Note that when you start a verification, a message states the number of logical processors detected
on your system. However, the analysis is parallelized to the physical processor cores on a machine.
Multithreading implementations such as hyper-threading is not taken into account.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
Disable parallel processing during the analysis:

• Bug Finder:

polyspace-bug-finder -max-processes 1

• Code Prover:

polyspace-code-prover -max-processes 1

• Bug Finder Server:

polyspace-bug-finder-server -max-processes 1

• Code Prover Server:

polyspace-code-prover-server -max-processes 1

 -max-processes

2-29

Tips
You must have at least 4 GB of RAM per processor for analysis. For instance, if your machine has 16
GB of RAM, do not use this option to specify more than four processes.

This option is not useful in a Polyspace as You Code analysis.

See Also
Topics
“Specify Polyspace Analysis Options”

2 Analysis Options, Command-Line Only

2-30

-no-assumption-on-absolute-addresses
Remove assumption that absolute address usage is valid

Syntax
-no-assumption-on-absolute-addresses

Description
This option affects a Code Prover analysis only.

-no-assumption-on-absolute-addresses removes the default assumption that absolute
addresses used in your code are valid. If you use this option, the verification produces an orange
Absolute address usage check when you assign an absolute address to a pointer. Otherwise, the
check is green by default.

The type of the pointer to which you assign the address determines the initial value stored in the
address. For instance, if you assign the address to an int* pointer, following this check, the
verification assumes that the memory zone that the address points to is initialized with an int value.
The value can be anything allowed for the data type int.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
The use of option -no-assumption-on-absolute-addresses can increase the number of orange
checks in your code. For instance, the following table shows an additional orange check with the
option enabled.

Absolute Address Usage Green Absolute Address Usage Orange
void main() {
 int *p = (int *)0x32;
 int x;
 x=*p;
}

In this example, the software produces:

• A green Absolute address usage check
when the address 0x32 is assigned to a
pointer p.

• A green Illegally dereferenced pointer
check when the pointer p is read.

x potentially has all values allowed for an int
variable.

void main() {
 int *p = (int *)0x32;
 int x;
 x=*p;
}

In this example, the software produces:

• An orange Absolute address usage check
when the address 0x32 is assigned to a
pointer p.

• A green Illegally dereferenced pointer
check when the pointer p is read.

x potentially has all values allowed for an int
variable.

For best use of the Absolute address usage check, leave this check green by default during initial
stages of development. During integration stage, use the option -no-assumption-on-absolute-

 -no-assumption-on-absolute-addresses

2-31

addresses and detect all uses of absolute memory addresses. Browse through them and make sure
that the addresses are valid.

See Also
Topics
“Specify Polyspace Analysis Options”

Introduced in R2016a

2 Analysis Options, Command-Line Only

2-32

-non-preemptable-tasks
Specify functions that represent nonpreemptable tasks

Syntax
-non-preemptable-tasks function1[,function2[,...]]

Description
-non-preemptable-tasks function1[,function2[,...]] specifies functions that represent
nonpreemptable tasks.

The functions cannot be interrupted by other noncyclic tasks and cyclic tasks but can be interrupted
by interrupts, preemptable or nonpreemptable. Noncyclic tasks are specified with the option Tasks
(-entry-points), cyclic tasks with the option Cyclic tasks (-cyclic-tasks) and interrupts
with the option Interrupts (-interrupts). For examples, see “Define Preemptable Interrupts
and Nonpreemptable Tasks”.

To specify a function as a nonpreemptable cyclic task, you must first specify the function as a cyclic
or noncyclic task. The functions that you specify must have the prototype:

void function_name(void);

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Tips
This option is not useful in a Polyspace as You Code analysis.

See Also
-non-preemptable-tasks | -preemptable-interrupts | Critical section details (-
critical-section-begin -critical-section-end) | Cyclic tasks (-cyclic-tasks) |
Interrupts (-interrupts) | Tasks (-entry-points) | Temporally exclusive tasks (-
temporal-exclusions-file)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Preemptable Interrupts and Nonpreemptable Tasks”
“Concurrency Defects”

Introduced in R2016b

 -non-preemptable-tasks

2-33

-options-for-sources
Specify analysis options specific to a source file

Syntax
-options-for-sources filename options

Description
-options-for-sources filename options associates a semicolon-separated list of Polyspace
analysis options with the source file specified by filename..

This option is primarily used when the polyspace-configure command creates an options file for
the subsequent Polyspace analysis. The option -options-for-sources associates a group of
analysis options such as include folders and macro definitions with specific source files.

However, you can directly enter this option when manually writing options files. This option is useful
in situations where you want to associate a group of options with a specific source file without
applying it to other files.

In the user interface of the Polyspace desktop products, you can create a Polyspace project from your
build command. The project uses the option -options-for-sources to associate specific Polyspace
analysis options with specific files. However, when you open the project in the user interface, you
cannot see the use of this option. Open the project in a text editor to see this option.

Examples
In this sample options file, the include folder /usr/lib/gcc/x86_64-linux-gnu/6/include and
the macros __STDC_VERSION__ and __GNUC__ are associated only with the source file file.c and
not fileAnother.c.

-options-for-sources file.c;-I /usr/lib/gcc/x86_64-linux-gnu/6/include;
-options-for-sources file.c;-D __STDC_VERSION__=201112L;-D __GNUC__=6;
-sources file.c
-sources fileAnother.c

For the options used in this example, see:

• -sources
• -I
• Preprocessor definitions (-D)

Tips
When associating multiple options with a source file, if you use an option separator other than
semicolon, use a second option -options-for-sources-delimiter to explicitly specify this
separator. For instance, if you use the separator @, specify the additional option:

-options-for-sources-delimiter @

2 Analysis Options, Command-Line Only

2-34

Otherwise, the analysis assumes a semicolon separator.

See Also
-options-file | polyspace-configure

Topics
“Specify Polyspace Analysis Options”

 -options-for-sources

2-35

-preemptable-interrupts
Specify functions that represent preemptable interrupts

Syntax
-preemptable-interrupts function1[,function2[,...]]

Description
-preemptable-interrupts function1[,function2[,...]] specifies functions that represent
preemptable interrupts.

The function acts as an interrupt in every way except that it can be interrupted by other interrupts,
preemptable or nonpreemptable. Interrupts are specified with the option Interrupts (-
interrupts). For examples, see “Define Preemptable Interrupts and Nonpreemptable Tasks”.

To specify a function as a preemptable interrupt, you must first specify the function as an interrupt.
The functions that you specify must have the prototype:

void function_name(void);

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Tips
This option is not useful in a Polyspace as You Code analysis.

See Also
-non-preemptable-tasks | -preemptable-interrupts | Critical section details (-
critical-section-begin -critical-section-end) | Cyclic tasks (-cyclic-tasks) |
Interrupts (-interrupts) | Tasks (-entry-points) | Temporally exclusive tasks (-
temporal-exclusions-file)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Preemptable Interrupts and Nonpreemptable Tasks”
“Concurrency Defects”

Introduced in R2016b

2 Analysis Options, Command-Line Only

2-36

-options-file
Run Polyspace using list of options

Syntax
-options-file file

Description
-options-file file specifies a file which lists your analysis options. The file must be a text file
with each option on a separate line. Use # to add comments to this file.

Examples
1 Create an options file called listofoptions.txt with your options. For example:

• Bug Finder or Bug Finder Server:

#These are the options for MyBugFinderProject
-lang c
-prog MyBugFinderProject
-author jsmith
-sources "mymain.c,funAlgebra.c,funGeometry.c"
-target x86_64
-compiler generic
-dos
-misra2 required-rules
-do-not-generate-results-for all-headers
-checkers default
-disable-checkers concurrency
-results-dir C:\Polyspace\MyBugFinderProject

• Code Prover or Code Prover Server:

#These are the options for MyCodeProverProject
-lang c
-prog MyCodeProverProject
-author jsmith
-sources "mymain.c,funAlgebra.c,funGeometry.c"
-target x86_64
-compiler generic
-dos
-misra2 required-rules
-do-not-generate-results-for all-headers
-main-generator
-results-dir C:\Polyspace\MyCodeProverProject

2 Run Polyspace using options in the file listofoptions.txt:

• Bug Finder:

polyspace-bug-finder -options-file listofoptions.txt
• Code Prover:

 -options-file

2-37

polyspace-code-prover -options-file listofoptions.txt
• Bug Finder Server:

polyspace-bug-finder-server -options-file listofoptions.txt
• Code Prover Server:

polyspace-code-prover-server -options-file listofoptions.txt

See Also
Topics
“Specify Polyspace Analysis Options”

2 Analysis Options, Command-Line Only

2-38

-prog
Specify name of project

Syntax
-prog projectName

Description
-prog projectName specifies a name for your Polyspace project. This name must use only letters,
numbers, underscores (_), dashes (-), or periods (.).

The name appears in the analysis log and a few other places.

Examples
Assign a name to your Polyspace project:

• Bug Finder:

polyspace-bug-finder -prog MyApp
• Code Prover:

polyspace-code-prover -prog MyApp
• Bug Finder Server:

polyspace-bug-finder-server -prog MyApp
• Code Prover Server:

polyspace-code-prover-server -prog MyApp

Tips
This option is not required for a Polyspace as You Code analysis.

See Also
-author | -date

Topics
“Specify Polyspace Analysis Options”

 -prog

2-39

-regex-replace-rgx -regex-replace-fmt
Make replacements in preprocessor directives

Syntax
-regex-replace-rgx matchFileName -regex-replace-fmt replacementFileName

Description
-regex-replace-rgx matchFileName -regex-replace-fmt replacementFileName
replaces tokens in preprocessor directives for the purposes of Polyspace analysis. The original source
code is unchanged. You match a token using a regular expression in the file matchFileName and
replace the token using a replacement in the file replacementFileName.

Use this option only to replace or remove tokens in the preprocessor directives before preprocessing.
If a token in your source code causes a compilation error, you can typically replace or remove the
token from the preprocessed code. Use the more convenient option Command/script to apply to
preprocessed files (-post-preprocessing-command). You cannot make the replacements in
preprocessed code only for tokens in preprocessor directives.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

In the user interface, specify absolute paths to the text files with the search and replace patterns.

Examples
Suppose you want to replace &_rom_beg in this #define directive:

#define ROM_BEG_ADDR (uint16_t)(&_rom_beg)

and modify the directive to:

#define ROM_BEG_ADDR (0x4000u)

Specify this regular expression in a file match.txt:

^#define\s+ROM_BEG_ADDR\s+\(uint16_t\)\(\&_rom_beg\)

These elements are used in the regular expression:

• ^ asserts position at the start of a line.
• \s+ represents one or more whitespace characters.

The characters *, &, (and) in the original expression are escaped with \. For a complete list of
regular expressions, see Perl documentation.

Specify the replacement in a file replace.txt.

#define ROM_BEG_ADDR \(0x4000u\)

2 Analysis Options, Command-Line Only

2-40

https://perldoc.perl.org/perlre.html#Regular-Expressions

Specify the two text files during analysis with the options -regex-replace-rgx and -regex-
replace-fmt:

• Bug Finder:

polyspace-bug-finder -sources filename
 -regex-replace-rgx match.txt
 -regex-replace-fmt replace.txt

• Code Prover:

polyspace-code-prover -sources filename
 -regex-replace-rgx match.txt
 -regex-replace-fmt replace.txt

• Bug Finder Server:

polyspace-bug-finder-server -sources filename
 -regex-replace-rgx match.txt
 -regex-replace-fmt replace.txt

• Code Prover Server:

polyspace-code-prover-server -sources filename
 -regex-replace-rgx match.txt
 -regex-replace-fmt replace.txt

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

See Also
Command/script to apply to preprocessed files (-post-preprocessing-command)

Topics
“Specify Polyspace Analysis Options”

 -regex-replace-rgx -regex-replace-fmt

2-41

-report-output-name
Specify name of report

Syntax
-report-output-name reportName

Description
-report-output-name reportName specifies the name of an analysis report.

The default name for a report is Prog_Template.Format:

• Prog is the name of the project specified by -prog.
• TemplateName is the type of report template specified by -report-template.
• Format is the file extension for the report specified by -report-output-format.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
Specify the name of the analysis report:

• Bug Finder:

polyspace-bug-finder -report-template Developer
 -report-output-name Airbag_v3.doc

• Code Prover:

polyspace-code-prover -report-template Developer
 -report-output-name Airbag_v3.doc

• Bug Finder Server:

polyspace-bug-finder-server -report-template Developer
 -report-output-name Airbag_v3.doc

• Code Prover Server:

polyspace-code-prover-server -report-template Developer
 -report-output-name Airbag_v3.doc

Tips
You cannot generate reports with Polyspace as You Code.

See Also
Bug Finder and Code Prover report (-report-template) | Output format (-report-
output-format)

2 Analysis Options, Command-Line Only

2-42

Topics
“Specify Polyspace Analysis Options”
“Generate Reports”

 -report-output-name

2-43

-results-dir
Specify the results folder

Syntax
-results-dir resultsFolder

Description
-results-dir resultsFolder specifies where to save the analysis results. The default location at
the command line is the current folder.

Note that the results folder is cleaned up and repopulated at each run. To avoid accidental removal of
files during the cleanup, instead of using an existing folder that contains other files, specify a
dedicated folder for the Polyspace results.

If you are running analysis in the user interface of the Polyspace desktop products, see “Run
Polyspace Analysis on Desktop”.

Examples
Specify to store your results in the RESULTS folder:

• Bug Finder:

polyspace-bug-finder -results-dir RESULTS

• Code Prover:

polyspace-code-prover -results-dir RESULTS

• Bug Finder Server:

polyspace-bug-finder-server -results-dir RESULTS

• Code Prover Server:

polyspace-code-prover-server -results-dir RESULTS

You can create the name of the results folder based on the verification date and time. For instance, in
a Bash shell, enter these commands to create a variable RESULTS that begins with results_ and
contains the current date and time:

export DATETIME=$(date +%d%B_%HH%M_%A)
export RESULTS=results_$DATE

You can then use the variable RESULTS as argument of the option -results-dir:

-results-dir $RESULTS

2 Analysis Options, Command-Line Only

2-44

Tips
If you use Polyspace as You Code extensions in IDEs, this option is implemented through the IDE
extension setting. You do not have to use this option explicitly. If you want to explicitly use this option,
enter the option in an analysis options file. See options file.

See Also
Topics
“Specify Polyspace Analysis Options”

 -results-dir

2-45

-scheduler
Specify cluster or job scheduler

Syntax
-scheduler schedulingOption

Description
-scheduler schedulingOption specifies the head node of the MATLAB Parallel Server cluster
that manages Polyspace analysis submissions from multiple clients and allocates the analysis to
worker nodes. You use this option along with the option Run Bug Finder or Code Prover
analysis on a remote cluster (-batch) to offload an analysis from a desktop to a remote
cluster. Note that you use this option with the commands in the desktop products (polyspace-bug-
finder and polyspace-code-prover) and not the commands in the server products (polyspace-
bug-finder-server and polyspace-code-prover-server).

For more information, see “Install Products for Submitting Polyspace Analysis from Desktops to
Remote Server”.

Examples
Run a batch analysis on a remote server using one of these syntaxes for the job scheduler:

• Bug Finder:

polyspace-bug-finder -batch -scheduler NodeHost
polyspace-bug-finder -batch -scheduler 192.168.1.124:12400
polyspace-bug-finder -batch -scheduler MJSName@NodeHost

• Code Prover:

polyspace-code-prover -batch -scheduler NodeHost
polyspace-code-prover -batch -scheduler 192.168.1.124:12400
polyspace-code-prover -batch -scheduler MJSName@NodeHost

For details, see “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”.

You can track the status of the job using the polyspace-jobs-manager command:

polyspace-jobs-manager listjobs -scheduler NodeHost

Tips
You cannot submit analysis jobs to a remote cluster with Polyspace as You Code.

See Also
Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

Topics
“Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”

2 Analysis Options, Command-Line Only

2-46

“Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”

 -scheduler

2-47

-show-similar-overflows
Show all overflows in wrap-around mode

Syntax
-show-similar-overflows

Description
-show-similar-overflows causes all overflows to be shown in wrap-around mode even if they
come from the same root cause.

If you select warn-with-wrap-around for the option Overflow mode for signed integer (-
signed-integer-overflows) or Overflow mode for unsigned integer (-unsigned-
integer-overflows), values that overflow are wrapped. For instance, the value INT_MAX + 1
wraps around to INT_MIN. A path with an overflowing value continues beyond the overflow with the
wrapped value and can lead to a similar overflow several lines later. By default, Code Prover detects
overflows from the same root cause and shows only the first of similar overflows. If you fix this
overflow, the subsequent overflows are also fixed. If you want to see all overflows in wrap-around
mode, use the option -show-similar-overflows.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
In this example, the value of var is unknown and edge cases can lead to overflows in the operation
*copy1 = var * 2. The same edge cases also lead to overflows in the next operation. Code Prover
shows an orange Overflow check on the first operation only.

int input();

void getEven(int* copy1, int* copy2) {
 int var;
 var = input();
 *copy1 = var * 2;
 *copy2 = var * 2;
}

If you use the option -show-similar-overflows, Code Prover shows orange Overflow checks on
both operations.

int input();

void getEven(int* copy1, int* copy2) {
 int var;
 var = input();
 *copy1 = var * 2;
 *copy2 = var * 2;
}

2 Analysis Options, Command-Line Only

2-48

See Also
-options-file | Overflow | Overflow mode for signed integer (-signed-integer-
overflows) | Overflow mode for unsigned integer (-unsigned-integer-overflows)

Topics
“Specify Polyspace Analysis Options”

Introduced in R2020b

 -show-similar-overflows

2-49

-sources
Specify source files

Syntax
-sources file1[,file2,...]
-sources file1 -sources file2

Description
-sources file1[,file2,...] or -sources file1 -sources file2 specifies the list of
source files that you want to analyze. You can use standard UNIX wildcards with this option to specify
your sources.

The source files are compiled in the order in which they are specified.

Examples
Analyze the files mymain.c, funAlgebra.c, and funGeometry.c.

• Bug Finder:

polyspace-bug-finder -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

• Code Prover:

polyspace-code-prover -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

• Bug Finder Server:

polyspace-bug-finder-server -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

• Code Prover Server:

polyspace-code-prover-server -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

• Polyspace as You Code:

polyspace-bug-finder-access -sources myfile.c

Note that you can only analyze one file at a time with Polyspace as You Code. If you use Polyspace
as You Code extensions in IDEs, you do not have to specify this option. The analysis runs on the
file that is currently active in your IDE.

See Also
-sources-list-file | polyspace-configure

Topics
“Specify Polyspace Analysis Options”

2 Analysis Options, Command-Line Only

2-50

-sources-list-file
Specify file containing list of sources

Syntax
-sources-list-file file_path

Description
-sources-list-file file_path specifies the absolute path to a text file that lists each file name
that you want to analyze.

To specify your sources in the text file, on each line, specify the path to a source file. You can specify
an absolute path or a path relative to the folder from which you are running the analysis. For
example:

C:\Sources\myfile.c
C:\Sources2\myfile2.c

Examples
Run analysis on files listed in files.txt:

• Bug Finder:

polyspace-bug-finder -sources-list-file "C:\Analysis\files.txt"
polyspace-bug-finder -sources-list-file "/home/polyspace/files.txt"

• Code Prover:

polyspace-code-prover -sources-list-file "C:\Analysis\files.txt
polyspace-code-prover -sources-list-file "/home/polyspace/files.txt"

• Bug Finder Server:

polyspace-bug-finder-server -sources-list-file "C:\Analysis\files.txt"
polyspace-bug-finder-server -sources-list-file "/home/polyspace/files.txt"

• Code Prover Server:

polyspace-code-prover-server -sources-list-file "C:\Analysis\files.txt
polyspace-code-prover-server -sources-list-file "/home/polyspace/files.txt"

Tips
You cannot use this option with Polyspace as You Code.

See Also
Topics
“Specify Polyspace Analysis Options”

 -sources-list-file

2-51

-submit-job-from-previous-compilation-results
Specify that the analysis job must be resubmitted without recompilation

Syntax
-submit-job-from-previous-compilation-results

Description
-submit-job-from-previous-compilation-results specifies that the Polyspace analysis must
start after the compilation phase with compilation results from a previous analysis. The option is
primarily useful when offloading a Polyspace analysis from desktops to remote servers. If a remote
analysis stops after compilation, for instance because of communication problems between the server
and client computers, use this option. Note that you use this option with the commands in the
desktop products (polyspace-bug-finder and polyspace-code-prover) and not the commands
in the server products (polyspace-bug-finder-server and polyspace-code-prover-server).

When you perform a remote analysis:

1 On the local host computer, the Polyspace software performs code compilation and coding rule
checking.

2 The analysis job is then submitted to the MATLAB job scheduler on the head node of the MATLAB
Parallel Server cluster.

3 The head node of the MATLAB Parallel Server cluster assigns the verification job to a worker
node, where the remaining phases of the Polyspace analysis occur.

If an analysis stops after completing the first step and you restart the analysis, use this option to
reuse compilation results from the previous analysis. You thereby avoid restarting the analysis from
the compilation phase.

If previous compilation results do not exist in the current folder, an error occurs. Remove the option
and restart analysis from the compilation phase.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
Specify remote analysis with compilation results from a previous analysis:

• Bug Finder:

polyspace-bug-finder -batch -scheduler localhost
 -submit-job-from-previous-compilation-results

• Code Prover:

polyspace-code-prover -batch -scheduler localhost
 -submit-job-from-previous-compilation-results

2 Analysis Options, Command-Line Only

2-52

Tips
You cannot submit analysis jobs to a remote cluster with Polyspace as You Code.

See Also
Topics
“Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”
“Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”

 -submit-job-from-previous-compilation-results

2-53

-tmp-dir-in-results-dir
Keep temporary files in results folder

Syntax
-tmp-dir-in-results-dir

Description
-tmp-dir-in-results-dir specifies that temporary files must be stored in a subfolder of the
results folder. Use this option only when the standard temporary folder does not have enough disk
space. If the results folder is mounted on a network drive, this option can slow down your processor.

To learn how Polyspace determines the temporary folder location, see “Storage of Temporary Files”.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
Store temporary files in the results folder:

• Bug Finder:

polyspace-bug-finder -tmp-dir-in-results-dir

• Code Prover:

polyspace-code-prover -tmp-dir-in-results-dir

• Bug Finder Server:

polyspace-bug-finder-server -tmp-dir-in-results-dir

• Code Prover Server:

polyspace-code-prover-server -tmp-dir-in-results-dir

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

See Also
Topics
“Specify Polyspace Analysis Options”

2 Analysis Options, Command-Line Only

2-54

-v | -version
Display Polyspace version number

Syntax
-v
-version

Description
-v or -version displays the version number of your Polyspace product.

Examples
Display the version number and release of your Polyspace product:

• Bug Finder:

polyspace-bug-finder -v
• Code Prover:

polyspace-code-prover -v
• Bug Finder Server:

polyspace-bug-finder-server -v
• Code Prover Server:

polyspace-code-prover-server -v

 -v | -version

2-55

-verif-version
Assign a version identifier

Syntax
-verif-version id

Description
-verif-version id assigns an identifier, id, to identify the analysis. You can use this identifier to
refer to different analyses at the command line. For example, you can import comments from a
previous analysis using the identifier.

Examples
Assign a verification identifier:

• Bug Finder:

polyspace-bug-finder -verif-version 1.3
• Code Prover:

polyspace-code-prover -verif-version 1.3
• Bug Finder Server:

polyspace-bug-finder-server -verif-version 1.3
• Code Prover Server:

polyspace-code-prover-server -verif-version 1.3

Tips
This option is not useful for Polyspace as You Code.

See Also
Topics
“Specify Polyspace Analysis Options”

2 Analysis Options, Command-Line Only

2-56

-xml-annotations-description
Apply custom code annotations to Polyspace analysis results

Syntax
-xml-annotations-description file_path

Description
-xml-annotations-description file_path uses the annotation syntax defined in the XML file
located in file_path to interpret code annotations in your source files. You can use the XML file to
specify an annotation syntax and map it to the Polyspace annotation syntax. When you run an analysis
by using this option, you can justify and hide results with annotations that use your syntax. If you run
Polyspace at the command line, file_path is the absolute path or path relative to the folder from
which you run the command. If you run Polyspace through the user interface, file_path is the
absolute path.

If you are running an analysis through the user interface, you can enter this option in the Other field,
under the Advanced Settings node on the Configuration pane. See Other.

If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

Why Use This Option

If you have existing annotations from previous code reviews, you can import these annotations to
Polyspace. You do not have to review and justify results that you have already annotated. Similarly, if
your code comments must adhere to a specific format, you can map and import that format to
Polyspace.

Examples
Import Existing Annotations for Coding Rule Violations

Suppose that you have previously reviewed source file zero_div.c containing the following code,
and justified certain MISRA C: 2012 violations by using custom annotations.

 -xml-annotations-description

2-57

#include <stdio.h>

/* Violation of Misra C:2012
rules 8.4 and 8.7 on the next
line of code. */

int func(int p) //My_rule 50, 51
{
 int i;
 int j = 1;

 i = 1024 / (j - p);
 return i;
}

/* Violation of Misra C:2012
rule 8.4 on the next line of
code */

int func2(void){ //My_rule 50
 int x=func(2);
 return x;
}

The code comments My_rule 50, 51 and My_rule 50 do not use the Polyspace annotation syntax.
Instead, you use a convention where you place all MISRA rules in a single numbered list. In this list,
rules 8.4 and 8.7 correspond to the numbers 50 and 51.You can check this code for MISRA C: 2012
violations by typing the command:

• Bug Finder:
polyspace-bug-finder -sources source_path -misra3 all

• Code Prover:
polyspace-code-prover -sources source_path -misra3 all -main-generator

• Bug Finder Server:
polyspace-bug-finder-server -sources source_path -misra3 all

• Code Prover Server:
polyspace-code-prover-server -sources source_path -misra3 all -main-generator

source_path is the path to zero_div.c.

The annotated violations appear in the Results List pane. You must review and justify them again.

2 Analysis Options, Command-Line Only

2-58

This XML example defines the annotation format used in zero_div.c and maps it to the Polyspace
annotation syntax:

• The format of the annotation is the keyword My_rule, followed by a space and one or more
comma-separated alphanumeric rule identifiers.

• Rule identifiers 50 and 51 are mapped to MISRA C: 2012 rules 8.4 and 8.7 respectively. The
mapping uses the Polyspace annotation syntax.

<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="annotations_xml_schema.xsd"
 Group="exampleCustomAnnotation">

 <Expressions Search_For_Keywords="My_rule"
 Separator_Result_Name="," >

 <!-- This section defines the annotation syntax format -->
 <Expression Mode="SAME_LINE"
 Regex="My_rule\s(\w+(\s*,\s*\w+)*)"
 Rule_Identifier_Position="1"
 />

 </Expressions>
 <!-- This section maps the user annotation to the Polyspace
 annotation syntax -->
 <Mapping>
 <Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>
 <Result_Name_Mapping Rule_Identifier="51" Family="MISRA-C3" Result_Name="8.7"/>
 </Mapping>
</Annotations>

To import the existing annotations and apply them to the corresponding Polyspace results:

 -xml-annotations-description

2-59

1 Copy the preceding code example to a text editor and save it on your machine as
annotations_description.xml, for instance in C:\Polyspace_workspace\annotations
\.

2 Rerun the analysis on zero_div.c by using the command:

• Bug Finder:

polyspace-bug-finder -sources source_path -misra3 all ^
-xml-annotations-desription ^
C:\Polyspace_workspace\annotations\annotations_description.xml

• Code Prover:

polyspace-code-prover -sources source_path -misra3 all ^
-main-generator -xml-annotations-desription ^
C:\Polyspace_workspace\annotations\annotations_description.xml

• Bug Finder Server:

polyspace-bug-finder-server -sources source_path -misra3 all ^
-xml-annotations-desription ^
C:\Polyspace_workspace\annotations\annotations_description.xml

• Code Prover Server:

polyspace-code-prover-server -sources source_path -misra3 all ^
-main-generator -xml-annotations-desription ^
C:\Polyspace_workspace\annotations\annotations_description.xml

Polyspace considers the annotated results justified and hides them in the Results List pane.

2 Analysis Options, Command-Line Only

2-60

See Also
Topics
“Specify Polyspace Analysis Options”
“Define Custom Annotation Format”
“Annotation Description Full XML Template”
“Resolve -xml-annotations-description Errors”

Introduced in R2017b

 -xml-annotations-description

2-61

Run-Time Checks

3

Absolute address usage
Absolute address is assigned to pointer

Description
This check appears when an absolute address is assigned to a pointer.

By default, this check is green. The software assumes the following about the absolute address:

• The address is valid.
• The type of the pointer to which you assign the address determines the initial value stored in the

address.

If you assign the address to an int* pointer, the memory zone that the address points to is
initialized with an int value. The value can be anything allowed for the data type int.

To turn this check orange by default for each absolute address usage, use the command-line option -
no-assumption-on-absolute-addresses.

Diagnosing This Check
“Review and Fix Absolute Address Usage Checks”

Examples
Reading content of absolute address

enum typeList {CHAR,INT,LONG};
enum typeList showType(void);
long int returnLong(void);

void main() {
 int *p = (int *)0x32; //Green absolute address usage
 enum typeList myType = showType();

 char x_char;
 int x_int;
 long int x_long;

 if(myType == CHAR)
 x_char = *p;
 else if(myType == INT)
 x_int = *p;
 else {
 x_long = *p;
 long int x2_long = returnLong();
 }
}

In this example, the option -no-assumption-on-absolute-addresses is not used. Therefore, the
Absolute address usage check is green when the pointer p is assigned an absolute address.

3 Run-Time Checks

3-2

Following this check, the verification assumes that the address is initialized with an int value. If you
use x86_64 for Target processor type (-target) (sizeof(char) < sizeof(int) <
sizeof(long int)), the assumption results in the following:

• In the if(myType == CHAR) branch, an orange Overflow occurs because x_char cannot
accommodate all values allowed for an int variable.

• In the else if(myType == INT) branch, if you place your cursor on x_int in your verification
results, the tooltip shows that x_int potentially has all values allowed for an int variable.

• In the else branch, if you place your cursor on x_long, the tooltip shows that x_long potentially
has all values allowed for an int variable. If you place your cursor on x2_long, the tooltip shows
that x2_long potentially has all values allowed for a long int variable. The range of values that
x2_long can take is wider than the values allowed for an int variable in the same target.

Arithmetic on pointers with absolute address

void main() {
 int *p = (int *)0x32;
 int x = *p;
 p++;
 x = *p;
}

In this example, the option -no-assumption-on-absolute-addresses is used. The Absolute
address usage check is orange when the pointer p is assigned an absolute address.

Following this check:

• Polyspace considers that p points to a valid memory location. Therefore the Illegally
dereferenced pointer check on the following line is green.

• In the next two lines, the pointer p is incremented and then dereferenced. In this case, an
Illegally dereferenced pointer check appears on the dereference and not an Absolute address
usage check even though p still points to an absolute address.

Check Information
Group: Static memory
Language: C | C++
Acronym: ABS_ADDR

 Absolute address usage

3-3

Non-compliance with AUTOSAR specification
RTE API function is used with arguments that violate the AUTOSAR standard specification

Description
This check determines if the arguments to an RTE API function violate the AUTOSAR standard
specifications.

For instance, checks on Rte_Write_* or Rte_Byps_Write_* function calls determine if the
pointer-to-data argument in the call:

• Is NULL valued.
• Points to a memory buffer.
• Points to an initialized memory buffer.
• For buffers with enum values, values are within the enum range.

For more information on the RTE API specifications, see the AUTOSAR documentation.

To enable this check, use the value autosar for the option Libraries used (-library).

This check finds a subset of issues found with the check Invalid use of AUTOSAR runtime
environment function. Setting up for this check does not require providing the design constraints
in ARXML format, therefore this check cannot find the constraint violations found with the other
check. See also “Choose Between Component-Based and Integration Analysis of AUTOSAR Code with
Polyspace”.

Diagnosing This Check
To diagnose this check, read the message on the Result Details pane. The message shows all checks
performed on the RTE API function, along with information about whether the check passed. For
instance, this message:

Shows the results of three checks. Only one of the checks indicates a possible issue. The first
argument of the function might not point to initialized memory.

Investigate the root cause of the issue further.

Examples
Rte_Byps_Write_* Argument Pointing to Statically Allocated Noninitialized Buffer
#include <stdlib.h>

3 Run-Time Checks

3-4

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_RTE.pdf

// Type declarations that are typically in AUTOSAR header Rte_type.h
typedef unsigned char uint8_T;
typedef unsigned int uint32_T;
typedef uint8_T Std_ReturnType;

typedef struct {
 uint8_T color;
 uint32_T number;
}
colorNumber;

extern Std_ReturnType Rte_Byps_Write_out_colorNumber_1(colorNumber*);

void SendData() {
 colorNumber aColor;
 uint8_T copyColor;
 uint32_T copyNumber;

 colorNumber* aPtrColor = &aColor;
 Rte_Byps_Write_out_colorNumber_1(aPtrColor);

 copyColor = aColor.color;
 copyNumber = aColor.number;
}

In this example, the function Rte_Byps_Write_out_colorNumber_1 takes a pointer to a non-
initialized variable. The check on this function is red indicating a definite issue.

The check message states that:

• The pointer cannot have a NULL value.
• The pointer is allocated a buffer.
• The poined buffer is not initialized.

Since one of the constituent checks, the third one, indicates a definite error, the check is red.

Rte_Byps_Write_* Argument Pointing to Dynamically Allocated Noninitialized Buffer

#include <stdlib.h>

// Type declarations that are typically in AUTOSAR header Rte_type.h
typedef unsigned char uint8_T;
typedef unsigned int uint32_T;
typedef uint8_T Std_ReturnType;

typedef struct {
 uint8_T color;
 uint32_T number;
}
colorNumber;
extern Std_ReturnType Rte_Byps_Write_out_colorNumber_2(colorNumber*);

void SendData() {
 colorNumber* arrayColorNumber = (colorNumber*) malloc(2*sizeof(colorNumber));
 uint8_T copyColor;
 uint32_T copyNumber;

 Non-compliance with AUTOSAR specification

3-5

 Rte_Byps_Write_out_colorNumber_2(arrayColorNumber);

 copyColor = arrayColorNumber[0].color;
 copyNumber = arrayColorNumber[0].number;
}

In this example, the function Rte_Byps_Write_out_colorNumber_2 takes a pointer returned from
a memory allocation with malloc. The check on this function is red indicating a definite issue.

The check message indicates that:

• The pointer might have a NULL value.
• If the pointer value is not NULL, the pointer is allocated a buffer.
• If the pointer value is not NULL and the pointer points to a buffer, the buffer is not initialized.

Since one of the constituent checks, the third one, indicates a definite error, the check is red.

Rte_Byps_Write_* Argument Pointing to Possibly Noninitialized Buffer
#include <stdlib.h>

// Type declarations that are typically in AUTOSAR header Rte_type.h
typedef unsigned char uint8_T;
typedef unsigned int uint32_T;
typedef uint8_T Std_ReturnType;

typedef struct {
 uint8_T color;
 uint32_T number;
}
colorNumber;
extern Std_ReturnType Rte_Byps_Write_out_colorNumber_2(colorNumber*);

void SendData(uint8_T hasInitialData, colorNumber* initialColorData) {
 colorNumber arrayColorNumber[2];
 uint8_T copyColor;
 uint32_T copyNumber;

 if(hasInitialData == 1) {
 for(uint8_T i = 0; i < 2; i++) {
 arrayColorNumber[i].color = initialColorData[i].color;
 arrayColorNumber[i].number = initialColorData[i].number;
 }
 }
 else if (hasInitialData == 0){
 for(uint8_T i = 0; i < 2; i++) {
 arrayColorNumber[i].color = 0;
 arrayColorNumber[i].number = 0;
 }
 }

 Rte_Byps_Write_out_colorNumber_2(arrayColorNumber);

}

In this example, the function Rte_Byps_Write_out_colorNumber_2 takes a pointer to a possibly
noninitialized buffer. The check on this function is orange, indicating a possible error, for instance, an

3 Run-Time Checks

3-6

error that occurs only on certain execution paths. You can see that because of a missing catch-all
else clause in the if-else if-else statement, the buffer arrayColorNumber is not initialized
for values of hasInitialData other than 0 and 1.

The check message indicates that:

• The pointer cannot have a NULL value.
• The pointer is allocated a buffer.
• The buffer might not be initialized.

Since one of the constituent checks, the third one, indicates a possible error, the check is orange.

Check Information
Group: Other
Language: C | C++
Default: On if you use the value autosar for the option Libraries used (-library), otherwise
off
Command-Line Syntax: autosar_compliance

See Also
Libraries used (-library)

Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Code Prover Analysis Following Red and Orange Checks”
“Choose Between Component-Based and Integration Analysis of AUTOSAR Code with Polyspace”

Introduced in R2021a

 Non-compliance with AUTOSAR specification

3-7

Invalid result of AUTOSAR runnable
implementation
Return value or output arguments violate AUTOSAR specifications

Description
This check evaluates functions implementing AUTOSAR runnables. The check determines if the
output arguments and return value from the runnable can violate AUTOSAR specifications at run-
time.

Using the information on the Result Details pane, determine whether the return value or an
argument violates data constraints in the AUTOSAR XML specifications or can be NULL-valued. Look
for the ! icon that indicates a definite error or the ? icon that indicates a possible error.

For each output argument and the return value, the check looks for these violations:

• Data constraint violations:

Suppose, in this implementation of the runnable foo, the return value, which represents an
application error, has an enumeration data type with a finite set of values. The analysis checks if
the return value can acquire a value outside that set at run time.

iOperations_ApplicationError foo(
 Rte_Instance const self,
 app_Array_2_n320to320ConstRef aInput,
 app_Array_2_n320to320Ref aOutput,
 app_Enum001Ref aOut2) {
...
}

The check can result in a message such as this. The message indicates that the argument has a
value that falls outside the constrained range (in this case, the value 43).

In general, the analysis verifies if each output argument of the runnable and the return value stays
within the constrained range allowed by their AUTOSAR data types. You limit values of AUTOSAR
data types by referring to data constraints in your ARXML files.

• NULL or unallocated pointers:

Suppose, in this implementation of the runnable foo, the first output argument aOutput is a
pointer. The analysis checks if the pointer is non-NULL and allocated for all possible execution
paths upon return from the runnable.

iOperations_ApplicationError foo(
 Rte_Instance const self,
 app_Array_2_n320to320ConstRef aInput,
 app_Array_2_n320to320Ref aOutput,
 app_Enum001Ref aOut2) {

3 Run-Time Checks

3-8

...
}

The check can result in a message such as this.

In general, the analysis verifies if a pointer output arguments from the runnable are non-NULL
and allocated upon return from the runnable.

By default, the analysis assumes that pointer arguments to runnables and pointers returned from
Rte_ functions are not NULL. To change this assumption, undefine the macro
RTE_PTR2USERCODE_SAFE using the option -U of the polyspace-autosar command.

See “Run Polyspace on AUTOSAR Code with Conservative Assumptions”.

The check first considers the return from the runnable and then the output arguments. If the return
from the runnable indicates an error, the check does not look at output arguments on execution paths
with the error.

For instance, in this example, the return value is RTE_E_OK only if the output argument aOut2 is not
NULL. The check does not consider other execution paths (where the return value is not RTE_E_OK).
Therefore, it determines that aOut2 cannot be NULL.

// Runnable implementation
iOperations_ApplicationError foo(
 Rte_Instance const self,
 app_Array_2_n320to320ConstRef aInput,
 app_Array_2_n320to320Ref aOutput,
 app_Enum001Ref aOut2)
{
 iOperations_ApplicationError rc = E_NOT_OK;

 if (aOut2!=NULL_PTR)
 {
 // set invalid value will trigger STD_LIB RED in prove-runnable wrapper
 *aOut2 = 4;
 rc = RTE_E_OK;
 }
 return rc;
}

The reason for this behavior is the following: If the return from the runnable indicates an error status
on a certain execution path, you can evaluate the error status and take corrective action. Run-time
checks are not required for those paths. In certain situations, you might be using one or more output
arguments to provide further information on an error status. You might want to check if those output
argument can be NULL when the runnable completes execution. If you have this requirement,
contact Technical Support.

The check does not flag these situations:

 Invalid result of AUTOSAR runnable implementation

3-9

• Output arguments are not written at all within the body of the runnable (or not written along
certain execution paths).

• The return value is not initialized within the body of the runnable (or not initialized along certain
execution paths).

The analysis checks for conformance with data constraints only when the return value is initialized or
output arguments written.

Result Information
Group: Other
Language: C
Acronym: AUTOSAR_IMPL

See Also
Invalid use of AUTOSAR runtime environment function

Topics
“Review Polyspace Results on AUTOSAR Code”
“Interpret Code Prover Results in Polyspace Desktop User Interface”

Introduced in R2018a

3 Run-Time Checks

3-10

AUTOSAR runnable not implemented
Function implementing AUTOSAR runnable is not found

Description
This check determines if an AUTOSAR runnable specified in the ARXML specifications is
implemented through a function in the source code. The check shows a result only if a function is not
found.

You can navigate from the result to the runnable specification through the spec link.

Result Information
Group: Other
Language: C
Acronym: AUTOSAR_NOIMPL

See Also
Invalid result of AUTOSAR runnable implementation

Topics
“Review Polyspace Results on AUTOSAR Code”

Introduced in R2018a

 AUTOSAR runnable not implemented

3-11

Invalid use of AUTOSAR runtime environment
function
RTE function argument violates AUTOSAR specifications

Description
This check evaluates calls to functions provided by the AUTOSAR Run-Time Environment (Rte_
functions). The check determines if the function arguments can violate AUTOSAR XML specifications
at run-time.

Using the information on the Result Details pane, determine whether an argument violates data
constraints in the AUTOSAR XML specifications or can be NULL-valued. Look for the ! icon that
indicates a definite error or the ? icon that indicates a possible error.

For each function argument, the check looks for these violations:

• Data constraint violations:

Suppose, in this call to Rte_IWrite_step_out_e4, the second argument points to a data type
that must obey a data constraint. The analysis checks if the constraint can be violated at run time.

Rte_IWrite_step_out_e4(self, arg);

The check can result in a message such as this. The message indicates that the argument has a
value that falls outside the constrained range (in this case, the value 321).

In general, the analysis verifies if each Rte_ function argument stays within the constrained range
allowed by its AUTOSAR data type. You limit values of AUTOSAR data types by referring to data
constraints in your ARXML files. For instance, a constraint specification can look like this
(AUTOSAR XML schema version 4.0).

<DATA-CONSTR>
 <SHORT-NAME>n320to320</SHORT-NAME>
 <DATA-CONSTR-RULES>
 <DATA-CONSTR-RULE>
 <PHYS-CONSTRS>
 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">-320</LOWER-LIMIT>
 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">320</UPPER-LIMIT>
 <UNIT-REF DEST="UNIT">/jyb/types/units/NoUnit</UNIT-REF>
 </PHYS-CONSTRS>
 </DATA-CONSTR-RULE>
 </DATA-CONSTR-RULES>
</DATA-CONSTR>
...
<APPLICATION-PRIMITIVE-DATA-TYPE>
 <SHORT-NAME>Int_n320to320</SHORT-NAME>
 <CATEGORY>VALUE</CATEGORY>
 <SW-DATA-DEF-PROPS>

3 Run-Time Checks

3-12

 <SW-DATA-DEF-PROPS-VARIANTS>
 <SW-DATA-DEF-PROPS-CONDITIONAL>
 ...
 <DATA-CONSTR-REF DEST="DATA-CONSTR">types/app/constraints/n320to320
 </DATA-CONSTR-REF>
 ...
 </SW-DATA-DEF-PROPS-CONDITIONAL>
 </SW-DATA-DEF-PROPS-VARIANTS>
 </SW-DATA-DEF-PROPS>
</APPLICATION-PRIMITIVE-DATA-TYPE>

• Violations of AUTOSAR standard specifications such as passing unallocated pointers as input
arguments to some RTE functions:

Suppose, in this call to Rte_IWrite_step_out_e4, the second argument is a pointer. The
analysis checks if the pointer is non-NULL and allocated for all possible execution paths.

Rte_IWrite_step_out_e4(self,arg);

The check can result in a message such as this.

In general, the analysis verifies if a pointer argument to an Rte_ function is non-NULL and
allocated.

These violations are also found with the checker Non-compliance with AUTOSAR
specification.

Result Information
Group: Other
Language: C
Acronym: AUTOSAR_USE

See Also
Invalid result of AUTOSAR runnable implementation | Non-compliance with AUTOSAR
specification

Topics
“Review Polyspace Results on AUTOSAR Code”
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Code Prover Analysis Following Red and Orange Checks”
“Choose Between Component-Based and Integration Analysis of AUTOSAR Code with Polyspace”

Introduced in R2018a

 Invalid use of AUTOSAR runtime environment function

3-13

Correctness condition
Mismatch occurs during pointer cast or function pointer use

Description
This check determines whether:

• An array is mapped to a larger array through a pointer cast
• A function pointer points to a function with a valid prototype
• A global variable falls outside the range specified through the Global Assert mode. See also

“Constrain Global Variable Range”.

Diagnosing This Check
“Review and Fix Correctness Condition Checks”

Examples
Array is mapped to larger array

typedef int smallArray[10];
typedef int largeArray[100];

void main(void) {
 largeArray myLargeArray;
 smallArray *smallArrayPtr = (smallArray*) &myLargeArray;
 largeArray *largeArrayPtr = (largeArray*) smallArrayPtr;
}

In this example:

• In the first pointer cast, a pointer of type largeArray is cast to a pointer of type smallArray.
Because the data type smallArray represents a smaller array, the Correctness condition check
is green.

• In the second pointer cast, a pointer of type smallArray is cast to a pointer of type largeArray.
Because the data type largeArray represents a larger array, the Correctness condition check
is red.

Function pointer does not point to function

typedef void (*callBack) (float data);
typedef struct {
 char funcName[20];
 callBack func;
} funcStruct;

funcStruct myFuncStruct;

3 Run-Time Checks

3-14

void main(void) {
 float val = 0.f;
 myFuncStruct.func(val);
}

In this example, the global variable myFuncStruct is not initialized, so the function pointer
myFuncStruct.func contains NULL. When the pointer myFuncStruct.func is dereferenced, the
Correctness condition check produces a red error.

Function pointer points to function through absolute address usage

#define MAX_MEMSEG 32764
typedef void (*ptrFunc)(int memseg);
ptrFunc operation = (ptrFunc)(0x003c);

void main(void) {
 for (int i=1; i <= MAX_MEMSEG; i++)
 operation(i);
}

In this example, the function pointer operation is cast to the contents of a memory location.
Polyspace cannot determine whether the location contains a variable or a function code and whether
the function is well-typed. Therefore, when the pointer operation is dereferenced and used in a
function call, the Correctness condition check is orange.

After an orange Correctness condition check due to absolute address usage, the software assumes
that the following variables have the full range of values allowed by their type:

• Variable storing the return value from the function call.

In the following example, the software assumes that the return value of operation is full-range.

typedef int (*ptrFunc)(int);
ptrFunc operation = (ptrFunc)(0x003c);

int main(void) {
 return operation(0);
}

• Variables that can be modified through the function arguments.

In the following example, the function pointer operation takes a pointer argument ptr that
points to a variable var. After the call to operation, the software assumes that var has full-
range value.

typedef void (*ptrFunc)(int*);
ptrFunc operation = (ptrFunc)(0x003c);

void main(void) {
 int var;
 int *ptr=&var;
 operation(ptr);
}

Function pointer points to function with wrong argument type

typedef struct {
 double real;

 Correctness condition

3-15

 double imag;
} complex;

typedef int (*typeFuncPtr) (complex*);

int func(int* x);

void main() {
 typeFuncPtr funcPtr = (typeFuncPtr)&func;
 int arg = 0, result = funcPtr((complex*)&arg);
}

In this example, the function pointer funcPtr points to a function with argument type complex*.
However, the pointer is assigned the address of function func whose argument type is int*. Because
of this type mismatch, the Correctness condition check is orange.

Function pointer points to function with wrong number of arguments
typedef int (*typeFuncPtr) (int, int);

int func(int);

void main() {
 typeFuncPtr funcPtr = (typeFuncPtr)&func;
 int arg1 = 0, arg2 = 0, result = funcPtr(arg1,arg2);
}

In this example, the function pointer funcPtr points to a function with two int arguments. However,
it is assigned the function func which has one int argument only. Because of this mismatch in
number of arguments, the Correctness condition check is orange.

Function pointer points to function with wrong return type
typedef double (*typeFuncPtr) (int);

int func(int);

void main() {
 typeFuncPtr funcPtr = (typeFuncPtr)&func;
 int arg = 0;
 double result = funcPtr(arg);
}

In this example, the function pointer funcPtr points to a function with return type double.
However, it is assigned the function func whose return type is int. Because of this mismatch in
return types, the Correctness condition check is orange.

Variable falls outside Global Assert range

int glob = 0;
int func();

void main() {
 glob = 5;
 glob = func();
 glob+= 20;
}

3 Run-Time Checks

3-16

In this example, a range of 0..10 was specified for the global variable glob.

• In the statement glob=5;, a green Correctness condition check appears on glob.
• In the statement glob=func();, an orange Correctness condition check appears on glob

because the return value of stubbed function func can be outside 0..10.

After this statement, Polyspace considers that glob has values in 0..10.
• In the statement glob+=20;, a red Correctness condition check appears on glob because after

the addition, glob has values in 20..30.

See also “Constrain Global Variable Range”.

Check Information
Group: Other
Language: C | C++
Acronym: COR

See Also
Constraint setup (-data-range-specifications) | Permissive function pointer
calls (-permissive-function-pointer)

Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Code Prover Analysis Following Red and Orange Checks”
“Constrain Global Variable Range”

 Correctness condition

3-17

Division by zero
Division by zero occurs

Description
This check determines whether the right operand of a division or modulus operation is zero.

Diagnosing This Check
“Review and Fix Division by Zero Checks”

Examples
Red integer division by zero

#include <stdio.h>

void main() {
 int x=2;
 printf("Quotient=%d",100/(x-2));
}

In this example, the denominator x-2 is zero.

Correction — Check for zero denominator

One possible correction is to check for a zero denominator before division.

In a complex code, it is difficult to keep track of values and avoid zero denominators. Therefore, it is
good practice to check for zero denominator before every division.

#include <stdio.h>
int input();
void main() {
 int x=input();
 if(x>0) { //Avoid overflow
 if(x!=2 && x>0)
 printf("Quotient=%d",100/(x-2));
 else
 printf("Zero denominator.");
 }
}

Red integer division by zero after for loop

#include <stdio.h>
void main() {
 int x=-10;
 for (int i=0; i<10; i++)
 x+=3;
 printf("Quotient=%d",100/(x-20));
}

3 Run-Time Checks

3-18

In this example, the denominator x-20 is zero.

Correction — Check for zero denominator

One possible correction is to check for a zero denominator before division.

After several iterations of a for loop, it is difficult to keep track of values and avoid zero
denominators. Therefore, it is good practice to check for zero denominator before every division.

#include <stdio.h>
#define MAX 10000
int input();

void main() {
 int x=input();
 for (int i=0; i<10; i++) {
 if(x < MAX) //Avoid overflow
 x+=3;
 }

 if(x>0) { //Avoid overflow
 if(x!=20)
 printf("Quotient=%d",100/(x-20));
 else
 printf("Zero denominator.");
 }
}

Orange integer division by zero inside for loop

#include<stdio.h>

void main() {
 printf("Sequence of ratios: \n");
 for(int count=-100; count<=100; count++)
 printf(" %.2f ", 1/count);
}

In this example, count runs from -100 to 100 through zero. When count is zero, the Division by
zero check returns a red error. Because the check returns green in the other for loop runs, the /
symbol is orange.

There is also a red Non-terminating loop error on the for loop. This red error indicates a definite
error in one of the loop runs.

Correction — Check for zero denominator

One possible correction is to check for a zero denominator before division.

#include<stdio.h>

void main() {
 printf("Sequence of ratios: \n");
 for(int count=-100; count<=100; count++) {
 if(count != 0)
 printf(" %.2f ", 1/count);
 else
 printf(" Infinite ");

 Division by zero

3-19

 }
}

Orange float division by zero inside for loop

#include <stdio.h>
#include <math.h>

#define stepSize 0.1

void main() {
 float divisor = -1.0;
 int numberOfSteps = (int)((2.0*1.0)/stepSize);

 printf("Divisor running from -1.0 to 1.0\n");
 for(int count = 1; count <= numberOfSteps; count++) {
 divisor+= stepSize;
 divisor = ceil(divisor * 10.) / 10.; // one digit of imprecision
 printf(" .2f ", 1.0/divisor);
 }
}

In this example, divisor runs from –1.0 to 1.0 through 0.0. When divisor is 0.0, the Division by
zero check returns a red error. Because the check returns green in the other for loop runs, the /
symbol is orange.

There is no red Non-terminating loop error on the for loop. The red error does not appear because
Polyspace approximates the values of divisor by a broader range. Therefore, Polyspace cannot
determine if there is a definite error in one of the loop runs.

Correction — Check for zero denominator

One possible correction is to check for a zero denominator before division. For float variables, do
not check if the denominator is exactly zero. Instead, check whether the denominator is in a narrow
range around zero.

#include <stdio.h>
#include <math.h>

#define stepSize 0.1

void main() {
 float divisor = -1.0;
 int numberOfSteps = (int)((2*1.0)/stepSize);

 printf("Divisor running from -1.0 to 1.0\n");;
 for(int count = 1; count <= numberOfSteps; count++) {
 divisor += stepSize;
 divisor = ceil(divisor * 10.) / 10.; // one digit of imprecision
 if(divisor < -0.00001 || divisor > 0.00001)
 printf(" .2f ", 1.0/divisor);
 else
 printf(" Infinite ");
 }
}

3 Run-Time Checks

3-20

Check Information
Group: Numerical
Language: C | C++
Acronym: ZDV

See Also
Consider non finite floats (-allow-non-finite-floats)

Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Code Prover Analysis Following Red and Orange Checks”

 Division by zero

3-21

Function not called
Function is defined but not called

Description
This check on a function definition determines if the function is called anywhere in the code. This
check is disabled if your code does not contain a main function.

Use this check to satisfy ISO 26262 requirements about function coverage. For example, see table 15
of ISO 26262, part 6.

Note This check is not turned on by default. To turn on this check, you must specify the appropriate
analysis option. For more information, see Detect uncalled functions (-uncalled-
function-checks).

Diagnosing This Check
“Review and Fix Function Not Called Checks”

Examples
Function not called

#define max 100
int var;
int getValue(void);
int getSaturation(void);

void reset() {
 var=0;
}

void main() {
 int saturation = getSaturation(),val;
 for(int index=1; index<=max; index++) {
 val = getValue();
 if(val>0 && val<10)
 var += val;
 if(var > saturation)
 var=0;
 }
}

In this example, the function reset is defined but not called. Therefore, a gray Function not called
check appears on the definition of reset.
Correction: Call Function

One possible correction is to call the function reset. In this example, the function call reset serves
the same purpose as instruction var=0;. Therefore, replace the instruction with the function call.

3 Run-Time Checks

3-22

#define max 100

int var;
int getValue(void);
int getSaturation(void);

void reset() {
 var=0;
}

void main() {
 int saturation = getSaturation(),val;
 for(int index=1; index<=max; index++) {
 val = getValue();
 if(val>0 && val<10)
 var += val;
 if(var > saturation)
 reset();
 }
}

Function Called from Another Uncalled Function

#define max 100

int var;
int numberOfResets;
int getValue();
int getSaturation();

void updateCounter() {
 numberOfResets++;
}

void reset() {
 updateCounter();
 var=0;
}

void main() {
 int saturation = getSaturation(),val;
 for(int index=1; index<=max; index++) {
 val = getValue();
 if(val>0 && val<10)
 var += val;
 if(var > saturation) {
 numberOfResets++;
 var=0;
 }
 }
}

In this example, the function reset is defined but not called. Since the function updateCounter is
called only from reset, a gray Function not called error appears on the definition of
updateCounter.

 Function not called

3-23

Correction: Call Function

One possible correction is to call the function reset. In this example, the function call reset serves
the same purpose as the instructions in the branch of if(var > saturation). Therefore, replace
the instructions with the function call.

#define max 100

int var;
int numberOfResets;
int getValue(void);
int getSaturation(void);

void updateCounter() {
 numberOfResets++;
}

void reset() {
 updateCounter();
 var=0;
}

void main() {
 int saturation = getSaturation(),val;
 for(int index=1; index<=max; index++) {
 val = getValue();
 if(val>0 && val<10)
 var += val;
 if(var > saturation)
 reset();
 }
}

Check Information
Group: Data flow
Language: C | C++
Acronym: FNC

See Also
Detect uncalled functions (-uncalled-function-checks) | Function not reachable

Topics
“Reasons for Unchecked Code”

3 Run-Time Checks

3-24

Function not reachable
Function is called from unreachable part of code

Description
This check appears on a function definition. The check appears gray if the function is called only from
an unreachable part of the code. The unreachable code can occur in one of the following ways:

• The code is reached through a condition that is always false.
• The code follows a break or return statement.
• The code follows a red check.

If your code does not contain a main function, this check is disabled

Note This check is not turned on by default. To turn on this check, you must specify the appropriate
analysis option. For more information, see Detect uncalled functions (-uncalled-
function-checks).

Diagnosing This Check
“Review and Fix Function Not Reachable Checks”

Examples
Function Call from Unreachable Branch of Condition

#include<stdio.h>
#define SIZE 100

void increase(int* arr, int index);

void printError()
{
 printf("Array index exceeds array size.");
}

void main() {
 int arr[SIZE],i;
 for(i=0; i<SIZE; i++)
 arr[i]=0;

 for(i=0; i<SIZE; i++) {
 if(i<SIZE)
 increase(arr,i);
 else
 printError();
 }
}

 Function not reachable

3-25

In this example, in the second for loop in main, i is always less than SIZE. Therefore, the else
branch of the condition if(i<SIZE) is never reached. Because the function printError is called
from the else branch alone, there is a gray Function not reachable check on the definition of
printError.

Function Call Following Red Error

#include<stdio.h>

int getNum(void);

void printSuccess()
{
 printf("The operation is complete.");
}

void main() {
 int num=getNum(), den=0;
 printf("The ratio is %.2f", num/den);
 printSuccess();
}

In this example, the function printSucess is called following a red Division by Zero error.
Therefore, there is a gray Function not reachable check on the definition of printSuccess.

Function Call from Another Unreachable Function

#include<stdio.h>
#define MAX 1000
#define MIN 0

int getNum(void);

void checkUpperBound(double ratio)
{
 if(ratio < MAX)
 printf("The ratio is within bounds.");
}

void checkLowerBound(double ratio)
{
 if(ratio > MIN)
 printf("The ratio is within bounds.");
}

void checkRatio(double ratio)
{
 checkUpperBound(ratio);
 checkLowerBound(ratio);
}

void main() {
 int num=getNum(), den=0;
 double ratio;
 ratio=num/den;

3 Run-Time Checks

3-26

 checkRatio(ratio);
}

In this example, the function checkRatio follows a red Division by Zero error. Therefore, there is a
gray Function not reachable error on the definition of checkRatio. Because checkUpperBound
and checkLowerBound are called only from checkRatio, there is also a gray Function not
reachable check on their definitions.

Function Call from Unreachable Code Using Function Pointer

#include<stdio.h>

int getNum(void);
int getChoice(void);

int num, den, choice;
double ratio;

void display(void)
{
 printf("Numerator = %d, Denominator = %d", num, den);
}

void display2(void)
{
 printf("Ratio = %.2f",ratio);
}

void main() {
 void (*fptr)(void);

 choice = getChoice();
 if(choice == 0)
 fptr = &display;
 else
 fptr = &display2;

 num = getNum();
 den = 0;
 ratio = num/den;

 (*fptr)();
}

In this example, depending on the value of choice, the function pointer fptr can point to either
display or to display2. The call through fptr follows a red Division by Zero error. Because
display and display2 are called only through fptr, a gray Function not reachable check
appears on their definitions.

Check Information
Group: Data flow
Language: C | C++
Acronym: FNR

 Function not reachable

3-27

See Also
Detect uncalled functions (-uncalled-function-checks) | Function not called |
Unreachable code

Topics
“Reasons for Unchecked Code”

3 Run-Time Checks

3-28

Function not returning value
C++ function does not return value when expected

Description
This check determines whether a function with a return type other than void returns a value. This
check appears on the function definition.

Diagnosing This Check
“Review and Fix Function Not Returning Value Checks”

Examples
Function does not return value for any input

#include <stdio.h>
int input();
int inputRep();

int reply(int msg) {
 int rep = inputRep();
 if (msg > 0) return rep;
}

void main(void) {
 int ch = input(), ans;
 if (ch<=0)
 ans = reply(ch);
 printf("The answer is %d.",ans);
}

In this example, for all values of ch, reply(ch) has no return value. Therefore the Function not
returning value check returns a red error on the definition of reply().

Correction — Return value for all inputs

One possible correction is to return a value for all inputs to reply().

#include <stdio.h>
int input();
int inputRep();

int reply(int msg) {
 int rep = inputRep();
 if (msg > 0) return rep;
 return 0;
}

void main(void) {
 int ch = input(), ans;
 if (ch<=0)

 Function not returning value

3-29

 ans = reply(ch);
 printf("The answer is %d.",ans);
}

Function does not return value for some inputs

#include <stdio.h>
int input();
int inputRep(int);

int reply(int msg) {
 int rep = inputRep(msg);
 if (msg > 0) return rep;
}

void main(void) {
 int ch = input(), ans;
 if (ch<10)
 ans = reply(ch);
 else
 ans = reply(10);
 printf("The answer is %d.",ans);
}

In this example, in the first branch of the if statement, the value of ch can be divided into two
ranges:

• ch < = 0: For the function call reply(ch), there is no return value.
• ch > 0 and ch < 10: For the function call reply(ch), there is a return value.

Therefore the Function not returning value check returns an orange error on the definition of
reply().

Correction — Return value for all inputs

One possible correction is to return a value for all inputs to reply().

#include <stdio.h>
int input();
int inputRep(int);

int reply(int msg) {
 int rep = inputRep(msg);
 if (msg > 0) return rep;
 return 0;
}

void main(void) {
 int ch = input(), ans;
 if (ch<10)
 ans = reply(ch);
 else
 ans = reply(10);
 printf("The answer is %d.",ans);
}

3 Run-Time Checks

3-30

Check Information
Group: C++
Language: C++
Acronym: FRV

See Also
Return value not initialized

Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”

 Function not returning value

3-31

Global variable not assigned a value in
initialization code
Global variable is not assigned a value in the initialization section of program

Description
This check determines if all non-const global variables (and local static variables) are explicitly
assigned a value at declaration or in the section of code designated as initialization code.

To indicate the end of initialization code, you enter the line

#pragma polyspace_end_of_init

in the main function. The initialization code starts from the beginning of main and continues up to
this pragma. To enable this check, use the option Check that global variables are
initialized after warm reboot (-check-globals-init).

The check on a global variable is:

• Red, if the variable is not initialized at all, either explicitly at declaration or in the initialization
code (or is initialized in dead code within the initialization code).

• Orange, if the variable is not initialized on certain execution paths through the initialization code.
For instance, the variable is initialized in an if branch of a conditional statement but not the else
branch.

• Green, if the variable is always initialized once the initialization code completes execution.

In a warm reboot, to save time, the data segment of a program, which might hold variable values
from a previous state, is not loaded. Instead, the program is supposed to explicitly initialize all non-
const variables before execution. This check verifies that all non-const global variables are indeed
initialized in a warm reboot.

Diagnosing This Check
Browse through all instances of the uninitialized or possibly uninitialized variable on the Variable
Access pane (or the Global Variables pane in the Polyspace Access web interface). See if any of the
references occur before the pragma polyspace_end_of_init is encountered.

See also “Variable Access”.

Examples
Global Variable Not Initialized in Initialization Code

int aVar;
const int aConst = -1;
int anotherVar;

int main() {

3 Run-Time Checks

3-32

 aVar = aConst;
#pragma polyspace_end_of_init
 return 0;
}

In this example, the global variable aVar is initialized in the initialization code section but the
variable anotherVar is not.

Global Variable Not Initialized on Specific Paths Through Initialization Code

int var;

int checkSomething(void);
int checkSomethingElse(void);

int main() {
 int local_var;
 if(checkSomething())
 {
 var=0;
 }
 else if(checkSomethingElse()) {
 var=1;
 }
 #pragma polyspace_end_of_init
 var=2;
 local_var = var;
 return 0;
}

The check on var is orange because var might remain uninitialized when the if and else if
statements are skipped.

Global Variable Appears Initialized Because of Read Accesses in Initialization Code

int aVar;
int anotherVar;

int checkSomething();

init0() {
 if (checkSomething())
 aVar = 0;
}
init1() {
 anotherVar = aVar; //Orange check: Non-initialized variable
}
main() {
 init0();
 init1();
#pragma polyspace_end_of_init
}

In this example, both variables aVar and anotherVar appear initialized (green check). However, the
following path leads to both variables being non-initialized:

 Global variable not assigned a value in initialization code

3-33

• The if statement in init0 is skipped, leading to aVar being non-initialized.
• If aVar is non-initialized, anotherVar is also non-initialized (initialized with unpredictable

values).

The issue is highlighted by a different check, Non-initialized variable. The check is orange on
this line:

anotherVar = aVar;

Following the orange check, the execution path where aVar is non-initialized is removed from
consideration. This removal leads to anotherVar appearing as initialized (green) according to all
checks and aVar appearing as initialized (green) according to the check Global variable not
assigned a value in initialization code.

To avoid misleading interpretation of green results for initialization:

• Verify the initialization code only using the options Check that global variables are
initialized after warm reboot (-check-globals-init) and Verify
initialization section of code only (-init-only-mode).

• Make sure that there are no orange results for both these checks:

• Global variable not assigned a value in initialization code
• Non-initialized variable

Check Information
Group: Data flow
Language: C
Acronym: GLOBAL_SET_AT_INITIALIZATION

See Also
Check that global variables are initialized after warm reboot (-check-
globals-init) | Verify initialization section of code only (-init-only-mode)

Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Assumptions About Global Variable Initialization” on page 4-15

3 Run-Time Checks

3-34

Illegally dereferenced pointer
Pointer is dereferenced outside bounds

Description
This check on a pointer dereference determines whether the pointer is NULL or points outside its
bounds. The check occurs only when you dereference a pointer and not when you reassign to another
pointer or pass the pointer to a function.

The check message shows you the pointer offset and buffer size in bytes. A pointer points outside its
bounds when the sum of the offset and pointer size exceeds the buffer size.

• Buffer: When you assign an address to a pointer, a block of memory is allocated to the pointer. You
cannot access memory beyond that block using the pointer. The size of this block is the buffer size.

Sometimes, instead of a definite value, the size can be a range. For instance, if you create a buffer
dynamically using malloc with an unknown input for the size, Polyspace assumes that the array
size can take the full range of values allowed by the input data type.

• Offset: You can move a pointer within the allowed memory block by using pointer arithmetic. The
difference between the initial location of the pointer and its current location is the offset.

Sometimes, instead of a definite value, the offset can be a range. For instance, if you access an
array in a loop, the offset changes value in each loop iteration and takes a range of values
throughout the loop.

For instance, if the pointer points to an array:

• The buffer size is the array size.
• The offset is the difference between the beginning of the array and the current location of the

pointer.

Diagnosing This Check
“Review and Fix Illegally Dereferenced Pointer Checks”

Examples
Pointer points outside array bounds

#define Size 1024

int input(void);

void main() {
 int arr[Size];
 int *p = arr;

 for (int index = 0; index < Size ; index++, p++){
 *p = input();
 }

 Illegally dereferenced pointer

3-35

 *p = input();
}

In this example:

• Before the for loop, p points to the beginning of the array arr.
• After the for loop, p points outside the array.

The Illegally dereferenced pointer check on dereference of p after the for loop produces a red
error.

Correction — Remove illegal dereference

One possible correction is to remove the illegal dereference of p after the for loop.

#define Size 1024

int input(void);

void main() {
 int arr[Size];
 int *p = arr;

 for (int index = 0; index < Size ; index++, p++) {
 *p = input();
 }
}

Pointer points outside structure field

typedef struct S {
 int f1;
 int f2;
 int f3;
} S;

void Initialize(int *ptr) {
 *ptr = 0;
 *(ptr+1) = 0;
 *(ptr+2) = 0;
}

void main(void) {
 S myStruct;
 Initialize(&myStruct.f1);
}

In this example, in the body of Initialize, ptr is an int pointer that points to the first field of the
structure. When you attempt to access the second field through ptr, the Illegally dereferenced
pointer check produces a red error.

Correction — Avoid memory access outside structure field

One possible correction is to pass a pointer to the entire structure to Initialize.

typedef struct S {
 int f1;
 int f2;

3 Run-Time Checks

3-36

 int f3;
} S;

void Initialize(S* ptr) {
 ptr->f1 = 0;
 ptr->f2 = 0;
 ptr->f3 = 0;
}

void main(void) {
 S myStruct;
 Initialize(&myStruct);
}

NULL pointer is dereferenced

#include<stdlib.h>

void main() {
 int *ptr=NULL;
 *ptr=0;
}

In this example, ptr is assigned the value NULL. Therefore when you dereference ptr, the Illegally
dereferenced pointer check produces a red error.

Correction — Avoid NULL pointer dereference

One possible correction is to initialize ptr with the address of a variable instead of NULL.

void main() {
 int var;
 int *ptr=&var;
 *ptr=0;
}

Offset on NULL pointer

int getOffset(void);

void main() {
 int *ptr = (int*) 0 + getOffset();
 if(ptr != (int*)0)
 *ptr = 0;
}

In this example, although an offset is added to (int*) 0, Polyspace does not treat the result as a
valid address. Therefore when you dereference ptr, the Illegally dereferenced pointer check
produces a red error.

Bit field type is incorrect

struct flagCollection {
 unsigned int flag1: 1;
 unsigned int flag2: 1;
 unsigned int flag3: 1;
 unsigned int flag4: 1;

 Illegally dereferenced pointer

3-37

 unsigned int flag5: 1;
 unsigned int flag6: 1;
 unsigned int flag7: 1;
};

char getFlag(void);

int main()
{
 unsigned char myFlag = getFlag();
 struct flagCollection* myFlagCollection;
 myFlagCollection = (struct flagCollection *) &myFlag;
 if (myFlagCollection->flag1 == 1)
 return 1;
 return 0;
}

In this example:

• The fields of flagCollection have type unsigned int. Therefore, a flagCollection
structure requires 32 bits of memory in a 32-bit architecture even though the fields themselves
occupy 7 bits.

• When you cast a char address &myFlag to a flagCollection pointer myFlagCollection, you
assign only 8 bits of memory to the pointer. Therefore, the Illegally dereferenced pointer check
on dereference of myFlagCollection produces a red error.

Correction — Use correct type for bit fields

One possible correction is to use unsigned char as field type of flagCollection instead of
unsigned int. In this case:

• The structure flagCollection requires 8 bits of memory.
• When you cast the char address &myFlag to the flagCollection pointer myFlagCollection,

you also assign 8 bits of memory to the pointer. Therefore, the Illegally dereferenced pointer
check on dereference of myFlagCollection is green.

struct flagCollection {
 unsigned char flag1: 1;
 unsigned char flag2: 1;
 unsigned char flag3: 1;
 unsigned char flag4: 1;
 unsigned char flag5: 1;
 unsigned char flag6: 1;
 unsigned char flag7: 1;
};

char getFlag(void);

int main()
{
 unsigned char myFlag = getFlag();
 struct flagCollection* myFlagCollection;
 myFlagCollection = (struct flagCollection *) &myFlag;
 if (myFlagCollection->flag1 == 1)
 return 1;

3 Run-Time Checks

3-38

 return 0;
}

Return value of malloc is not checked for NULL

#include <stdlib.h>

void main(void)
{
 char *p = (char*)malloc(1);
 char *q = p;
 *q = 'a';
}

In this example, malloc can return NULL to p. Therefore, when you assign p to q and dereference q,
the Illegally dereferenced pointer check produces a red error.

Correction — Check return value of malloc for NULL

One possible correction is to check p for NULL before dereferencing q.

#include <stdlib.h>
void main(void)
{
 char *p = (char*)malloc(1);
 char *q = p;
 if(p!=NULL) *q = 'a';
}

Pointer to union gets insufficient memory from malloc

#include <stdlib.h>

enum typeName {CHAR,INT};

typedef struct {
 enum typeName myTypeName;
 union {
 char myChar;
 int myInt;
 } myVar;
} myType;

void main() {
 myType* myTypePtr;
 myTypePtr = (myType*)malloc(sizeof(int) + sizeof(char));
 if(myTypePtr != NULL) {
 myTypePtr->myTypeName = INT;
 }
}

In this example:

• Because the union myVar has an int variable as a field, it must be assigned 4 bytes in a 32-bit
architecture. Therefore, the structure myType must be assigned 4+4 = 8 bytes.

 Illegally dereferenced pointer

3-39

• malloc returns sizeof(int) + sizeof(char)=4+1=5 bytes of memory to myTypePtr, a
pointer to a myType structure. Therefore, when you dereference myTypePtr, the Illegally
dereferenced pointer check returns a red error.

Correction — Assign sufficient memory to pointer

One possible correction is to assign 8 bytes of memory to myTypePtr before dereference.

#include <stdlib.h>

enum typeName {CHAR,INT};

typedef struct {
 enum typeName myTypeName;
 union {
 char myChar;
 int myInt;
 } myVar;
} myType;

void main() {
 myType* myTypePtr;
 myTypePtr = (myType*)malloc(sizeof(int) + sizeof(int));
 if(myTypePtr != NULL) {
 myTypePtr->myTypeName = INT;
 }
}

Structure is allocated memory partially

#include <stdlib.h>
typedef struct {
 int length;
 int breadth;
} rectangle;

typedef struct {
 int length;
 int breadth;
 int height;
} cuboid;

void main() {
 cuboid *cuboidPtr = (cuboid*)malloc(sizeof(rectangle));
 if(cuboidPtr!=NULL) {
 cuboidPtr->length = 10;
 cuboidPtr->breadth = 10;
 }
}

In this example, cuboidPtr obtains sufficient memory to accommodate two of its fields. Because the
ANSI C standards do not allow such partial memory allocations, the Illegally dereferenced pointer
check on the dereference of cuboidPtr produces a red error.
Correction — Allocate full memory

To observe ANSI C standards, cuboidPtr must be allocated full memory.

3 Run-Time Checks

3-40

#include <stdlib.h>
typedef struct {
 int length;
 int breadth;
} rectangle;

typedef struct {
 int length;
 int breadth;
 int height;
} cuboid;

void main() {
 cuboid *cuboidPtr = (cuboid*)malloc(sizeof(cuboid));
 if(cuboidPtr!=NULL) {
 cuboidPtr->length = 10;
 cuboidPtr->breadth = 10;
 }
}

Correction — Use Polyspace analysis option

You can allow partial memory allocation for structures, yet not have a red Illegally dereferenced
pointer error. To allow partial memory allocation, on the Configuration pane, under Check
Behavior, select Allow incomplete or partial allocation of structures.

#include <stdlib.h>
typedef struct {
 int length;
 int breadth;
} rectangle;

typedef struct {
 int length;
 int breadth;
 int height;
} cuboid;

void main() {
 cuboid *cuboidPtr = (cuboid*)malloc(sizeof(rectangle));
 if(cuboidPtr!=NULL) {
 cuboidPtr->length = 10;
 cuboidPtr->breadth = 10;
 }
}

Pointer to one field of structure points to another field

#include <stdlib.h>
typedef struct {
 int length;
 int breadth;
} square;

void main() {

 Illegally dereferenced pointer

3-41

 square mySquare;
 char* squarePtr = (char*)&mySquare.length;
//Assign zero to mySquare.length byte by byte
 for(int byteIndex=1; byteIndex<=4; byteIndex++) {
 *squarePtr=0;
 squarePtr++;
 }
//Assign zero to first byte of mySquare.breadth
 *squarePtr=0;
}

In this example, although squarePtr is a char pointer, it is assigned the address of the integer
mySquare.length. Because:

• char occupies 1 byte,
• int occupies 4 bytes in a 32–bit architecture,

squarePtr can access the four bytes of mySquare.length through pointer arithmetic. But when it
accesses the first byte of another field mySquare.breadth, the Illegally dereferenced pointer
check produces a red error.

Correction — Assign address of structure instead of field

One possible correction is to assign squarePtr the address of the full structure mySquare instead of
mySquare.length. squarePtr can then access all the bytes of mySquare through pointer
arithmetic.

#include <stdlib.h>
typedef struct {
 int length;
 int breadth;
} square;

void main() {
 square mySquare;
 char* squarePtr = (char*)&mySquare;
//Assign zero to mySquare.length byte by byte
 for(int byteIndex=1; byteIndex<=4; byteIndex++) {
 *squarePtr=0;
 squarePtr++;
 }
//Assign zero to first byte of mySquare.breadth
 *squarePtr=0;
}

Correction — Use Polyspace analysis option (not available in C++)

You can use a pointer to navigate across the fields of a structure and not produce a red Illegally
dereferenced pointer error. To allow such navigation, on the Configuration pane, under Check
Behavior, select Enable pointer arithmetic across fields.

This option is not available for C++ projects. In C++, pointer arithmetic becomes nontrivial when
dealing with concepts such as polymorphic types.

3 Run-Time Checks

3-42

#include <stdlib.h>
typedef struct {
 int length;
 int breadth;
} square;

void main() {
 square mySquare;
 char* squarePtr = (char*)&mySquare.length;
//Assign zero to mySquare.length byte by byte
 for(int byteIndex=1; byteIndex<=4; byteIndex++) {
 *squarePtr=0;
 squarePtr++;
 }
//Assign zero to first byte of mySquare.breadth
 *squarePtr=0;
}

Function returns pointer to local variable

void func2(int *ptr) {
 *ptr = 0;
}

int* func1(void) {
 int ret = 0;
 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

In the following code, ptr points to ret. Because the scope of ret is limited to func1, when ptr is
accessed in func2, the access is illegal. The verification produces a red Illegally dereferenced
pointer check on *ptr.

By default, Polyspace Code Prover does not detect functions returning pointers to local variables. To
detect such cases, use the option Detect stack pointer dereference outside scope (-
detect-pointer-escape).

Check Information
Group: Static memory
Language: C | C++
Acronym: IDP

See Also
Allow incomplete or partial allocation of structures (-size-in-bytes) | Detect
stack pointer dereference outside scope (-detect-pointer-escape) | Enable
pointer arithmetic across fields (-allow-ptr-arith-on-struct) | Non-initialized
pointer

Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”

 Illegally dereferenced pointer

3-43

“Code Prover Analysis Following Red and Orange Checks”

3 Run-Time Checks

3-44

Incorrect object oriented programming
Dynamic type of this pointer is incorrect

Description
This check on a class member function call determines if the call is valid.

A member function call can be invalid for the following reasons:

• You call the member function through a function pointer that points to the function. However, the
data types of the arguments or return values of the function and the function pointer do not
match.

• You call a pure virtual member function from the class constructor or destructor.
• You call a virtual member function through an incorrect this pointer. The this pointer stores

the address of the object used to call the function. The this pointer can be incorrect because:

• You obtain an object through a cast from another object. The objects are instances of two
unrelated classes.

• You perform pointer arithmetic on a pointer pointing to an array of objects. However, the
pointer arithmetic causes the pointer to go outside the array bounds. When you dereference
the pointer, it is not pointing to a valid object.

Diagnosing This Check
“Review and Fix Incorrect Object Oriented Programming Checks”

Examples
Pointer to method has incorrect type

#include <iostream>
class myClass {
public:
 void method() {}
};

void main() {
 myClass Obj;
 int (myClass::*methodPtr) (void) = (int (myClass::*) (void))
&myClass::method;
 int res = (Obj.*methodPtr)();
 std::cout << "Result = " << res;
}

In this example, the pointer methodPtr has return type int but points to myClass:method that has
return type void. Therefore, when methodPtr is dereferenced, the Incorrect object oriented
programming check produces a red error.

 Incorrect object oriented programming

3-45

Pointer to method contains NULL when dereferenced
#include <iostream>
class myClass {
public:
 void method() {}
};

void main() {
 myClass Obj;
 void (myClass::*methodPtr) (void) = &myClass::method;
 methodPtr = 0;
 (Obj.*methodPtr)();
}

In this example, methodPtr has value NULL when it is dereferenced.

Pure virtual function is called in base class constructor
class Shape {
public:
 Shape(Shape *myShape) {
 myShape->setShapeDimensions(0.0);
 }
 virtual void setShapeDimensions(double) = 0;
};

class Square: public Shape {
 double side;
public:
 Square():Shape(this) {
 }
 void setShapeDimensions(double);
};

void Square::setShapeDimensions(double val) {
 side=val;
}

void main() {
 Square sq;
 sq.setShapeDimensions(1.0);
}

In this example, the derived class constructor Square::Square calls the base class constructor
Shape::Shape() with its this pointer. The base class constructor then calls the pure virtual
function Shape::setShapeDimensions through the this pointer. Since the call to a pure virtual
function from a constructor is undefined, the Incorrect object oriented programming check
produces a red error.

Incorrect this Pointer: Cast Between Pointers to Unrelated Objects
#include <new>

class Foo {
public:
 void funcFoo() {}
};

3 Run-Time Checks

3-46

class Bar {
public:
 virtual void funcBar() {}
};

void main() {
 Foo *FooPtr = new Foo;
 Bar *BarPtr = (Bar*)(void*)FooPtr;
 BarPtr->funcBar();
}

In this example, the classes Foo and Bar are not related. When a Foo* pointer is cast to a Bar*
pointer and the Bar* pointer is used to call a virtual member function of class Bar, the Incorrect
object oriented programming check produces a red error.

Incorrect this Pointer: Pointer Out of Bounds
#include <new>
class Foo {
public:
 virtual void func() {}
};

void main() {
 Foo *FooPtr = new Foo[4];
 for(int i=0; i<=4; i++)
 FooPtr++;
 FooPtr->func();
 delete [] FooPtr;
}

In this example, the pointer FooPtr points outside the allocated bounds when it is used to call the
virtual member function func(). It does not point to a valid object. Therefore, the Incorrect
object oriented programming check produces a red error.

Incorrect this Pointer: Non-initialized Object
class Foo {
public:
 virtual int func() {
 return 1;
 }
};

class Ref {
public:
 Ref(Foo* foo) {
 foo->func();
 }
};

class Bar {
private:
 Ref m_ref;
 Foo m_Foo;
public:

 Incorrect object oriented programming

3-47

 Bar() : m_ref(&m_Foo) {}
};

In this example, the constructor Bar::Bar() calls the constructor Ref::Ref() with the address of
m_Foo before m_Foo is initialized. When the virtual member function func is called through a
pointer pointing to &m_Foo, the Incorrect object oriented programming check produces a red
error.

To reproduce the results, analyze only the class Bar using the option Class (-class-analyzer).

Incorrect this Pointer: Cast from Base to Derived Class Pointer
#include <new>

class Foo {
public:
 virtual void funcFoo() {}
};

class Bar: public Foo {
public:
 void funcFoo() {}
};

void main() {
 Foo *FooPtr = new Foo;
 Bar *BarPtr = (Bar*)(void*)FooPtr;
 BarPtr->funcFoo();
}

In this example, you might intend to call the derived class version of funcFoo but depending on your
compiler, you call the base class version or encounter a segmentation fault.

The pointer FooPtr points to a Foo object. The cast incorrectly attempts to convert the Foo* pointer
FooPtr to a Bar* pointer BarPtr. BarPtr still points to the base Foo object and cannot access
Bar::funcFoo.
Correction – Make Base Class Pointer Point Directly to Derived Class Object

C++ polymorphism allows defining a pointer that can traverse the class hierarchy to point to the
most derived member function. To implement polymorphism correctly, start from the base class
pointer and make it point to a derived class object.

#include <new>

class Foo {
public:
 virtual void funcFoo() {}
};

class Bar: public Foo {
public:
 void funcFoo() {}
};

void main() {

3 Run-Time Checks

3-48

 Foo *FooPtr = new Bar;
 FooPtr->funcFoo();
}

Check Information
Group: C++
Language: C++
Acronym: OOP

See Also
Base class destructor not virtual | Incompatible types prevent overriding |
Missing virtual inheritance | Partial override of overloaded virtual functions

Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Code Prover Analysis Following Red and Orange Checks”

 Incorrect object oriented programming

3-49

Invalid C++ specific operations
C++ specific invalid operations occur

Description
These checks on C++ code operations determine whether the operations are valid. The checks look
for a range of invalid behaviors:

• Array size is not strictly positive.
• typeid operator dereferences a NULL pointer.
• dynamic_cast operator performs an invalid cast.
• (C++11 and beyond) The number of array initializer clauses exceeds the number of array

elements to initialize.
• (C++11 and beyond) The pointer argument to a placement new operator does not point to enough

memory.

Diagnosing This Check
“Review and Fix Invalid C++ Specific Operations Checks”

Examples
Array size Not Strictly Positive

class License {
protected:
 int numberOfUsers;
 char (*userList)[20];
 int *licenseList;
public:
 License(int numberOfLicenses);
 void initializeList();
 char* getUser(int);
 int getLicense(int);
};

License::License(int numberOfLicenses) : numberOfUsers(numberOfLicenses) {
 userList = new char [numberOfUsers][20];
 licenseList = new int [numberOfUsers];
 initializeList();
}

int getNumberOfLicenses();
int getIndexForSearch();

void main() {
 int n = getNumberOfLicenses();
 if(n >= 0 && n <= 100) {
 License myFirm(n);
 int index = getIndexForSearch();

3 Run-Time Checks

3-50

 myFirm.getUser(index);
 myFirm.getLicense(index);
 }
}

In this example, the argument n to the constructor License::License falls into two categories:

• n = 0: When the new operator uses this argument, the Invalid C++ specific operations
produce an error.

• n > 0: When the new operator uses this argument, the Invalid C++ specific operations is
green.

Combining the two categories of arguments, the Invalid C++ specific operations produce an
orange error on the new operator.

typeid Operator Dereferencing NULL Pointer

To see this issue, enable the option Consider environment pointers as unsafe (-stubbed-
pointers-are-unsafe).

#include <iostream>
#include <typeinfo>
#define PI 3.142

class Shape {
public:
 Shape();
 virtual void setVal(double) = 0;
 virtual double area() = 0;
};

class Circle: public Shape {
 double radius;
public:
 Circle(double radiusVal):Shape() {
 setVal(radiusVal);
 }

 void setVal(double radiusVal) {
 radius = radiusVal;
 }

 double area() {
 return (PI * radius * radius);
 }
};

Shape* getShapePtr();

void main() {
 Shape* shapePtr = getShapePtr();
 double val;

 if(typeid(*shapePtr)==typeid(Circle)) {
 std::cout<<"Enter radius:";

 Invalid C++ specific operations

3-51

 std::cin>>val;
 shapePtr->setVal(val);
 std::cout<<"Area of circle = "<<shapePtr->area();
 }
 else {
 std::cout<<"Shape is not a circle.";
 }

}

In this example, the Shape* pointer shapePtr returned by getShapePtr() function can be NULL.
Because a possibly NULL-valued shapePtr is used with the typeid operator, the Invalid C++
specific operations check is orange.

Incorrect dynamic_cast on Pointers

class Base {
public :
 virtual void func() ;
};

class Derived : public Base {
};

Base* returnObj(int flag) {
 if(flag==0)
 return new Derived;
 else
 return new Base;
}

int main() {

 Base * ptrBase;
 Derived * ptrDerived;

 ptrBase = returnObj(0) ;
 ptrDerived = dynamic_cast<Derived*>(ptrBase); //Correct dynamic cast
 assert(ptrDerived != 0); //Returned pointer is not null

 ptrBase = returnObj(1);
 ptrDerived = dynamic_cast<Derived*>(ptrBase); //Incorrect dynamic cast
 // Verification continues despite red
 assert(ptrDerived == 0); //Returned pointer is null
}

In this example, the Invalid C++ specific operations on the dynamic_cast operator are:

• Green, when the pointer ptrBase that the operator casts to Derived is already pointing to a
Derived object.

• Red, when the pointer ptrBase that the operator casts to Derived is pointing to a Base object.

Red checks typically stop the verification in the same scope as the check. However, after red
Invalid C++ specific operations on dynamic_cast operation involving pointers, the
verification continues. The software assumes that the dynamic_cast operator returns a NULL
pointer.

3 Run-Time Checks

3-52

Incorrect dynamic_cast on References

class Base {
public :
 virtual void func() ;
};

class Derived : public Base {
};

Base& returnObj(int flag) {
 if(flag==0)
 return *(new Derived);
 else
 return *(new Base);
}

int main() {
 Base & refBase1 = returnObj(0);
 Derived & refDerived1 = dynamic_cast<Derived&>(refBase1); //Correct dynamic cast;

 Base & refBase2 = returnObj(1);
 Derived & refDerived2 = dynamic_cast<Derived&>(refBase2); //Incorrect dynamic cast
 // Analysis stops
 assert(1);
}

In this example, the Invalid C++ specific operations on the dynamic_cast operator are:

• Green, when the reference refBase1 that the operator casts to Derived& is already referring to
a Derived object.

• Red, when the reference refBase2 that the operator casts to Derived& is referring to a Base
object.

After red Invalid C++ specific operations on dynamic_cast operation involving pointers, the
software does not verify the code in the same scope as the check. For instance, the software does
not perform the User assertion check on the assert statement.

(C++11 and Beyond) Excess Initializer Clauses in Array Initialization

#include <stdio.h>

int* arr_const;

void allocate_consts(int size) {
 if(size>1)
 arr_const = new int[size]{0,1,2};
 else if(size==1)
 arr_const = new int[size]{0,1};
 else
 printf("Nonpositive array size!");
}

int main() {
 allocate_consts(3);

 Invalid C++ specific operations

3-53

 allocate_consts(1);
 return 0;
}

In this example, the Invalid C++ specific operations check determines if the number of initializer
clauses match the number of elements to initialize.

In the first call to allocate_consts, the initialization list has three elements to initialize an array of
size three. The Invalid C++ specific operations check on the new operator is green. In the second
call, the initialization list has two elements but initializes an array of size one. The check on the new
operator is red.

(C++11 and Beyond) Pointer Argument to Placement new Operator Does Not Point to
Enough Memory

#include <new>

class aClass {
 virtual void func();
};

void allocateNObjects(unsigned int n) {
 char* location = new char[sizeof(aClass)];
 aClass* objectLocation = new(location) aClass[n];
}

In this example, memory equal to the size of one aClass object is associated with the pointer
location. However, depending on the function argument n more than one object can be allocated
when using the placement new operator. The pointer location might not have enough memory for
the objects allocated.

Check Information
Group: C++
Language: C++
Acronym: CPP

See Also
Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Code Prover Analysis Following Red and Orange Checks”

External Websites
C++ Reference: dynamic_cast conversion

3 Run-Time Checks

3-54

https://en.cppreference.com/w/cpp/language/dynamic_cast

Invalid operation on floats
Result of floating-point operation is NaN for non-NaN operands

Description
This check determines if the result of a floating-point operation is NaN. The check is performed only
if you enable a verification mode that incorporates NaNs and specify that the verification must
highlight operations that result in NaN.

If you specify that the verification must produce a warning for NaN, the check is:

• Red, if the operation produces NaN on all execution paths that the software considers, and the
operands are not NaN.

• Orange, if the operation produces NaN on some of the execution paths when the operands are not
NaN.

• Green, if the operation does not produce NaN unless the operands are NaN.

If you specify that the verification must forbid NaN, the check color depends on the result of the
operation only. The color does not depend on the operands.

The check also highlights conversions from floating-point variables to integers where the floating-
point variable can be NaN. In this case, the check is always performed when you incorporate NaNs in
the verification and does not allow NaNs as input to the conversion.

To enable this verification mode, use these options:

• Consider non finite floats (-allow-non-finite-floats)
• NaNs (-check-nan): Use argument warn-first or forbid.

Examples
NaN Detected with Red Check

Results in forbid mode:

double func(void) {
 double x=1.0/0.0;
 double y=x-x;
 return y;
}

In this example, both the operands of the - operation are not NaN but the result is NaN. The Invalid
operation on floats check on the - operation is red. In the forbid mode, the verification stops after
the red check. For instance, a Non-initialized local variable check does not appear on y in the
return statement.

Results in warn-first mode:

double func(void) {
 double x=1.0/0.0;
 double y=x-x;

 Invalid operation on floats

3-55

 return y;
}

In this example, both the operands of the - operation are not NaN but the result is NaN. The Invalid
operation on floats check on the - operation is red. The red checks in warn-first mode are
different from red checks for other check types. The verification does not stop after the red check.
For instance, a green Non-initialized local variable check appears on y in the return statement. If
you place your cursor on y in the verification result, you see that it has the value NaN.

NaN Detected with Orange Check

Results in forbid mode:

double func(double arg1, double arg2) {
 double ret=arg1-arg2;
 return ret;
}

In this example, the values of arg1 and arg2 are unknown to the verification. The verification
assumes that arg1 and arg2 can be both infinite, for instance, and the result of arg1-arg2 can be
NaN. In the forbid mode, following the check, the verification terminates the execution path that
results in NaN. If you place your cursor on ret in the return statement, it does not have the value
NaN.

Results in warn-first mode:

double func(double arg1, double arg2) {
 double ret=arg1-arg2;
 return ret;
}

In this example, the values of arg1 and arg2 are unknown to the verification. The verification
assumes that arg1 and arg2 can be both infinite, for instance, and the result of arg1-arg2 can be
NaN. The orange checks in warn-first mode are different from orange checks for other check
types. Following the check, the verification does not terminate the execution path that results in NaN.
If you place your cursor on ret in the return statement, it continues to have the value NaN along
with other possible values.

Orange Check Despite NaN Being the Only Result

double func(double arg1, double arg2) {
 double z=arg1-arg2;
 return z;
}

void caller() {
 double x=1.0/0.0;
 double y=x-x;
 func(x,x);
 func(y,y);
}

In this example, in func, the result of the - operation is always NaN but the Invalid operation on
floats check is orange instead of red.

• In the first call to func, both the operands arg1 and arg2 are not NaN, but the result is NaN. So,
the check is red.

3 Run-Time Checks

3-56

• In the second call to func, both the operands arg1 and arg2 are NaN, and therefore the result is
NaN. So, the check is green, indicating that the result is not NaN unless the operands are NaN.

Combining the colors for the two calls to func, the check is orange.

In the example, the option -check-nan warn-first was used.

NaN in Conversion from Floating Point to Integers

void func() {
 double x= 1.0/0.0;
 double y= x-x;
 int z = y;
}

In this example, the Invalid operation on floats check detects the assignment of NaN to an integer
variable z.

The check is enabled if you specify that non-finite floats must be considered in the verification. The
check blocks further verification on the same execution path irrespective of whether you allow, forbid
or ask for warnings on non-finite floats.

Result Information
Group: Numerical
Language: C | C++
Acronym: INVALID_FLOAT_OP

See Also
NaNs (-check-nan) | Overflow | Subnormal float

Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Code Prover Analysis Following Red and Orange Checks”
“Order of Code Prover Run-Time Checks”

Introduced in R2016a

 Invalid operation on floats

3-57

Invalid shift operations
Shift operations are invalid

Description
This check on shift operations on a variable var determines:

• Whether the shift amount is larger than the range allowed by the type of var.
• If the shift is a left shift, whether var is negative.

Diagnosing This Check
“Review and Fix Invalid Shift Operations Checks”

Examples
Shift amount outside bounds

#include <stdlib.h>
#define shiftAmount 32
enum shiftType {
 SIGNED_LEFT,
 SIGNED_RIGHT,
 UNSIGNED_LEFT,
 UNSIGNED_RIGHT
};

enum shiftType getShiftType();

void main() {
 enum shiftType myShiftType = getShiftType();
 int signedInteger = 1;
 unsigned int unsignedInteger = 1;
 switch(myShiftType) {
 case SIGNED_LEFT:
 signedInteger = signedInteger << shiftAmount;
 break;
 case SIGNED_RIGHT:
 signedInteger = signedInteger >> shiftAmount;
 break;
 case UNSIGNED_LEFT:
 unsignedInteger = unsignedInteger << shiftAmount;
 break;
 case UNSIGNED_RIGHT:
 unsignedInteger = unsignedInteger >> shiftAmount;
 break;
 }
}

In this example, the shift amount shiftAmount is outside the allowed range for both signed and
unsigned int. Therefore the Invalid shift operations check produces a red error.

3 Run-Time Checks

3-58

Correction — Keep shift amount within bounds

One possible correction is to keep the shift amount in the range 0..31 for unsigned integers and 0...30
for signed integers. This correction works if the size of int is 32 on the target processor.

#include <stdlib.h>
#define shiftAmountSigned 30
#define shiftAmount 31
enum shiftType {
 SIGNED_LEFT,
 SIGNED_RIGHT,
 UNSIGNED_LEFT,
 UNSIGNED_RIGHT
};

enum shiftType getShiftType();

void main() {
 enum shiftType myShiftType = getShiftType();
 int signedInteger = 1;
 unsigned int unsignedInteger = 1;
 switch(myShiftType) {

 case SIGNED_LEFT:
 signedInteger = signedInteger << shiftAmountSigned;
 break;

 case SIGNED_RIGHT:
 signedInteger = signedInteger >> shiftAmountSigned;
 break;

 case UNSIGNED_LEFT:
 unsignedInteger = unsignedInteger << shiftAmount;
 break;

 case UNSIGNED_RIGHT:
 unsignedInteger = unsignedInteger >> shiftAmount;
 break;
 }
}

Left operand of left shift is negative
void main(void) {
 int x = -200;
 int y;
 y = x << 1;
}

In this example, the left operand of the left shift operation is negative.
Correction — Use Polyspace analysis option

You can use left shifts on negative numbers and not produce a red Invalid shift operations error. To
allow such left shifts, on the Configuration pane, under Check Behavior, select Allow negative
operand for left shifts.

void main(void) {

 Invalid shift operations

3-59

 int x = -200;
 int y;
 y = x << 1;
}

Left operand of left shift may be negative

short getVal();

int foo(void) {
 long lvar;
 short svar1, svar2;

 lvar = 0;
 svar1 = getVal();
 svar2 = getVal();

 lvar = (svar1 - svar2) << 10;
 if (svar1 < svar2) {
 return 1;
 } else {
 return 0;
 }
}

int main(void) {
 return foo();
}

In this example, if svar1 < svar2, the left operand of << can be negative. Therefore the Shift
operations check on << is orange. Following an orange check, execution paths containing the error
get truncated. Therefore, following the orange Invalid shift operations check, Polyspace assumes
that svar1 >= svar2. The branch of the statement, if(svar1 < svar2), is unreachable.

Check Information
Group: Numerical
Language: C | C++
Acronym: SHF

See Also
Allow negative operand for left shifts (-allow-negative-operand-in-shift) |
Consider non finite floats (-allow-non-finite-floats)

Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Code Prover Analysis Following Red and Orange Checks”

3 Run-Time Checks

3-60

Invalid use of standard library routine
Standard library function is called with invalid arguments

Description
This check on a standard library function call determines whether the function is called with valid
arguments.

The check works differently for memory routines, floating point routines or string routines because
their arguments can be invalid in different ways. For more information on each type of routines, see
the following examples.

Diagnosing This Check
“Review and Fix Invalid Use of Standard Library Routine Checks”

Examples
Invalid use of standard library float routine

#include <assert.h>
#include <math.h>

#define LARGE_EXP 710

enum operation {
 ASIN,
 ACOS,
 TAN,
 SQRT,
 LOG,
 EXP,
};

enum operation getOperation(void);
double getVal(void);

void main() {
 enum operation myOperation = getOperation();
 double myVal=getVal(), res;
 switch(myOperation) {
 case ASIN:
 assert(myVal <- 1.0 || myVal > 1.0);
 res = asin(myVal);
 break;
 case ACOS:
 assert(myVal < -1.0 || myVal > 1.0);
 res = acos(myVal);
 break;
 case SQRT:
 assert(myVal < 0.0);
 res = sqrt(myVal);

 Invalid use of standard library routine

3-61

 break;
 case LOG:
 assert(myVal <= 0.0);
 res = log(myVal);
 break;
 case EXP:
 assert(myVal > LARGE_EXP);
 res = exp(myVal);
 break;
 }
}

In this example, following each assert statement, Polyspace considers that myVal contains only
those values that make the assert condition true. For example, following assert(myVal < 1.0);,
Polyspace considers that myVal contains values less than 1.0.

When myVal is used as argument in a standard library function, its values are invalid for the function.
Therefore, the Invalid use of standard library routine check produces a red error.

To learn more about the specifications of this check for floating point routines, see “Invalid Use of
Standard Library Floating Point Routines”.

Invalid use of standard library memory routine
#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void) {
 char str1[10],str2[5];
 printf("Enter string:\n");
 scanf("%s",str1);
 memcpy(str2,str1,6);
 return str2;
}

int main(void) {
 (void*)Copy_First_Six_Letters();
 return 0;
}

In this example, the size of string str2 is 5, but 6 characters of string str1 are copied into str2
using the memcpy function. Therefore, the Invalid use of standard library routine check on the
call to memcpy produces a red error.

For other examples, see “Assumptions About memset and memcpy” on page 4-24.
Correction — Call function with valid arguments

One possible correction is to adjust the size of str2 so that it accommodates the characters copied
with the memcpy function.

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void) {
 char str1[10],str2[6];
 printf("Enter string:\n");

3 Run-Time Checks

3-62

 scanf("%s",str1);
 memcpy(str2,str1,6);
 return str2;
}

int main(void) {
 (void*)Copy_First_Six_Letters();
 return 0;
}

Invalid use of standard library string routine

#include <stdio.h>
#include <string.h>

char* Copy_String(void)
{
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";
 res=strcpy(gbuffer,text);
 return(res);
}

int main(void) {
 (void*)Copy_String();
}

In this example, the string text is larger in size than gbuffer. Therefore, when you copy text into
gbuffer. the Invalid use of standard library routine check on the call to strcpy produces a red
error.

Correction — Call function with valid arguments

One possible correction is to declare the destination string gbuffer with equal or larger size than
the source string text.

#include <stdio.h>
#include <string.h>

char* Copy_String(void)
{
 char *res;
 char gbuffer[20],text[20]="ABCDEFGHIJKL";
 res=strcpy(gbuffer,text);
 return(res);
}

int main(void) {
 (void*)Copy_String();
}

Check Information
Group: Other
Language: C | C++
Acronym: STD_LIB

 Invalid use of standard library routine

3-63

See Also
Consider non finite floats (-allow-non-finite-floats) | Float rounding mode (-
float-rounding-mode)

Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Code Prover Analysis Following Red and Orange Checks”
“Assumptions About memset and memcpy” on page 4-24

3 Run-Time Checks

3-64

Non-initialized local variable
Local variable is not initialized before being read

Description
This check occurs for every local variable read. It determines whether the variable being read is
initialized.

Diagnosing This Check
“Review and Fix Non-initialized Local Variable Checks”

Examples
Non-initialized variable used on right side of assignment operator
#include <stdio.h>

void main(void) {
 int sum;
 for(int i=1;i <= 10; i++)
 sum+=i;
 printf("The sum of the first 10 natural numbers is %d.", sum);
 }

The statement sum+=i; is the shorthand for sum=sum+i;. Because sum is used on the right side of
an expression before being initialized, the Non-initialized local variable check returns a red error.
Correction — Initialize variable before using on right side of assignment

One possible correction is to initialize sum before the for loop.

#include <stdio.h>

void main(void) {
 int sum=0;
 for(int i=1;i <= 10; i++)
 sum+=i;
 printf("The sum of the first 10 natural numbers is %d.", sum);
 }

Non-initialized variable used with relational operator
#include <stdio.h>

int getTerm();

void main(void) {
 int count,sum=0,term;

 while(count <= 10 && sum <1000) {
 count++;
 term = getTerm();

 Non-initialized local variable

3-65

 if(term > 0 && term <= 1000) sum += term;
 }

 printf("The sum of 10 terms is %d.", sum);
 }

In this example, the variable count is not initialized before the comparison count <= 10. Therefore,
the Non-initialized local variable check returns a red error.

Correction — Initialize variable before using with relational operator

One possible correction is to initialize count before the comparison count <= 10.

#include <stdio.h>

int getTerm();

void main(void) {
 int count=1,sum=0,term;

 while(count <= 10 && sum <1000) {
 count++;
 term = getTerm();
 if(term > 0 && term <= 1000) sum+= term;
 }

 printf("The sum of 10 terms is %d.", sum);
 }

Non-initialized variable passed to function

#include <stdio.h>

int getShift();
int shift(int var) {
 int shiftVal = getShift();
 if(shiftVal > 0 && shiftVal < 1000)
 return(var+shiftVal);
 return 1000;
}

void main(void) {
 int initVal;
 printf("The result of a shift is %d",shift(initVal));
}

In this example, initVal is not initialized when it is passed to shift(). Therefore, the Non-
initialized local variable check returns a red error. Because of the red error, Polyspace does not
verify the operations in shift().

Correction — Initialize variable before passing to function

One possible correction is to initialize initVal before passing to shift(). initVal can be
initialized through an input function. To avoid an overflow, the value returned from the input function
must be within bounds.

#include <stdio.h>

3 Run-Time Checks

3-66

int getShift();
int getInit();
int shift(int var) {
 int shiftVal = getShift();
 if(shiftVal > 0 && shiftVal < 1000)
 return(var+shiftVal);
 return 1000;
}

void main(void) {
 int initVal=getInit();
 if(initVal >0 && initVal < 1000)
 printf("The result of a shift is %d",shift(initVal));
 else
 printf("Value must be between 0 and 1000.");
 }

Non-initialized array element

#include <stdio.h>
#define arrSize 19

void main(void)
{
 int arr[arrSize],indexFront, indexBack;
 for(indexFront = 0,indexBack = arrSize - 1;
 indexFront < arrSize/2;
 indexFront++, indexBack--) {
 arr[indexFront] = indexFront;
 arr[indexBack] = arrSize - indexBack - 1;
 }
 printf("The array elements are: \n");
 for(indexFront = 0; indexFront < arrSize; indexFront++)
 printf("Element[%d]: %d", indexFront, arr[indexFront]);
 }

In this example, in the first for loop:

• indexFront runs from 0 to 8.
• indexBack runs from 18 to 10.

Therefore, arr[9] is not initialized. In the second for loop, when arr[9] is passed to printf, the
Non-initialized local variable check returns an error. The error is orange because the check
returns an error only in one of the loop runs.

Due to the orange error in one of the loop runs, a red Non-terminating loop error appears on the
second for loop.
Correction — Initialize variable before passing to function

One possible correction is to keep the first for loop intact and initialize arr[9] outside the for loop.

#include <stdio.h>
#define arrSize 19

void main(void)
{
 int arr[arrSize],indexFront, indexBack;

 Non-initialized local variable

3-67

 for(indexFront = 0,indexBack = arrSize - 1;
 indexFront < arrSize/2;
 indexFront++, indexBack--) {
 arr[indexFront] = indexFront;
 arr[indexBack] = arrSize - indexBack - 1;
 }
 arr[indexFront] = indexFront;
 printf("The array elements are: \n");
 for(indexFront = 0; indexFront < arrSize; indexFront++)
 printf("Element[%d]: %d", indexFront, arr[indexFront]);
}

Non-initialized structure

typedef struct S {
 int integerField;
 char characterField;
}S;

void operateOnStructure(S);
void operateOnStructureField(int);

void main() {
 S myStruct;
 operateOnStructure(myStruct);
 operateOnStructureField(myStruct.integerField);
}

In this example, the structure myStruct is not initialized. Therefore, when the structure myStruct
is passed to the function operateOnStructure, a Non-initialized local variable check on the
structure appears red.

Correction— Initialize structure

One possible correction is to initialize the structure myStruct before passing it to a function.

typedef struct S {
 int integerField;
 char characterField;
}S;

void operateOnStructure(S);
void operateOnStructureField(int);

void main() {
 S myStruct = {0,' '};
 operateOnStructure(myStruct);
 operateOnStructureField(myStruct.integerField);
}

Partially initialized structure — All used fields initialized

typedef struct S {
 int integerField;
 char characterField;
 double doubleField;
}S;

3 Run-Time Checks

3-68

int getIntegerField(void);
char getCharacterField(void);

void printIntegerField(int);
void printCharacterField(char);

void printFields(S s) {
 printIntegerField(s.integerField);
 printCharacterField(s.characterField);
}

void main() {
 S myStruct;

 myStruct.integerField = getIntegerField();
 myStruct.characterField = getCharacterField();
 printFields(myStruct);
}

In this example, the Non-initialized local variable check on myStruct is green because:

• The fields integerField and characterField that are used are both initialized.
• Although the field doubleField is not initialized, there is no read or write operation on the field

doubleField in the code.

To determine which fields are checked for initialization:

1 Select the check on the Results List pane or Source pane.
2 View the message on the Result Details pane.

Note that in the special case where none of the fields are used, the checks for initialization are
orange instead of green if all the fields.are uninitialized.

Partially initialized structure — Some used fields initialized

typedef struct S {
 int integerField;
 char characterField;
 double doubleField;
}S;

int getIntegerField(void);
char getCharacterField(void);

void printIntegerField(int);
void printCharacterField(char);
void printDoubleField(double);

void printFields(S s) {
 printIntegerField(s.integerField);
 printCharacterField(s.characterField);
 printDoubleField(s.doubleField);
}

void main() {
 S myStruct;

 Non-initialized local variable

3-69

 myStruct.integerField = getIntegerField();
 myStruct.characterField = getCharacterField();
 printFields(myStruct);
}

In this example, the Non-initialized local variable check on myStruct is orange because:

• The fields integerField and characterField that are used are both initialized.
• The field doubleField is not initialized and there is a read operation on doubleField in the

code.

To determine which fields are checked for initialization:

1 Select the check on the Results List pane or Source pane.
2 View the message on the Result Details pane.

Check Information
Group: Data flow
Language: C | C++
Acronym: NIVL

See Also
Disable checks for non-initialization (-disable-initialization-checks) | Non-
initialized pointer | Non-initialized variable

Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Code Prover Analysis Following Red and Orange Checks”

3 Run-Time Checks

3-70

Non-initialized pointer
Pointer is not initialized before being read

Description
This check occurs for every pointer read. It determines whether the pointer being read is initialized.

Diagnosing This Check
“Review and Fix Non-initialized Pointer Checks”

Examples
Non-initialized pointer passed to function

int assignValueToAddress(int *ptr) {
 *ptr = 0;
}

void main() {
 int* newPtr;
 assignValueToAddress(newPtr);
}

In this example, newPtr is not initialized before it is passed to assignValueToAddress().
Correction — Initialize pointer before passing to function

One possible correction is to assign newPtr an address before passing to
assignValueToAddress().

int assignValueToAddress(int *ptr) {
 *ptr = 0;
}

void main() {
 int val;
 int* newPtr = &val;
 assignValueToAddress(newPtr);
}

Non-initialized pointer to structure

#include <stdlib.h>
#define stackSize 25

typedef struct stackElement {
 int value;
 int *prev;
}stackElement;

int input();

 Non-initialized pointer

3-71

void main() {
 stackElement *stackTop;

 for (int count = 0; count < stackSize; count++) {
 if(stackTop!=NULL) {
 stackTop -> value = input();
 stackTop -> prev = (int*)stackTop;
 }
 stackTop = (stackElement*)malloc(sizeof(stackElement));
 }
}

In this example, in the first run of the for loop, stackTop is not initialized and does not point to a
valid address. Therefore, the Non-initialized pointer check on stackTop!=NULL returns a red
error.

Correction — Initialize pointer before dereference

One possible correction is to initialize stackTop through malloc() before the check stackTop!
=NULL.

#include <stdlib.h>
#define stackSize 25

typedef struct stackElement {
 int value;
 int *prev;
}stackElement;

int input();

void main() {
 stackElement *stackTop;

 for (int count = 0; count < stackSize; count++) {
 stackTop = (stackElement*)malloc(sizeof(stackElement));
 if(stackTop!=NULL) {
 stackTop->value = input();
 stackTop->prev = (int*)stackTop;
 }
 }
}

Non-initialized char* pointer used to store string

#include <stdio.h>

void main() {
 char *str;
 scanf("%s",str);
}

In this example, str does not point to a valid address. Therefore, when the scanf function reads a
string from the standard input to str, the Non-initialized pointer check returns a red error.

3 Run-Time Checks

3-72

Correction — Use char array instead of char* pointer

One possible correction is to declare str as a char array. This declaration assigns an address to the
char* pointer associated with the array name str. You can then use the pointer as input to scanf.

#include <stdio.h>

void main() {
 char str[10];
 scanf("%s",str);
}

Non-initialized array of char* pointers used to store variable-size strings

#include <stdio.h>

void assignDataBaseElement(char** str) {
 scanf("%s",*str);
}

void main() {
 char *dataBase[20];

 for(int count = 1; count < 20 ; count++) {
 assignDataBaseElement(&dataBase[count]);
 printf("Database element %d : %s",count,dataBase[count]);
 }
}

In this example, dataBase is an array of char* pointers. In each run of the for loop, an element of
dataBase is passed via pointers to the function assignDataBaseElement(). The element passed is
not initialized and does not contain a valid address. Therefore, when the element is used to store a
string from standard input, the Non-initialized pointer check returns a red error.

Correction — Initialize char* pointers through calloc

One possible correction is to initialize each element of dataBase through the calloc() function
before passing it to assignDataBaseElement(). The initialization through calloc() allows the
char pointers in dataBase to point to strings of varying size.

#include <stdio.h>
#include <stdlib.h>

void assignDataBaseElement(char** str) {
 scanf("%s",*str);
}
int inputSize();

void main() {
 char *dataBase[20];

 for(int count = 1; count < 20 ; count++) {
 dataBase[count] = (char*)calloc(inputSize(),sizeof(char));
 assignDataBaseElement(&dataBase[count]);
 printf("Database element %d : %s",count,dataBase[count]);
 }
}

 Non-initialized pointer

3-73

Check Information
Group: Data flow
Language: C | C++
Acronym: NIP

See Also
Disable checks for non-initialization (-disable-initialization-checks) | Non-
initialized local variable | Non-initialized variable

Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Code Prover Analysis Following Red and Orange Checks”

3 Run-Time Checks

3-74

Non-initialized variable
Variable other than local variable is not initialized before being read

Description
This check occurs when you read variables that are not local (global or static variables). It determines
whether the variable being read is initialized.

By default, Polyspace considers that global variables are initialized. The verification checks global
variables only if you prevent this default initialization. See also “Assumptions About Global Variable
Initialization” on page 4-15.

For more examples of initialization of complex data types, see the equivalent checker for local
variables, Non-initialized local variable.

Diagnosing This Check
“Review and Fix Non-initialized Variable Checks”

Examples
Non-initialized global variable

int globVar;
int getVal();

void main() {
 int val = getVal();
 if(val>=0 && val<= 100)
 globVar += val;
}

In this example, globVar does not have an initial value when incremented. Therefore, the Non-
initialized variable check produces a red error.

The example uses the option to prevent default initialization of global variables.

Correction — Initialize global variable before use

One possible correction is to initialize the global variable globVar before use.

int globVar;
int getVal();

void main() {
 int val = getVal();
 globVar = 0;
 if(val>=0 && val<= 100)
 globVar += val;
}

 Non-initialized variable

3-75

Check Information
Group: Data flow
Language: C | C++
Acronym: NIV

See Also
Disable checks for non-initialization (-disable-initialization-checks) | Global
variable not assigned a value in initialization code | Ignore default
initialization of global variables (-no-def-init-glob) | Non-initialized local
variable | Non-initialized pointer

Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Code Prover Analysis Following Red and Orange Checks”
“Assumptions About Global Variable Initialization” on page 4-15

3 Run-Time Checks

3-76

Non-terminating call
Called function does not return to calling context

Description
This check on a function call appears when the following conditions hold:

• The called function does not return to its calling context. The call leads to a definite run-time error
or a process termination function like exit() in the function body.

• There are other calls to the same function that do not lead to a definite error or process
termination function in the function body.

When only a fraction of calls to a function lead to a definite error, this check helps identify those
function calls. In the function body, even though a definite error occurs, the error appears in orange
instead of red because the verification results in a function body are aggregated over all function
calls. To indicate that a definite error has occurred, a red Non-terminating call check is shown on
the function call instead.

Otherwise, if all the calls to a function lead to a definite error or process termination function in the
function body, the Non-terminating call error is not displayed. The error appears in red in the
function body and a dashed red underline appears on the function calls. However, following the
function call, like other red errors, Polyspace does not analyze the remaining code in the same scope
as the function call.

You can navigate directly from the function call to the operation causing the run-time error in the
function body.

• To find the source of error, on the Source pane, place your cursor on the loop keyword and view
the tooltip.

• Navigate to the source of error in the function body. Right-click the function call and select Go to
Cause if the option exists.

If the error is the result of multiple causes, the option takes you to the first cause in the function
body. Multiple causes can occur, for instance, when some values of a function argument trigger
one specific error and other values trigger other errors.

Diagnosing This Check
“Review and Fix Non-Terminating Call Checks”

Examples
Dashed red underline on function call
#include<stdio.h>
double ratio(int num, int den) {
 return(num/den);
}

void main() {

 Non-terminating call

3-77

 int i,j;
 i=2;
 j=0;
 printf("%.2f",ratio(i,j));
}

In this example, a red Division by zero error appears in the body of ratio. This Division by zero
error in the body of ratio causes a dashed red underline on the call to ratio.

Red underline on function call
#include<stdio.h>
double ratio(int num, int den) {
 return(num/den);
}

int inputCh();

void main() {
 int i,j,ch=inputCh();
 i=2;

 if(ch==1) {
 j=0;
 printf("%.2f",ratio(i,j));
 }
 else {
 j=2;
 printf("%.2f",ratio(i,j));
 }
}

In this example, there are two calls to ratio. In the first call, a Division by zero error occurs in the
body of ratio. In the second call, Polyspace does not find errors. Therefore, combining the two calls,
an orange Division by zero check appears in the body of ratio. A red Non-terminating call check
on the first call indicates the error.

Red underline on call through function pointer
typedef void (*f)(void);
// function pointer type

void f1(void) {
 int x;
 x++;
}

void f2(void) { }
void f3(void) { }

f fptr_array[3] = {f1,f2,f3};
unsigned char getIndex(void);

void main(void) {
 unsigned char index = getIndex() % 3;
 // Index is between O and 2

 fptr_array[index]();

3 Run-Time Checks

3-78

 fptr_array[index]();
}

In this example, because index can lie between 0 and 2, the first fptr_array[index]() can call
f1, f2 or f3. If index is zero, the statement calls f1. f1 contains a red Non-initialized local
variable error, therefore, a dashed red error appears on the function call. Unlike other red errors,
the verification continues.

After this statement, the software considers that index is either 1 or 2. An error does not occur on
the second fptr_array[index]().

Check Information
Group: Control flow
Language: C | C++
Acronym: NTC

See Also
Non-terminating loop

Topics
“Identify Function Call with Run-Time Error”
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Code Prover Analysis Following Red and Orange Checks”

 Non-terminating call

3-79

Non-terminating loop
Loop does not terminate or contains an error

Description
This check on a loop determines if the loop has one of the following issues:

• The loop definitely does not terminate.

The check appears only if Polyspace cannot detect an exit path from the loop. For example, if the
loop appears in a function and the loop termination condition is met for some function inputs, the
check does not appear, even though the condition might not be met for some other inputs.

• The loop contains a definite error in one its iterations.

Even though a definite error occurs in one loop iteration, because the verification results in a loop
body are aggregated over all loop iterations, the error shows as an orange check in the loop body.
To indicate that a definite failure has occurred, a red Non-terminating loop check is shown on
the loop command.

Unlike other checks, this check appears only when a definite error occurs. In your verification results,
the check is always red. If the error occurs only in some cases, for instance, if the loop bound is
variable and causes an issue only for some values, the check does not appear. Instead, the loop
command is shown in dashed red with more information in the tooltip.

The check also does not appear if both conditions are true:

• The loop has a trivial predicate such as for(;;) or while(1).
• The loop has an empty body, or a body without an exit statement such as break, goto, return or

an exception.

Instead, the loop statement is underlined with red dashes. If you place your cursor on the loop
statement, you see that the verification considers the loop as intentional. If you deliberately introduce
infinite loops, for instance, to emulate cyclic tasks, you do not have to justify red checks.

Using this check, you can identify the operation in the loop that causes the run-time error.

• To find the source of error, on the Source pane, place your cursor on the function call and view
the tooltip.

• For loops with fewer iterations, you can navigate to the source of error in the loop body. Select the
loop to see the full history of the result. Alternatively, right-click the loop keyword and select Go
to Cause if the option exists.

Diagnosing This Check
“Review and Fix Non-Terminating Loop Checks”

3 Run-Time Checks

3-80

Examples
Loop does not terminate
#include<stdio.h>

void main() {
 int i=0;
 while(i<10) {
 printf("%d",i);
 }
}

In this example, in the while loop, i does not increase. Therefore, the test i<10 never fails.
Correction — Ensure Loop Termination

One possible correction is to update i such that the test i<10 fails after some loop iterations and the
loop terminates.

#include<stdio.h>

void main() {
 int i=0;
 while(i < 10) {
 printf("%d",i);
 i++;
 }
}

Loop contains an out of bounds array index error
void main() {
 int arr[20];
 for(int i=0; i<=20; i++) {
 arr[i]=0;
 }
}

In this example, the last run of the for loop contains an Out of bounds array index error.
Therefore, the Non-terminating loop check on the for loop is red. A tooltip appears on the for
loop stating the maximum number of iterations including the one containing the run-time error.
Correction — Avoid loop iteration containing error

One possible correction is to reduce the number of loop iterations so that the Out of bounds array
index error does not occur.

void main() {
 int arr[20];
 for(int i=0; i<20; i++) {
 arr[i]=0;
 }
}

Loop contains an error in function call
int arr[4];

 Non-terminating loop

3-81

void assignValue(int index) {
 arr[index] = 0;
}

void main() {
 for(int i=0;i<=4;i++)
 assignValue(i);
}

In this example, the call to function assignValue in the last for loop iteration contains an error.
Therefore, although an error does not show in the for loop body, a red Non-terminating loop
appears on the loop itself.

Correction — Avoid loop iteration containing error

One possible correction is to reduce the number of loop iterations so the error in the call to
assignValue does not occur.

int arr[4];

void assignValue(int index) {
 arr[index] = 0;
}

void main() {
 for(int i=0;i<4;i++)
 assignValue(i);
}

Loop contains an overflow error

#define MAX 1024
void main() {
 int i=0,val=1;
 while(i<MAX) {
 val*=2;
 i++;
 }
}

In this example, an Overflow error occurs in iteration number 31. Therefore, the Non-terminating
loop check on the while loop is red. A tooltip appears on the while loop stating the maximum
number of iterations including the one containing the run-time error.

Correction — Reduce loop iterations

One possible correction is to reduce the number of loop iterations so that the overflow does not occur.

#define MAX 30
void main() {
 int i=0,val=1;
 while(i<MAX) {
 val*=2;
 i++;
 }
}

3 Run-Time Checks

3-82

Check Information
Group: Control flow
Language: C | C++
Acronym: NTL

See Also
Non-terminating call

Topics
“Identify Loop Operation with Run-Time Error”
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Code Prover Analysis Following Red and Orange Checks”

 Non-terminating loop

3-83

Null this-pointer calling method
this pointer is null during member function call

Description
This check on a this pointer dereference determines whether the pointer is NULL.

Diagnosing This Check
“Review and Fix Null This-pointer Calling Method Checks”

Examples
Pointer to object is NULL during member function call

#include <stdlib.h>
class Company {
 public:
 Company(int initialNumber):numberOfClients(initialNumber) {}
 void addNewClient() {
 numberOfClients++;
 }
 protected:
 int numberOfClients;
};

void main() {
 Company* myCompany = NULL;
 myCompany->addNewClient();
}

In this example, the pointer myCompany is initialized to NULL. Therefore when the pointer is used to
call the member function addNewClient, the Null this-pointer calling method produces a red
error.

Correction — Initialize pointer with valid address

One possible correction is to initialize myCompany with a valid memory address using the new
operator.

#include <stdlib.h>
class Company {
 public:
 Company(int initialNumber):numberOfClients(initialNumber) {}
 void addNewClient() {
 numberOfClients++;
 }
 protected:
 int numberOfClients;
};

void main() {

3 Run-Time Checks

3-84

 Company* myCompany = new Company(0);
 myCompany->addNewClient();
}

Check Information
Group: C++
Language: C++
Acronym: NNT

See Also
Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Code Prover Analysis Following Red and Orange Checks”

 Null this-pointer calling method

3-85

Out of bounds array index
Array is accessed outside range

Description
This check on an array element access determines whether the element is outside the array range.
The check occurs only when you read an array element using the index notation and not when you
take the address of the array element.

Diagnosing This Check
“Review and Fix Out of Bounds Array Index Checks”

Examples
Array index is equal to array size

#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 printf("The 10-th Fibonacci number is %i .\n", fib[i]);
}

int main(void) {
 fibonacci();
}

In this example, the array fib is assigned a size of 10. An array index for fib has allowed values of
[0,1,2,...,9]. The variable i has a value 10 when it comes out of the for-loop. Therefore, when the
printf statement attempts to access fib[10] through i, the Out of bounds array index check
produces a red error.

The check also produces a red error if printf uses *(fib+i) instead of fib[i].

Correction — Keep array index less than array size

One possible correction is to print fib[i-1] instead of fib[i] after the for-loop.

#include <stdio.h>

3 Run-Time Checks

3-86

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 printf("The 10-th Fibonacci number is %i .\n", fib[i-1]);
}

int main(void) {
 fibonacci();
}

Accessing external arrays with undefined size

extern int arr[];

int getFifthElement(void) {
 return arr[5];
}
int main(void){
 getFifthElement();
}

Code Prover assumes by default that external arrays of undefined size can be safely accessed at any
index. The Out of bounds array index check on the external array access is green.

To remove this default assumption, use the option -consider-external-array-access-unsafe.
With this option, the Out of bounds array index check is orange.

extern int arr[];

int getFifthElement(void) {
 return arr[5];
}

Check Information
Group: Static memory
Language: C | C++
Acronym: OBAI

See Also
Illegally dereferenced pointer | -consider-external-array-access-unsafe

Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Code Prover Analysis Following Red and Orange Checks”

 Out of bounds array index

3-87

Overflow
Arithmetic operation causes overflow

Description
This check on an arithmetic operation determines whether the result overflows. The result of this
check depends on whether you allow nonfinite float results such as infinity and NaN.

The result of the check also depends on the float rounding mode you specify. By default, the rounding
mode is to-nearest. See Float rounding mode (-float-rounding-mode).

Nonfinite Floats Not Allowed

By default, nonfinite floats are not allowed. When the result of an operation falls outside the allowed
range, an overflow occurs. The check is:

• Red, if the result of the operation falls outside the allowed range.
• Orange, if the result of the operation falls outside the allowed range on some of the execution

paths.
• Green, if the result of the operation does not fall outside the allowed range.

To fine tune the behavior of the overflow check, use these options and specify argument forbid,
allow, or warn-with-wrap-around:

• Overflow mode for unsigned integer (-unsigned-integer-overflows)
• Overflow mode for signed integer (-signed-integer-overflows)

The operand data types determine the allowed range for the arithmetic operation. If the operation
involves two operands, the verification uses the ANSI C conversion rules to determine a common data
type. This common data type determines the allowed range.

For some examples of conversion rules, see “Assumptions About Implicit Data Type Conversions” on
page 4-22.

Nonfinite Floats Allowed

If you enable a verification mode that incorporates infinities and specify that the verification must
warn about operations that produce infinities, the check is:

• Red, if the operation produces infinity on all execution paths that the software considers, and the
operands themselves are not infinite.

• Orange, if the operation produces infinity on some of the execution paths when the operands
themselves are not infinite.

• Green, if the operation does not produce infinity unless the operands themselves are infinite.

If you specify that the verification must forbid operations that produce infinities, the check color
depends on the result of the operation only. The color does not depend on the operands.

To enable this verification mode, use these options:

3 Run-Time Checks

3-88

• Consider non finite floats (-allow-non-finite-floats)
• Infinities (-check-infinite): Use argument warn or forbid.

Diagnosing This Check
“Review and Fix Overflow Checks”

Examples
Integer Overflow

void main() {
 int i=1;
 i = i << 30; //i = 2^30
 i = 2*i-2;
}

In this example, the operation 2*i results in a value 231. The Overflow check on the multiplication
produces a red error because the maximum value that the type int can hold on a 32–bit target is
231-1.

Overflow Due to Left Shift on Signed Integers

void main(void)
 {
 int i;
 int shiftAmount = 1;

 i = 1090654225 << shiftAmount;
 }

In this example, an Overflow error occurs a left shift is performed on a signed integer.

Float Overflow

#include <float.h>

void main() {
 float val = FLT_MAX;
 val = val * 2 + 1.0;
}

In this example, FLT_MAX is the maximum value that float can represent on a 32-bit target.
Therefore, the operation val * 2 results in an Overflow error.

Overflow on Casts from Negative Floats to Unsigned Integers

void func(void) {
 float fVal = -2.0f;
 unsigned int iVal = (unsigned int)fVal;
}

In this example, a red Overflow check appears on the cast from float to unsigned int. According
to the C99 Standard (footnote to paragraph 6.3.1.4), the range of values that can be converted from
floating-point values to unsigned integers while keeping the code portable is (-1, MAX + 1). For

 Overflow

3-89

floating-point values outside this range, the conversion to unsigned integers is not well-defined. Here,
MAX is the maximum number that can be stored by the unsigned integer type.

Even if a run-time error does not occur when you execute the code on your target, the cast might fail
on another target.

Correction — Cast to Signed Integer First

One possible solution is to cast the floating-point value to a signed integer first. The signed integer
can then be cast to an unsigned integer type. For these casts, the conversion rules are well-defined.

void func(void) {
 float fVal = -2.0f;
 int iValTemp = (int)fVal;
 unsigned int iVal = (unsigned int)iValTemp;
}

Negative Overflow

#define FLT_MAX 3.40282347e+38F

void float_negative_overflow() {
 float min_float = -FLT_MAX;
 min_float = -min_float * min_float;
}

In float_negative_overflow, min_float contains the most negative number that the type
float can represent. Because the operation -min_float * min_float produces a number that is
more negative than this number, the type float cannot represent it. The Overflow check produces a
red error.

Overflows on Unsigned Bit Fields

#include <stdio.h>

struct
{
 unsigned int dayOfWeek : 2;
} Week;

void main()
{
 unsigned int two = 2, three = 3, four = 4;
 Week.dayOfWeek = two;
 Week.dayOfWeek = three;
 Week.dayOfWeek = four;
}

In this example, dayOfWeek occupies 2 bits. It can take values in [0,3] because it is an unsigned
integer. When you assign the value 4 to dayOfWeek, the Overflow check is red.

To detect overflows on signed and unsigned integers, on the Configuration pane, under Check
Behavior, select forbid or warn-with-wrap-around for Overflow mode for signed integer and
Overflow mode for unsigned integer .

3 Run-Time Checks

3-90

Nonfinite Floats: Infinity Detected with Red Check

Results in forbid mode:

double func(void) {
 double x=1.0/0.0;
 return x;
}

In this example, both the operands of the / operation is not infinite but the result is infinity. The
Overflow check on the - operation is red. In the forbid mode, the verification stops after the red
check. For instance, a Non-initialized local variable check does not appear on x in the return
statement. If you do not turn on the option Allow non finite floats, a Division by zero check
appears because infinities are not allowed.

Results in warn-first mode:

double func(void) {
 double x=1.0/0.0;
 return x;
}

In this example, both the operands of the / operation are not infinite but the result is infinity. The
Overflow check on the - operation is red. The red checks in warn-first mode are different from
red checks for other check types. The verification does not stop after the red check. For instance, a
green Non-initialized local variable check appears on x in the return statement. In the
verification result, if you place your cursor on x, you see that it has the value Inf.

Nonfinite Floats: Infinity Detected with Orange Check

Results in forbid mode:

void func(double arg1, double arg2) {
 double ratio1=arg1/arg2;
 double ratio2=arg1/arg2;
}

In this example, the values of arg1 and arg2 are unknown to the verification. The verification
assumes that arg1 and arg2 can have all possible double values. For instance, arg1 can be nonzero
and arg2 can be zero and the result of ratio1=arg1/arg2 can be infinity. Therefore, an orange
Overflow check appears on the division operation. Following the check, the verification terminates
the execution thread that results in infinity. The verification assumes that arg2 cannot be zero
following the orange check. The Overflow check on the second division operation ratio2=arg1/
arg2 is green.

Results in warn-first mode:

void func(double arg1, double arg2) {
 double ratio1=arg1/arg2;
 double ratio2=arg1/arg2;
}

In this example, the values of arg1 and arg2 are unknown to the verification. The verification
assumes that arg1 and arg2 can have all possible double values. For instance, arg1 can be non-

 Overflow

3-91

zero and arg2 can be zero and the result of ratio1=arg1/arg2 can be infinity. An orange Overflow
check appears on the division operation. The orange checks in warn-first mode are different from
orange checks for other check types. Following the check, the verification does not terminate the
execution thread that results in infinity. The verification retains the zero value of arg2 following the
orange check. Therefore, the Overflow check on the second division operation ratio2=arg1/arg2
is also orange.

Check Information
Group: Numerical
Language: C | C++
Acronym: OVFL

See Also
-show-similar-overflows | Consider non finite floats (-allow-non-finite-floats)
| Infinities (-check-infinite) | Invalid operation on floats | Overflow mode for
signed integer (-signed-integer-overflows) | Overflow mode for unsigned integer
(-unsigned-integer-overflows) | Subnormal float

Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Code Prover Analysis Following Red and Orange Checks”
“Order of Code Prover Run-Time Checks”

3 Run-Time Checks

3-92

Return value not initialized
C function does not return value when expected

Description
This check determines whether a function with a return type other than void returns a value. This
check appears on every function call.

Diagnosing This Check
“Review and Fix Return Value Not Initialized Checks”

Examples
Function does not return value for given input

#include <stdio.h>
int input(void);
int inputRep(void);

int reply(int msg) {
 int rep = inputRep();
 if (msg > 0) return rep;
}

void main(void) {
 int ch = input(), ans;
 if (ch <= 0)
 ans = reply(0);
 else
 ans = reply(ch);
 printf("The answer is %d.",ans);
}

In this example, for the function call reply(0), there is no return value. Therefore the Return value
not initialized check returns a red error. The second call reply(ch) always returns a value.
Therefore, the check on this call is green.

Correction — Return value for all inputs

One possible correction is to return a value for all inputs to reply().

#include <stdio.h>
int input();
int inputRep();

int reply(int msg) {
 int rep = inputRep();
 if (msg > 0) return rep;
 return 0;
}

 Return value not initialized

3-93

void main(void) {
 int ch = input(), ans;
 if (ch <= 0)
 ans = reply(0);
 else
 ans = reply(ch);
 printf("The answer is %d.",ans);
}

Function does not return value for some inputs
#include <stdio.h>
int input();
int inputRep(int);

int reply(int msg) {
 int rep = inputRep(msg);
 if (msg > 0) return rep;
}

void main(void) {
 int ch = input(), ans;
 if (ch < 10)
 ans = reply(ch);
 else
 ans = reply(10);
 printf("The answer is %d.",ans);
}

In this example, in the first branch of the if statement, the value of ch can be divided into two
ranges:

• ch < = 0: For the function call reply(ch), there is no return value.
• ch > 0 and ch < 10: For the function call reply(ch), there is a return value.

Therefore the Return value not initialized check returns an orange error on reply(ch).
Correction — Return value for all inputs

One possible correction is to return a value for all inputs to reply().

#include <stdio.h>
int input();
int inputRep(int);

int reply(int msg) {
 int rep = inputRep(msg);
 if (msg > 0) return rep;
 return 0;
}

void main(void) {
 int ch = input(), ans;
 if (ch < 10)
 ans = reply(ch);
 else
 ans = reply(10);
 printf("The answer is %d.",ans);
}

3 Run-Time Checks

3-94

Check Information
Group: Data flow
Language: C
Acronym: IRV

See Also
Disable checks for non-initialization (-disable-initialization-checks) |
Function not returning value

Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Code Prover Analysis Following Red and Orange Checks”

 Return value not initialized

3-95

Subnormal float
Floating-point operation has subnormal results

Description
This check determines if a floating-point operation produces a subnormal result.

Subnormal numbers have magnitudes less than the smallest floating-point number that can be
represented without leading zeros in the significand. The presence of subnormal numbers indicates
loss of significant digits. This loss can accumulate over subsequent operations and eventually result
in unexpected values. Subnormal numbers can also slow down the execution on targets without
hardware support.

By default, the results of the check do not appear in your verification results. To see the results of the
check, change the default value of the option Subnormal detection mode (-check-
subnormal). The results of the check vary based on the detection mode that you specify. In all
modes other than allow, to identify the subnormal results, look for red or orange Subnormal float
checks on operations.

Mode Check Colors Behavior Following Check
forbid:

This mode detects
the occurrence of a
subnormal value.
This mode stops the
execution path with
the subnormal
result and prevents
subnormal values
from propagating
further. Therefore,
in practice, you see
only the first
occurrence of the
subnormal value.

The color of the check depends
only on the result of the operation.
The check flags an operation that
has subnormal results even if those
results come only from subnormal
operands.

For instance, if x is unknown, x *
2 can be subnormal because x can
be subnormal. The result of the
check is orange.

Blocking check.

If the check is red, the verification stops.
If the check is orange, the verification
removes the execution paths containing
the subnormal result from consideration.
For instance, the tooltip on the result does
not show the subnormal values.

warn-all:

This mode
highlights all
occurrences of
subnormal values.
Even if a subnormal
result comes from
previous subnormal
values, the result is
highlighted.

The color of the check depends
only on the result of the operation.
The check flags an operation that
has subnormal results even if those
results come only from subnormal
operands.

For instance, if x is unknown, x *
2 can be subnormal because x can
be subnormal. The result of the
check is orange.

Non-blocking check.

The verification continues even if the
check is red. If the check is orange, the
verification does not remove the execution
paths containing the subnormal result
from consideration.

3 Run-Time Checks

3-96

Mode Check Colors Behavior Following Check
warn-first:

This mode
highlights the first
occurrence of a
subnormal value. If
a subnormal value
propagates to
further subnormal
results, those
subsequent results
are not highlighted.

The check color depends on the
result of the operation and the
operand values. The check does not
flag a subnormal result if it comes
only from subnormal operands.

In this mode, the check is:

• Red, if the operation produces
subnormal results on all
execution paths that the
software considers, and the
operands are not subnormal.

• Orange, if the operation
produces subnormal results on
some of the execution paths
when the operands are not
subnormal.

For instance, if x is unknown, x
* 0.5 can be subnormal even if
x is not subnormal.

• Green, if the operation does not
produce subnormal results
unless the operands are
subnormal.

For instance, even if x is
unknown, x * 2 cannot be
subnormal unless x is
subnormal.

Non-blocking check.

The verification continues even if the
check is red. If the check is orange, the
verification does not remove the execution
paths containing the subnormal result
from consideration.

If you choose to check for subnormals, you can also identify from the tooltips whether a variable
range excludes subnormal values. For instance, if the tooltips show [-1.0 .. -1.1754E-38] or
[-0.0..0.0] or [1.1754E-38..1.0], you can interpret that the variable does not have
subnormal values.

Examples
Subnormal Results Detected with Red Checks

In the following examples, DBL_MIN is the minimum normal value that can be represented using the
type double.

Results in forbid mode:

#include <float.h>

void func(){
 double val = DBL_MIN/4.0;
 double val2 = val * 2.0;
}

 Subnormal float

3-97

In this example, the first Subnormal float check is red because the result of DBL_MIN/4.0 is
subnormal. The red check stops the verification. The following operation, val * 2.0, is not verified
for run-time errors.

Results in warn-all mode:

#include <float.h>

void func(){
 double val = DBL_MIN/4.0;
 double val2 = val * 2.0;
}

In this example, both Subnormal float checks are red because both operations have subnormal
results.

Results in warn-first mode:

#include <float.h>

void func(){
 double val = DBL_MIN/4.0;
 double val2 = val * 2.0;
}

In this example, DBL_MIN is not subnormal but the result of DBL_MIN/4.0 is subnormal. The first
Subnormal float check is red. The second Subnormal float check is green. The reason is that val
* 2.0 is subnormal only because val is subnormal. Through red/orange checks, you see only the
first instance where a subnormal value appears. You do not see red/orange checks from those
subnormal values propagating to subsequent operations.

Subnormal Results Detected with Orange Checks

In the following examples, arg1 and arg2 are unknown. The verification assumes that they can take
all values allowed for the type double.

Results in forbid mode:

void func (double arg1, double arg2) {
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, difference1 can be subnormal if arg1 and arg2 are sufficiently close. The first
Subnormal float check is orange. Following this check, the verification excludes from consideration
the following:

• The close values of arg1 and arg2 that led to the subnormal value of difference1.

In the subsequent operation arg1 - arg2, the Subnormal float check is green and
difference2 is not subnormal. The result of the check on difference2 * 2 is green for the
same reason.

• The subnormal value of difference1.

In the subsequent operation difference1 * 2, the Subnormal float check is green.

3 Run-Time Checks

3-98

Results in warn-all mode:

void func (double arg1, double arg2) {
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, the four operations can have subnormal results. The four Subnormal float checks
are orange.

Results in warn-first mode:

void func (double arg1, double arg2) {
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, if arg1 and arg2 are sufficiently close, difference1 and difference2 can be
subnormal. The first two Subnormal float checks are orange. val1 and val2 cannot be subnormal
unless difference1 and difference2 are also subnormal. The last two Subnormal float checks
are green. Through red/orange checks, you see only the first instance where a subnormal value
appears. You do not see red/orange checks from those subnormal values propagating to subsequent
operations.

Conversion of Floating Point Literals

void main() {
 float d = 1e-38;
 float e = 1e-38 - 1e-39;
}

In this example, the two red checks appear in both warn-first and warn-all mode (the forbid
mode prevents analysis after the first red check).

Literal constants such as 1e-38 have the data type double. If you assign a literal constant to a
variable with narrower type float, the constant might not be representable in this type. This issue is
indicated with the red checks. The checks flag the conversion from double to float during
assignment.

Result Information
Group: Numerical
Language: C | C++
Acronym: SUBNORMAL

See Also
Invalid operation on floats | Overflow | Subnormal detection mode (-check-
subnormal)

 Subnormal float

3-99

Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Code Prover Analysis Following Red and Orange Checks”
“Order of Code Prover Run-Time Checks”

Introduced in R2016b

3 Run-Time Checks

3-100

Uncaught exception
Exception propagates uncaught to the main or another entry-point function

Description
This check looks for the following issues:

• An uncaught exception propagates to the main or another entry-point function.
• An exception is thrown in the constructor of a global variable and not caught.
• An exception is thrown in a destructor call or delete expression.
• An exception is thrown before a previous throw expression is handled by a catch statement, for

instance, when constructing a catch statement parameters.
• A noexcept specification is violated. For instance, a function declared with noexcept(true) is

not supposed to throw any exceptions but an exception is thrown in the function body.

In these situations, according to the C++ standard, the std::terminate function is called and can
cause unexpected results.

Note that the Uncaught exception check on functions from the Standard Template Library is green,
even though Polyspace stubs these functions and does not check if a function throws an exception.

Diagnosing This Check
“Review and Fix Uncaught Exception Checks”

Examples
Exception in call to function

#include <vector>
using namespace std;

class error {};

class initialVector {
private:
 int sizeVector;
 vector<int> table;
public:
 initialVector(int size) {
 sizeVector = size;
 table.resize(sizeVector);
 Initialize();
 }
 void Initialize();
 int getValue(int number) throw(error);
};

void initialVector::Initialize() {
 for(int i=0; i<table.size(); i++)

 Uncaught exception

3-101

 table[i]=0;
}

int initialVector::getValue(int index) throw(error) {
 if(index >= 0 && index < sizeVector)
 return table[index];
 else throw error();
}

void main() {
 initialVector *vectorPtr = new initialVector(5);
 vectorPtr->getValue(5);
}

In this example, the call to method initialVector::getValue throws an exception. This exception
propagates uncaught to the main function resulting in a red Uncaught exception check.

Exception handled through try/catch construct
class error {
public:
 error() { }
 error(const error&) { }
};

void funcNegative() {
 try {
 throw error() ;
 } catch (error NegativeError) {
 }
}

void funcPositive() {
 try {
 }
 catch (error PositiveError) {
 /* Gray code */
 }
}

int input();
void main()
{
 int val=input();
 if(val < 0)
 funcNegative();
 else
 funcPositive();
}

In this example:

• The call to funcNegative throws an exception. However, the exception is placed inside a try
block and is caught by the corresponding handler (catch clause). The Uncaught exception
check on the main function appears green because the exception does not propagate to the main.

• The call to funcPositive does not throw an exception in the try block. Therefore, the catch
block following the try block appears gray.

3 Run-Time Checks

3-102

Exception in call to destructor

class error {
};

class X
{
public:
 X() {
 ;
 }
 ~X() {
 throw error();
 }
};

int main() {
 try {
 X * px = new X ;
 delete px;
 } catch (error) {
 assert(1) ;
 }
}

In this example, the delete operator calls the destructor X::~X(). The destructor throws an
exception that appears as a red error on the destructor body and dashed red on the delete operator.
The exception does not propagate to the catch block. The code following the exception is not
verified. This behavior enforces the requirement that a destructor must not throw an exception.

The black assert statement suggests that the exception has not propagated to the catch block.

Exception in infinite loop

#include<stdio.h>
#define SIZE 100

int arr[SIZE];
int getIndex();

int runningSum() {
 int index, sum=0;
 while(1) {
 index=getIndex();
 if(index < 0 || index >= SIZE)
 throw int(1);
 sum+=arr[index];
 }
}

void main() {
 printf("The sum of elements is: %d",runningSum());
}

In this example, the runningSum function throws an exception only if index is outside the range
[0,SIZE]. Typically, an error that occurs due to instructions in an if statement is orange, not red.
The error is orange because an alternate execution path that does not involve the if statement does

 Uncaught exception

3-103

not produce an error. Here, because the loop is infinite, there is no alternate execution path that goes
outside the loop. The only way to go outside the loop is through the exception in the if statement.
Therefore, the Uncaught exception error is red.

Rethrow outside catch block

#include <string>

void f() { throw; } //rethrow not allowed - an error is raised here
void main() {
 try {
 throw std::string("hello");
 }
 catch (std::string& exc) {
 f();
 }
}

In this example, an exception is rethrown in the function f() outside a catch block. A rethrow
occurs when you call throw by itself without an exception argument. A rethrow is typically used
inside a catch block to propagate an exception to an outer try-catch sequence. Polyspace Code
Prover does not support a rethrow outside a catch block and produces a red Uncaught exception
error.

Check Information
Group: C++
Language: C++
Acronym: EXC

See Also
Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Code Prover Analysis Following Red and Orange Checks”

3 Run-Time Checks

3-104

Unreachable code
Code cannot be reached during execution

Description
Unreachable code uses statement coverage to determine whether a section of code can be reached
during execution. Statement coverage checks whether a program statement is executed. If a
statement has test conditions, and at least one of them occurs, the statement is executed and
reachable. The test conditions that do not occur are not considered dead code unless they have a
corresponding code branch. If all the test conditions do not occur, the statement is not executed and
each test condition is an instance of unreachable code. For example, in the switch statements of this
code, case 3 never occurs:

void test1 (int a) {
 int tmp = 0;
 if ((a!=3)) {
 switch (a){
 case 1:
 tmp++;
 break;
 default:
 tmp = 1;
 break;
/* case 3 falls through to
 case 2, no dead code */
 case 3:
 case 2:
 tmp = 100;
 break;
 }
 }
}

void test2 (int a) {
 int tmp = 0;
 if ((a!=3)) {
 switch (a){
 case 1:
 tmp++;
 break;
 default:
 tmp = 1;
 break;
// Dead code on case 3
 case 3:
 break;
 case 2:
 tmp = 100;
 break;
 }
 }
}

 Unreachable code

3-105

In test1(), case 3 falls through to case 2 and the check shows no dead code. In test2(), the
check shows dead code for case 3 because the break statement on the next line is not executed.

Other examples of unreachable code include:

• If a test condition always evaluates to false, the corresponding code branch cannot be reached. On
the Source pane, the opening brace of the branch is gray.

• If a test condition always evaluates to true, the condition is redundant. On the Source pane, the
condition keyword, such as if, appears gray.

• The code follows a break or return statement.

If an opening brace of a code block appears gray on the Source pane, to highlight the entire block,
double-click the brace.

The check operates on code inside a function. The checks Function not called and Function not
reachable determine if the function itself is not called or called from unreachable code.

Diagnosing This Check
“Review and Fix Unreachable Code Checks”

Examples
Test in if Statement Always False
#define True 1
#define False 0

typedef enum {
 Intermediate, End, Wait, Init
} enumState;

enumState input();
enumState inputRef();
void operation(enumState, int);

int checkInit (enumState stateval) {
 if (stateval == Init)
 return True;
 return False;
}

int checkWait (enumState stateval) {
 if (stateval == Wait)
 return True;
 return False;
}

void main() {
 enumState myState = input(),refState = inputRef() ;
 if(checkInit(myState)){
 if(checkWait(myState)) {
 operation(myState,checkInit(refState));
 } else {
 operation(myState,checkWait(refState));

3 Run-Time Checks

3-106

 }
 }
}

In this example, the main enters the branch of if(checkInit(myState)) only if myState =
Init. Therefore, inside that branch, Polyspace considers that myState has value Init.
checkWait(myState) always returns False and the first branch of if(checkWait(myState)) is
unreachable.
Correction — Remove Redundant Test

One possible correction is to remove the redundant test if(checkWait(myState)).

#define True 1
#define False 0

typedef enum {
 Intermediate, End, Wait, Init
} enumState;

enumState input();
enumState inputRef();
void operation(enumState, int);

int checkInit (enumState stateval) {
 if (stateval == Init)
 return True;
 return False;
}

int checkWait (enumState stateval) {
 if (stateval == Wait) return True;
 return False;
}

void main() {
 enumState myState = input(),refState = inputRef() ;
 if(checkInit(myState))
 operation(myState,checkWait(refState));
}

Test in if Statement Always True
#include <stdlib.h>
#include <time.h>

int roll() {
 return(rand()%6+1);
}

void operation(int);

void main() {
 srand(time(NULL));
 int die = roll();
 if(die >= 1 && die <= 6)
 /*Unreachable code*/
 operation(die);
 }

 Unreachable code

3-107

In this example, roll() returns a value between 1 and 6. Therefore the if test in main always
evaluates to true and is redundant. If there is a corresponding else branch, the gray error appears
on the else statement. Without an else branch, the gray error appears on the if keyword to
indicate the redundant condition.

Correction — Remove Redundant Test

One possible correction is to remove the condition if(die >= 1 && die <=6).

#include <stdlib.h>
#include <time.h>

int roll() {
 return(rand()%6+1);
}

void operation(int);

void main() {
 srand(time(NULL));
 int die = roll();
 operation(die);
}

Test in if Statement Unreachable

#include <stdlib.h>
#include <time.h>
#define True 1
#define False 0

int roll1() {
 return(rand()%6+1);
}

int roll2();
void operation(int,int);

void main() {
 srand(time(NULL));
 int die1 = roll1(),die2=roll2();
 if((die1>=1 && die1<=6) ||
 (die2>=1 && die2 <=6))
 /*Unreachable code*/
 operation(die1,die2);
}

In this example, roll1() returns a value between 1 and 6. Therefore, the first part of the if test,
if((die1>=1) && (die1<=6)) is always true. Because the two parts of the if test are combined
with ||, the if test is always true irrespective of the second part. Therefore, the second part of the
if test is unreachable.

Correction — Combine Tests with &&

One possible correction is to combine the two parts of the if test with && instead of ||.

#include <stdlib.h>
#include <time.h>

3 Run-Time Checks

3-108

#define True 1
#define False 0

int roll1() {
 return(rand()%6+1);
}

int roll2();
void operation(int,int);

void main() {
 srand(time(NULL));
 int die1 = roll1(),die2=roll2();
 if((die1>=1 && die1<=6) &&
 (die2>=1 && die2<=6))
 operation(die1,die2);
}

Check Information
Group: Data flow
Language: C | C++
Acronym: UNR

See Also
Function not called | Function not reachable

Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”

 Unreachable code

3-109

User assertion
assert statement fails

Description
This check determines whether the argument to an assert macro is true.

The argument to the assert macro must be true when the macro executes. Otherwise the program
aborts and prints an error message. Polyspace models this behavior by treating a failed assert
statement as a run-time error. This check allows you to detect failed assert statements before
program execution.

Diagnosing This Check
“Review and Fix User Assertion Checks”

Examples
Red assert on array index

#include<stdio.h>
#define size 20

int getArrayElement();

void initialize(int* array) {
 for(int i=0;i<size;i++)
 array[i] = getArrayElement();
}

void printElement(int* array,int index) {
 assert(index < size);
 printf("%d", array[index]);
}

int getIndex() {
 int i = size;
 return i;
}

void main() {
 int array[size];
 int index;

 initialize(array);
 index = getIndex();
 printElement(array,index);

}

In this example, the assert statement in printElement causes program abort if index >= size.
The assert statement makes sure that the array index is not outside array bounds. If the code does

3 Run-Time Checks

3-110

not contain exceptional situations, the assert statement must be green. In this example, getIndex
returns an index equal to size. Therefore the assert statement appears red.

Correction — Correct cause of assert failure

When an assert statement is red, investigate the cause of the exceptional situation. In this example,
one possible correction is to force getIndex to return an index equal to size-1.

#include<stdio.h>
#define size 20

int getArrayElement();

void initialize(int* array) {
 for(int i=0;i<size;i++)
 array[i] = getArrayElement();
}

void printElement(int* array,int index) {
 assert(index < size);
 printf("%d", array[index]);
}

int getIndex() {
 int i = size;
 return (i-1);
}

void main() {
 int array[size];
 int index;

 initialize(array);
 index = getIndex();
 printElement(array,index);

}

Orange assert on malloc return value

#include <stdlib.h>

void initialize(int*);
int getNumberOfElements();

void main() {
 int numberOfElements, *myArray;

 numberOfElements = getNumberOfElements();

 myArray = (int*)malloc(numberOfElements);
 assert(myArray!=NULL);

 initialize(myArray);
}

In this example, malloc can return NULL to myArray. Therefore, myArray can have two possible
values:

 User assertion

3-111

• myArray == NULL: The assert condition is false.
• myArray != NULL: The assert condition is true.

Combining these two cases, the User assertion check on the assert statement is orange. After the
orange assert, Polyspace considers that myArray is not equal to NULL.

Correction — Check return value for NULL

One possible correction is to write a customized function myMalloc where you always check the
return value of malloc for NULL.

#include <stdio.h>
#include <stdlib.h>

void initialize(int*);
int getNumberOfElements();

void myMalloc(int **ptr, int num) {
 ptr = (int)malloc(num);
 if(*ptr==NULL) {
 printf("Memory allocation error");
 exit(1);
 }
}

void main() {
 int numberOfElements, *myArray=NULL;

 numberOfElements = getNumberOfElements();

 myMalloc(&myArray,numberOfElements);
 assert(myArray!=NULL);

 initialize(myArray);
}

Imposing constraint through orange assert

#include<stdio.h>
#include<math.h>

float getNumber();
void squareRootOfDifference(float firstNumber, float secondNumber) {
 assert(firstNumber > secondNumber);
 if(firstNumber > 0 && secondNumber > 0)
 printf("Square root = %.2f",sqrt(firstNumber-secondNumber));
}

void main() {
 double firstNumber = getNumber(), secondNumber = getNumber();
 squareRootOfDifference(firstNumber,secondNumber);
}

In this example, the assert statement in squareRootOfDifference() causes program abort if
firstNumber is less than secondNumber. Because Polyspace does not have enough information
about firstNumber and secondNumber, the assert is orange.

3 Run-Time Checks

3-112

Following the assert, all execution paths that cause assertion failure terminate. Therefore, following
the assert, Polyspace considers that firstNumber >= secondNumber. The Invalid use of
standard library routine check on sqrt is green.

Use assert statements to help Polyspace determine:

• Relationships between variables
• Constraints on variable ranges

Check Information
Group: Other
Language: C | C++
Acronym: ASRT

See Also
Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”
“Code Prover Analysis Following Red and Orange Checks”

 User assertion

3-113

Approximations Used During Verification

• “Why Polyspace Verification Uses Approximations” on page 4-2
• “Sources of Orange Checks” on page 4-3
• “Assumptions About Variable Ranges” on page 4-6
• “Assumptions About Stubbed Functions” on page 4-7
• “Assumptions About main Function” on page 4-13
• “Assumptions About Global Variable Initialization” on page 4-15
• “Assumptions About Volatile Variables” on page 4-19
• “Assumptions About Variable and Function Definitions and Declarations” on page 4-21
• “Assumptions About Implicit Data Type Conversions” on page 4-22
• “Assumptions About memset and memcpy” on page 4-24
• “Assumptions About #pragma Directives” on page 4-28
• “Assumptions About Standard Library Float Routines” on page 4-30
• “Assumptions About Unions” on page 4-31
• “Assumptions About Variables Cast as Void Pointers” on page 4-32
• “Assumptions About Assembly Code” on page 4-33
• “Determination of Program Stack Usage” on page 4-37
• “Limitations of Polyspace Verification” on page 4-41

4

Why Polyspace Verification Uses Approximations
Polyspace Code Prover uses static verification to prove the absence of run-time errors. Static
verification derives the dynamic properties of a program without actually executing it. Static
verification differs significantly from other techniques such as run-time debugging because the
verification does not rely on a specific test case or set of test cases. The properties obtained from
static verification are true for all executions of your program1.

Static verification uses representative approximations of software operations and data. For instance,
consider the following code:

for (i=0 ; i<1000 ; ++i) {
 tab[i] = foo(i);
}

To check that the variable i never overflows the range of tab, one approach can be to consider each
possible value of i. This approach requires a thousand checks.

In static verification, the software models a variable by its domain. In this case, the software models
that i belongs to the static interval, [0..999]. Depending on the complexity of the data, the software
uses more elaborate models such as convex polyhedrons or integer lattices for this purpose.

An approximation, by definition, leads to information loss. For instance, the verification loses the
information that i is incremented by one every cycle in the loop. However, even without this
information, it is possible to ensure that the range of i is smaller than the range of tab. Only one
check is required to establish this property. Therefore, static verification is more efficient compared
to traditional approaches.

When performing approximations, the verification does not compromise with exhaustiveness. The
reason is that the approximations performed are upper approximations or over-approximations. In
other words, the computed domain of a variable is a superset of its actual domain.

1. The properties obtained from static verification hold true only if you execute your program under the same conditions
that you specified through the analysis options. For instance, the default verification assumes that pointers obtained
from external sources are non-null. Unless you specify the option Consider environment pointers as unsafe (-
stubbed-pointers-are-unsafe), the verification results are obtained under this assumption. They might not hold
true during program execution if the assumption is invalidated and a null pointer is obtained from an external source.

4 Approximations Used During Verification

4-2

Sources of Orange Checks
The Orange Sources pane shows unconstrained sources such as volatile variables and stubbed
functions that can lead to multiple orange checks (unproven results) in a Code Prover analysis. If you
constrain an orange source, you can address several orange checks together. To see the Orange
Sources pane, click the button on the Result Details pane.

The sources essentially indicate variables whose values cannot be determined from your code. The
variables can be inputs to functions whose call context is unknown or return values of undefined
functions. Code Prover assumes that these variables take the full range of values allowed by their
data type. This broad assumption can lead to one or more orange checks in the subsequent code.

For instance, in this example, if the function random_float is not defined, you see three orange
Overflow checks.

static void Close_To_Zero(void)
{
 float xmin = random_float();
 float xmax = random_float();
 float y;

 if ((xmax - xmin) < 1.0E-37f) { /* Overflow 1 */
 y = 1.0f;
 } else {
 /* division by zero is impossible here */
 y = (xmax + xmin) / (xmax - xmin); /* Overflows 2 and 3 */
 }
}

The function random_float is therefore an orange source that causes at most three orange checks.

Using the Orange Sources pane, you can:

• Review all orange checks originating from the same source.

In the preceding example, if you select the function random_float, the results list shows only the
three orange checks caused by this source. See “Filter Using Orange Sources”.

• Constrain variable ranges by specifying external constraints or through additional code.
Constraining the range of an orange source can remove several orange checks that come from
overapproximation. The remaining orange checks indicate real issues in your code.

 Sources of Orange Checks

4-3

In the preceding example, you can constrain the return value of random_float.

For efficient review, click the Max Oranges column header to sort the orange sources by number of
orange checks that result from the source. Constrain the sources with more orange checks before
tackling the others.

Constrain Orange Sources
How you constrain variable ranges and work around the default Polyspace assumptions depends on
the type of orange source:

Stubbed function
If the definition of a function is not available to the Polyspace analysis, the function is stubbed.
The analysis makes several assumptions about stubbed functions. For instance, the return value
of a stubbed function can take any value allowed by its data type.

See “Assumptions About Stubbed Functions” on page 4-7 for assumptions about stubbed
functions and how to work around them.

Volatile variable
If a variable is declared with the volatile specifier, the analysis assumes that the variable can
take any value allowed by its data type at any point in the code.

See “Assumptions About Volatile Variables” on page 4-19 to work around around this
assumption.

Extern variable
If a variable is declared with the extern specifier but not defined elsewhere in the code, the
analysis assumes that the variable can take any value within its data type range before it is first
assigned.

Determine where the variable is defined and why the definition is not available to the analysis.
For instance, you might have omitted an include folder from the analysis.

Function called by the main generator
If your code does not contain a main function, a main function is generated for the analysis. By
default, the generated main function calls uncalled functions with inputs that can take any value
allowed by their data type.

See:

• “Constrain Function Inputs” to constrain the function inputs.
• “Verify C Application Without main Function” or “Verify C++ Classes” to change which

functions are called by the generated main.

Variable initialized by the main generator
If your code does not contain a main function, a main function is generated for the analysis. By
default, in each function called by the generated main, a global variable can take any value
within its data type range before it is first assigned.

See “Assumptions About Global Variable Initialization” on page 4-15 for how the generated main
initializes global variables.

4 Approximations Used During Verification

4-4

Variable set in a permanent range by the main generator
If you explicitly constrain a global variable to a specific range in the permanent mode, the
analysis assumes that the variable can take any value within this range at any point in the code.

See “External Constraints for Polyspace Analysis” for more information on how a variable gets a
permanent range. Check if you assigned a permanent range by mistake or your range must be
narrower to reflect real-world values.

Absolute address
If a pointer is assigned an absolute address, the analysis assumes that the pointer dereference
leads to a range of potential values determined by the pointer data type.

See Absolute address usage for examples of absolute address usage and corresponding
Code Prover assumptions. To remove this assumption and flag all uses of absolute address, use
the option -no-assumption-on-absolute-addresses.

Sometimes, more than one orange source can be responsible for an orange check. If you plug an
orange source but do not see the expected disappearance of an orange check, consider if another
source is also responsible for the check.

See Also

More About
• “Orange Checks in Code Prover”
• “Filter Using Orange Sources”
• “Reduce Orange Checks”

 Sources of Orange Checks

4-5

Assumptions About Variable Ranges
If Polyspace cannot determine a variable value from the code, it assumes that the variable has a full
range of values allowed by its type.

For instance, for a variable of integer type, to determine the minimum and maximum value allowed,
Polyspace uses the following criteria:

• The C standard specifies that the range of a signed n-bit integer-type variable must be at least
[-(2n-1-1), 2n-1-1].

The Target processor type that you specify determines the number of bits allocated for a certain
type. For more information, see Target processor type (-target).

• Polyspace assumes that your target uses the two’s complement representation for signed integers.
The software uses this representation to determine the exact range of a variable. In this
representation, the range of a signed n-bit integer-type variable is [-2n-1, 2n-1-1].

For example, for an i386 processor:

• A char variable has 8 bits. The C standard specifies that the range of the char variable must be
at least [-127,127].

• Using the two’s complement representation, Polyspace assumes that the exact range of the char
variable is [-128,127].

To determine the range that Polyspace assumes for a certain type:

1 Run verification on this code. Replace type with the type name such as int.

type getVal(void);
void main() {
 type val = getVal();
}

2 Open your verification results. On the Source pane, place your cursor on val.

The tooltip provides the range that Polyspace assumes for type. Since getVal is not defined,
Polyspace assumes that the return value of getVal has full range of values allowed by type.

4 Approximations Used During Verification

4-6

Assumptions About Stubbed Functions
The verification stubs functions that are not defined in your source code or that you choose to stub.
For a stubbed function:

• The verification makes certain assumptions about the function return value and other side effects
of the function.

You can fine-tune the assumptions by specifying constraints.
• The verification ignores the function body if it exists. Operations in the function body are not

checked for run-time errors.

If the verification of a function body is imprecise and causes many orange checks when you call the
function, you can choose to stub the function. To reduce the number of orange checks, you stub the
function, and then constrain the return value of the function and specify other side effects.

To stub functions, you can use these options:

• Functions to stub (-functions-to-stub): Specify functions that you want stubbed.
• Generate stubs for Embedded Coder lookup tables (-stub-embedded-coder-

lookup-table-functions): Stub functions that contain lookup tables in code generated from
models using Embedded Coder.

• -code-behavior-specifications: Stub functions that correspond to a standard function that
Polyspace recognizes.

If you use the first option to stub a function, you constrain the function return value and model other
side effects by specifying constraints. If you want to specify constraints more fine-grained than the
ones available through the Polyspace constraint specification interface, define your own stubs. If you
use the other options to stub functions, the software itself constrains the function return value and
models its side effects appropriately.

The verification makes the following assumptions about the arguments of stubbed functions.

Function Return Value
Assumptions

The verification assumes that:

• The variable returned by the function takes the full range of values allowed by its data type.

If the function returns an enum variable, the variable value is in the range of the enum. For
instance, if an enum type takes values {0,5,-1,32} and a stubbed function has that return type, the
verification assumes that the function returns values in the range -1..32.

• If the function returns a pointer, the pointer is not NULL and safe to dereference. The pointer
does not point to dynamically allocated memory or another variable in your code.

• C++ specific assumptions: The operator new returns allocated memory. Operators such as
operator=, operator+=, operator--(prefixed version) or operator<< returns:

• A reference to *this, if the operator is part of a class definition.

For instance, if an operator is defined as:

 Assumptions About Stubbed Functions

4-7

class X {
 X& operator=(const X& arg) ;
};

It returns a reference to *this (the object that calls the operator). The object that calls the
operator or its data members have the full range of values allowed by their type.

• The first argument, if the operator is not part of a class definition.

For instance, if an operator is defined as:

X& operator+=(X& arg1, const X& arg2) ;

It returns arg1. The object that arg1 refers to or its data members have the full range of
values allowed by their type.

Functions declared with __declspec(no_return) (Visual Studio) or __attribute__
((noreturn)) (GCC) do not return.

How to Change Assumptions

You can change the default assumptions about the function return value.

• If the function returns a non-pointer variable, you can constrain its range. Use the option
Constraint setup (-data-range-specifications).

Through the constraint specification interface, you can specify an absolute range [min..max]. To
specify more complicated constraints, write a function stub.

For instance, an undefined function has the prototype:

int func(int ll, int ul);

Suppose you know that the function return value lies between the first and the second arguments.
However, the software assumes full range for the return value because the function is not defined.
To model the behavior that you want and reduce orange checks from the imprecision, write a
function stub as follows:

int func(int ll, int ul) {
 int ret;
 assert(ret>=ll && ret <=ul);
 return ret;
}

Provide the function stub in a separate file for verification. The verification uses your stub as the
function definition.

If the definition of func exists in your code and you want to override the definition because the
verification of the function body is imprecise, embed the actual definition and the stub in a
#ifdef statement:

#ifdef POLYSPACE
int func(int ll, int ul) {
 int ret;
 assert(ret>=ll && ret <=ul);
 return ret;
}
#else

4 Approximations Used During Verification

4-8

int func(int ll, int ul) {
 /*Your function body */
}
#endif

Define the macro POLYSPACE by using the option Preprocessor definitions (-D). The
verification uses your stub instead of the actual function definition.

• If the function returns a pointer variable, you can specify that the pointer might be NULL.

• To specify this assumption for all stubbed functions, use the option Consider environment
pointers as unsafe (-stubbed-pointers-are-unsafe).

• To specify this assumption for specific stubbed functions, use the option Constraint setup
(-data-range-specifications).

Function Arguments That are Pointers
Assumptions

The verification assumes that:

• If the argument is a pointer, the function can write any value to the object that the pointer points
to. The range of values is constrained by the argument data type alone.

For instance, in this example, the verification assumes that the stubbed function stubbedFunc
writes any possible value to val. Therefore, the assertion is orange.

void stubbedFunc(int*);

void main() {
 int val=0, *ptr=&val;
 stubbedFunc(ptr);
 assert(val==0);
}

• If the argument is a pointer to a structure, the function can write any value to the structure fields.
The range of values is constrained only by the data type of the fields.

In C++ code, only first level data members of a structure can be written via a pointer to the
structure. For instance, in this example, the analysis has knowledge of what pb->j points to, but
not what pb->pa->i points to. So, after the call to Foo, b.j appears as initialized but a.i is not
initialized.

struct A {
 int i;
};

struct B {
 A* pa;
 int j;
};

void Foo(B*);

void main() {
 A a;
 B b;

 Assumptions About Stubbed Functions

4-9

 b.pa = &a;
 Foo(&b);
 int var1 = b.j;
 int var2 = a.i;
}

• If the argument is a pointer to another pointer, the function can write any value to the object that
the second pointer points to (C code only). This assumption continues to arbitrary depths of a
pointer hierarchy.

For instance, suppose that a pointer **pp points to another pointer *p, which points to an int
variable var. If a stubbed function takes **p as argument, the verification assumes that following
the function call, var has any int value. *p can point to anywhere in allocated memory or can
point to var but does not point to another variable in the code.

• If the argument is a function pointer, the function that it points to gets called (C code only).

For instance, in this example, the stubbed function stubbedFunc takes a function pointer
funcPtr as argument. funcPtr points to func, which gets called when you call stubbedFunc.

typedef int (*typeFuncPtr) (int);

int func(int x){
 return x;
}

int stubbedFunc(typeFuncPtr);

void main() {
 typeFuncPtr funcPtr = (typeFuncPtr)(&func);
 int result = stubbedFunc(funcPtr);
}

If the function pointer takes another function pointer as argument, the function that the second
function pointer points to gets stubbed.

How to Change Assumptions

You can constrain the range of the argument that is passed by reference. Use the option Constraint
setup (-data-range-specifications).

Through the constraint specification interface, you can specify an absolute range [min..max]. To
specify more complicated constraints, write a function stub.

For instance, an undefined function has the prototype:

void func(int *x, int ll, int ul);

Suppose you know that the value written to x lies between the second and the third arguments.
However, the software assumes full range for the value of *x because the function is not defined. To
model the behavior that you want and reduce orange checks from the imprecision, write a function
stub as follows:

void func(int *x, int ll, int ul) {
 assert(*x>=ll && *x <=ul);
}

Provide the function stub in a separate file for verification. The verification uses your stub as the
function definition.

4 Approximations Used During Verification

4-10

If the definition of func exists in your code and you want to override the definition because the
verification of the function body is imprecise, embed the actual definition and the stub in a #ifdef
statement:

#ifdef POLYSPACE
void func(int *x, int ll, int ul) {
 assert(*x>=ll && *x <=ul);
}
#else
void func(int *x, int ll, int ul) {
 /* Your function body */
}
#endif

Define the macro POLYSPACE by using the option Preprocessor definitions (-D). The
verification uses your stub instead of the actual function definition.

Global Variables
Assumptions

The verification assumes that the function stub does not modify global variables.

How to Change Assumptions

To model write operations on a global variable, write a function stub.

For instance, an undefined function has the prototype:

void func(void);

Suppose you know that the function writes the value 0 or 1 to a global variable glob. To model the
behavior that you want, write a function stub as follows:

void func(void) {
 volatile int randomVal;
 if(randomVal)
 glob = 0;
 else
 glob = 1;
}

Provide the function stub in a separate file for verification. The verification uses your stub as the
function definition.

If the definition of func exists in your code and you want to override the definition because the
verification of the function body is imprecise, embed the actual definition and the stub in a #ifdef
statement as follows:

#ifdef POLYSPACE
void func(void) {
 volatile int randomVal;
 if(randomVal)
 glob = 0;
 else
 glob = 1;
}

 Assumptions About Stubbed Functions

4-11

#else
void func(void) {
 /* Your function body */
}
#endif

Define the macro POLYSPACE using the option Preprocessor definitions (-D). The verification
uses your stub instead of the actual function definition.

4 Approximations Used During Verification

4-12

Assumptions About main Function
A C/C++ program that compiles into a complete executable contains a main function. A Code Prover
analysis treats the main function differently from other functions.

main Function as Top of Call Hierarchy
Code Prover considers the main function as the starting point of verification. If you do not provide a
main function, for instance, when verifying a library, the verification generates one. By default, the
generated main calls functions that are not called anywhere else.

The verification then proceeds from the main function onwards into the functions called from main
and so on down the call hierarchy.

To adjust the verification time or precision:

• You can change the content of the generated main using analysis options.

See “Code Prover Verification”.
• You can write your own main function that calls only the functions that you want to verify.

main Function Arguments
The main function can have one of three forms:

• The no-argument form:

int main() {}

• The two-argument form:

int main(int argc, char* argv[]) {}

• Any other implementation-defined form.

In keeping with the C/C++ Standard specifications, the verification makes certain assumptions on the
main function arguments. If the main function has arguments with data types that match the second
form, Code Prover assumes this form and imposes corresponding restrictions on the arguments. In
particular:

• If the first argument of the main function is an integer (or a typdef to integer), the verification
assumes that the argument is nonnegative. This argument denotes the number of additional
arguments to the program from its external environment.

The assumption holds true even when the main function has only that one argument.
• If the first argument is an integer and the second argument is a pointer to a pointer (or a typedef

to one), the verification assumes that the second argument is allocated a buffer of size equal to the
first argument, argc. Each element of the buffer, argv[0], argv[1],…,argv[argc-1] is also
assumed to be an initialized pointer. This argument stores the additional arguments to the
program from its external environment.

 Assumptions About main Function

4-13

See Also

More About
• “Code Prover Verification”

4 Approximations Used During Verification

4-14

Assumptions About Global Variable Initialization
Global variables are variables that are visible throughout the program (unless shadowed by local
variables). A Code Prover analysis makes specific assumptions about the initialization of global
variables.

Global Variable Initialization When main Function Exists
If your code contains a main function, a Code Prover verification considers that global variables are
initialized according to ANSI C standards. The default values are:

• 0 for int
• 0 for char
• 0.0 for float

and so on.

Sometimes, you might want to check if global variables are explicitly initialized in the code. For
instance:

• In a warm reboot, to save time, the bss segment of a program, which might hold variable values
from a previous state, is not loaded. Instead, the program is supposed to explicitly initialize all
non-const variables without default values before execution. You can delimit this initialization code
and verify that all non-const global variables are indeed initialized in a warm reboot.

To delimit a section of code as initialization code, enter the pragma polyspace_end_of_init in
the main function. The initialization code begins from the main function and continues up to this
pragma. Use these options to check the initialization code only and determine whether all global
variables are initialized in this section of the code:

• Check that global variables are initialized after warm reboot (-check-
globals-init)

• Verify initialization section of code only (-init-only-mode)

The Code Prover analysis reports non-initialized variables using red or orange results in the
initialization code for the checks:

• Global variable not assigned a value in initialization code
• Non-initialized variable

• To only check if global variables are explicitly initialized at the point of use, use the option Ignore
default initialization of global variables (-no-def-init-glob).

The Code Prover analysis reports non-initialized variables using red or orange results for the
check Non-initialized variable.

Global Variable Initialization When main Function Does Not Exist
If your code does not have a main function, Code Prover begins verifying each uncalled function with
the assumption that global variables have full range value, constrained only by their data type. See
also “Assumptions About Variable Ranges” on page 4-6.

For instance, consider this example:

 Assumptions About Global Variable Initialization

4-15

int glob;
void func1_callee();

void func1() {
 int loc = glob;
 if(!glob)
 func1_callee();
}

void func1_callee() {
 int loc = glob;
}

void func2() {
 int loc = glob;
}

In both func1 and func2, the global variable glob and consequently the local variable loc has full
range of int values.

However, only uncalled functions begin with full-range values of global variables. The function
func1_callee is called in func1 after the value of glob is constrained to zero. In func1_callee,
the global variable glob and consequently the local variable loc has the constrained value zero.

How Code Prover Implements Assumption About Global Variable
Initialization
The software uses the dummy function _init_globals() to initialize global variables. The
_init_globals() function is the first function implicitly called in the main function (or generated
main function if there is no main).

Consider the following code in the application gv_example.c.

extern int func(int);

int garray[3] = {1, 2, 3};
int gvar = 12;

int main(void) {
 int i, lvar = 0;
 for (i = 0; i < 3; i++)
 lvar += func(garray[i] + gvar);
 return lvar;
}

After verification:

• On the Results List pane, if you select File from the list, under the node gv_example.c,
you see _init_globals.

4 Approximations Used During Verification

4-16

• On the Variable Access pane, gv_example._init_globals represents the initialization of the
global variable. The Values column shows the value of the global variable immediately after
initialization.

What Initialization Means for Complex Data Types
The following table lists what is checked for each data type to determine initialization. The check
happens at the time of read operations for the check Non-initialized variable and at the end of the
initialization section for the check Global variable not assigned a value in initialization code.

Data Type What Green Check for Initialization Means
Fundamental types (int, double, etc.) The variable is written at least once.
Array data types Every array element is written at least once.
Structured data types Every structure field that is used is written at

least once.

If you check initialization code only using the
option Verify initialization section of
code only (-init-only-mode), the analysis
checks for initialization of all structure fields,
whether used or not.

In the special case where none of the fields are
used, the checks for initialization are orange
instead of green if all the fields.are uninitialized.

 Assumptions About Global Variable Initialization

4-17

Data Type What Green Check for Initialization Means
Pointers The pointer is written at least once. However,

Code Prover does not check for initialization of
the pointed buffer (till you dereference the
pointer).

Enumerations The enum variable is written at least once.
However, Code Prover does not check if the
variable has one of the enum values.

See Also
Check that global variables are initialized after warm reboot (-check-
globals-init) | Global variable not assigned a value in initialization code |
Non-initialized variable | Verify initialization section of code only (-init-
only-mode)

4 Approximations Used During Verification

4-18

Assumptions About Volatile Variables
The values of volatile variables can change without explicit write operations.

For local volatile variables:

• Polyspace assumes that the variable has a full range of values allowed by its type.
• Unless you explicitly initialize the variable, when you read the variable, Polyspace produces an

orange Non-initialized local variable check.

In this example, Polyspace assumes that val1 is potentially noninitialized but val2 is initialized.
Polyspace considers that the + operation can cause an overflow because it assumes both variables to
have all possible values allowed by their data types.

int func (void)
{
 volatile int val1, val2=0;
 return(val1 + val2);
}

For global volatile variables:

• Polyspace assumes that the variable has a full range of values allowed by its type.

You can constrain the range externally. See “Constrain Global Variable Range”.
• Even if you do not explicitly initialize the variable, when you read the variable, Polyspace produces

a green Non-initialized variable check.

If the root cause of an orange check is a local volatile variable, you cannot override the default
assumptions and constrain the values of the volatile variables. Try one of the following:

• If the volatile variable represents hardware-supplied data, see if you can use a function call to
model this data retrieval. For example, replace volatile int port_A with int port_A =
read_location(). You do not have to define the function. Polyspace stubs the undefined
functions. You can then specify constraints on the function return values using the option
Constraint setup (-data-range-specifications).

• See if you can copy the contents of the volatile variable to a global nonvolatile variable. You can
then constrain the global variable values throughout your code. See “Constrain Global Variable
Range”.

• Replace the volatile variable with a stubbed function, but only for verification. Before verification,
specify constraints on the stubbed functions.

1 Write a Perl script that replaces each volatile variable declaration with a nonvolatile
declaration where you obtain the variable value from a function call.

For example, if your code contains the line volatile s8 PORT_A, your Perl script can
contain this substitution:

$line=~ s/^\s*volatile\s*s8\s*PORT_A;/s8 PORT_A = random_s8();/g;
2 Specify the location of this Perl script for the analysis option Command/script to apply

to preprocessed files (-post-preprocessing-command).
3 In an include file, provide the function declaration. For example, for a function random_s8,

the include file can contain the following declaration:

 Assumptions About Volatile Variables

4-19

#ifndef POLYSPACE_H
#define POLYSPACE_H
signed char random_s8(void);
#endif

4 Insert a #include directive for your include file in the relevant source files

Instead of a manual insertion, specify the location of your include file for the analysis option
Include (-include).

4 Approximations Used During Verification

4-20

Assumptions About Variable and Function Definitions and
Declarations

The definition and declaration of a variable are two different but related operations.

Definition
• If you define a function it means that the body of the function is written: int f(void)

{ return 0; }
• If you define a variable, it means that a part of memory is reserved for the variable: int x; or

extern int x=0;

When a variable is not defined, the software considers the variable to be initialized, and to have
potentially any value in its full range.

When a function is not defined, the software stubs the function.

Declaration
• Function declaration: int f(void);
• Variable declaration: extern int x;

A declaration provides information about the type of the function or variable. If you use the function
or variable in a file where it has not been declared, a compilation error results.

 Assumptions About Variable and Function Definitions and Declarations

4-21

Assumptions About Implicit Data Type Conversions
If an operation involves two operands, the verification assumes that before the operation takes place,
the operands can undergo implicit data type conversion. Whether this conversion happens depends
on the original data types of the operands.

Following are the conversion rules that apply if the operands in a binary operation have the same
data type. Both operands can be converted to int or unsigned int type before the operation is
performed. This conversion is called integer promotion. The conversion rules are based on the ANSI
C99 Standard.

• char and signed short variables are converted to int variables.
• unsigned short variables are converted to int variables only if an int variable can represent

all possible values of an unsigned short variable.

For targets where the size of int is the same as size of short, unsigned short variables are
converted to unsigned int variables. For more information on data type sizes, see Target
processor type (-target).

• Types such as int, long and long long remain unchanged.

Following are some of the conversion rules that apply when the operands have different data types.
The rules are based on the ANSI C99 Standard.

• If both operands are signed or unsigned, the operand with a lower-ranked data type is
converted to the data type of the operand with the higher-ranked type. The rank increases in the
order char, short, int, long, and long long.

• If one operand is unsigned and the other signed, and the unsigned operand data type has a
rank higher or the same as the signed operand data type, the signed operand is converted to
the unsigned operand type.

For instance, if one operand has data type int and the other has type unsigned int, the int
operand is converted to unsigned int.

Implicit Conversion When Operands Have Same Data Type
This example shows implicit conversions when the operands in a binary operation have the same data
type. If you run verification on the examples, you can use tooltips on the Source pane to see the
conversions.

In the first addition, i1 and i2 are not converted before the addition. Their sum can have values
outside the range of an int type because i1 and i2 have full-range values. Therefore, the Overflow
on page 3-88 check on the first addition is orange.

In the second addition, c1 and c2 are promoted to int before the addition. The addition does not
overflow because an int variable can represent all values that result from the sum of two char
variables. The Overflow check on the second addition is green. However, when the sum is assigned to
a char variable, an overflow occurs during the conversion from int back to char. An orange
Overflow check appears on the = operation.

extern char input_char(void);
extern int input_int(void);

4 Approximations Used During Verification

4-22

void main(void) {
 char c1 = input_char();
 char c2 = input_char();
 int i1 = input_int();
 int i2 = input_int();

 i1 = i1 + i2;
 c1 = c1 + c2;
}

Implicit Conversion When Operands Have Different Data Types
The following examples show implicit conversions that happen when the operands in a binary
operation have different data types. If you run verification on the examples, you can use tooltips on
the Source pane to see the conversions.

In this example, before the <= operation, x is implicitly converted to unsigned int. Therefore, the
User assertion on page 3-110 check is red.

#include <assert.h>
int func(void) {
 int x = -2;
 unsigned int y = 5;
 assert(x <= y);
}

In this example, in the first assert statement, x is implicitly converted to unsigned int before the
operation x <= y. Because of this conversion, in the second assert statement, x is greater than or
equal to zero. The User assertion on page 3-110 check on the second assert statement is green.

int input(void);

void func(void) {
 unsigned int y = 7;
 int x = input();
 assert (x >= -7 && x <= y);
 assert (x >=0 && x <= 7);
}

 Assumptions About Implicit Data Type Conversions

4-23

Assumptions About memset and memcpy
In this section...
“Polyspace Specifications for memcpy” on page 4-24
“Polyspace Specifications for memset” on page 4-25

Polyspace Specifications for memcpy
Syntax:

#include <string.h>
void * memcpy (void * destinationPtr, const void * sourcePtr, size_t num);

If your code uses the memcpy function, see the information in this table.

Specification Example
Polyspace runs a Invalid use of standard
library routine check on the function. The check
determines if the memory block that sourcePtr
or destinationPtr points to is greater than or
equal in size to the memory assigned to them
through num.

#include <string.h>
typedef struct {
 char a;
 int b;
 } S;

void func(int);

void main() {
 S s;
 int d;
 memcpy(&d, &s, sizeof(S));
}

In this code, Polyspace produces a red Invalid
use of standard library routine error because:

• d is an int variable.
• sizeof(S) is greater than sizeof(int).
• A memory block of size sizeof(S) is

assigned to &d.

4 Approximations Used During Verification

4-24

Specification Example
Polyspace does not check if the memory that
sourcePtr points to is itself initialized.

Following the use of memcpy, Polyspace considers
that the variables that destinationPtr points
to can have any value allowed by their type.

#include <string.h>
typedef struct {
 char a;
 int b;
 } S;

void func(int);

void main() {
 S s, d={'a',1};
 int val;
 val = d.b; // val=1

 memcpy(&d, &s, sizeof(S));
 val = d.b;
 // val can have any int value
}

In this code, when the memcpy function copies s
to d, Polyspace does not produce a red Non-
initialized local variable error. Following the
copy, the verification considers that the fields of d
can have any value allowed by their type. For
instance, d.b can have any value in the range
allowed for an int variable.

Polyspace raises a red Invalid use of standard
library routine check if the source and
destination arguments overlap. Overlapping
assignments are forbidden by the C Standard.

A red check is produced for this memory
assignment:

#include <string.h>

int main() {
 char arr[4];
 memcpy (arr, arr + 3, sizeof(int));
}

Polyspace Specifications for memset
Syntax:

#include <string.h>
void * memset (void * ptr, int value, size_t num);

If your code uses the memset function, see the information in this table.

 Assumptions About memset and memcpy

4-25

Specification Example
Polyspace runs a Invalid use of standard
library routine check on the function. The check
determines if the memory block that ptr points
to is greater than or equal in size to the memory
assigned to them through num.

#include <string.h>
typedef struct {
 char a;
 int b;
} S;

void main() {
 int val;
 memset(&val,0,sizeof(S));
}

In this code, Polyspace produces a red Invalid
use of standard library routine error because:

• val is an int variable.
• sizeof(S) is greater than sizeof(int).
• A memory block of size sizeof(S) is

assigned to &val.
If value is 0, following the use of memset,
Polyspace considers that the variables that ptr
points to have the value 0.

#include <string.h>
typedef struct {
 char a;
 int b;
} S;

void main() {
 S s;
 int val;
 memset(&s,0,sizeof(S));
 val=s.b; //val=0
}

In this code, Polyspace considers that following
the use of memset, each field of s has value 0.

4 Approximations Used During Verification

4-26

Specification Example
Following the use of memset, if value is anything
other than 0, Polyspace considers that:

• The variables that ptr points to can be
noninitialized.

• If initialized, the variables can have any value
that their type allows.

#include <string.h>
typedef struct {
 char a;
 int b;
} S;

void main() {
 S s;
 int val;
 memset(&s,1,sizeof(S));
 val=s.b;
 // val can have any int value
}

In this code, Polyspace considers that following
the use of memset, each field of s has any value
that its type allows. For instance, s.b can have
any value in the range allowed for an int
variable.

Following the memset, the structure fields can
have different values depending on the structure
packing and padding bits. Therefore, structure
field assignments with memset are
implementation-dependent. Code Prover
performs this part of the analysis in an
implementation-independent way. The analysis
allows all possible paddings and therefore full
range of values for the structure fields.

 Assumptions About memset and memcpy

4-27

Assumptions About #pragma Directives
The verification ignores most #pragma directives, because they do not carry information relevant to
the verification.

However, the verification takes into account the behavior of these pragmas.

Pragma Effect on Verification
#pragma asm and #pragma endasm

#asm and #endasm

The verification ignores the content between the
pragmas.

If you use #pragma inline_asm func, the
verification considers that the function func
contains assembly level instructions and ignores
the function body.

#pragma hdrstop For Visual C++ compilers, the verification stops
processing precompiled headers at the point
where it encounters the pragma.

#pragma once The verification allows the current source file to
be included only once in a compilation.

#pragma pack(n), #pragma
pack(push[,n]), #pragma pack(pop)

The verification takes into account the boundary
alignment specified in the pragmas.

#pragma pack without an argument is treated
as #pragma pack(1).

For more information, see the following example.
#pragma inline global func or #pragma
inline func

The verification considers the function func as
an inline function. In particular, by default, the
Code Prover generated main does not call these
functions directly with the assumption that they
are called in other functions.

_Pragma("inline=never") func The verification does not inline function func.
#error message The verification stops if it encounters the

directive.

For more information, see “Error Related to
#error Directive”.

For more information on the pragmas, see your compiler documentation. If the verification does not
take into account a certain pragma from the preceding list, see if you specified the right compiler for
your verification. For more information, see Compiler (-compiler).

For instance, in this code, the directives #pragma pack(n) force a new alignment boundary in the
structure. The User assertion on page 3-110 checks in the main function are green because the
verification takes into account the behavior of the directives. The verification uses these options:

• Target processor type (-target): i386 (char: 1 byte, int: 4 bytes)
• Compiler (-compiler): gnu4.9

4 Approximations Used During Verification

4-28

#include <assert.h>

#pragma pack(2)

struct _s6 {
 char c;
 int i;
} s6;

#pragma pack() /* Restores default packing: pack(4) */

struct _sb {
 char c;
 int i;
} sb;

#pragma pack(1)

struct _s5 {
 char c;
 int i;
} s5;

int main(void) {
 assert(sizeof(s6) == 6);
 assert(sizeof(sb) == 8);
 assert(sizeof(s5) == 5);
 return 0;
}

 Assumptions About #pragma Directives

4-29

Assumptions About Standard Library Float Routines
For some two-argument standard library float routines, the verification can ignore the function
arguments and assume that the function returns all possible values in its range.

In this code, the first assert statement is true and the second assert statement is false. However,
because the verification assumes that fmodf and nextafterf return full-range values, it considers
that the assert statements are false but only on a fraction of possible execution paths. Therefore,
the User assertion checks on the assert statements are orange.

#include <math.h>
int main() {
 float val1=10.0, val2=3.0,res;
 res = fmodf(val1/val2);
 assert(res==1.0);

 res = nextafterf(val2,val1);
 assert(res<3.0);
}

4 Approximations Used During Verification

4-30

Assumptions About Unions
In some situations, unions can help you construct efficient code. However, if you write a union
member and read back a different union member, the behavior depends on the member sizes and can
be implementation-dependent. You have to determine the following for your implementation:

• Padding – Padding can be inserted at the end of a union.
• Alignment – Members of structures within a union can have different alignments.
• Endianness – Whether the most significant byte of a word is stored at the lowest or highest

memory address.
• Bit-order – Bits within bytes can have both different numbering and allocation to bit fields.

When you use unions in your code, because of these issues, Polyspace verification can lose precision.

If you write a union member and read back another union member, Polyspace considers that the
latter member can have any value that its type allows. In this code, the member b of X is written, but
a is read. Polyspace considers that a can have any int value and both branches of the if-else
statement are reachable.

typedef union _u {
 int a;
 char b[4];
} my_union;

void main() {
 my_union X;

 X.b[0] = 1;
 X.b[1] = 1;
 X.b[2] = 1;
 X.b[1] = 1;
 if (X.a == 0x1111) {
 }
 else {
 }
}

To avoid using unions in your code, check for violations of MISRA C:2012 Rule 19.2.

Note If you initialize a union using a static initializer, following ANSI C standard, Polyspace
considers that the union member appearing first in the declaration list gets initialized.

 Assumptions About Unions

4-31

Assumptions About Variables Cast as Void Pointers
The C language allows the use of statements that cast a variable as a void pointer. However,
Polyspace verification of these statements entails a loss of precision.

Consider:
1 typedef struct {
2 int x1;
3 } s1;
4
5 s1 object;
6
7 void g(void *t) {
8 int x;
9 s1 *p;
10
11 p = (s1 *)t;
12 x = p->x1; // x should be assigned value 5 but p->x1 is full-range
13 }
14
15 void main(void) {
16 s1 * p;
17
18 object.x1 = 5;
19 p = &object;
20 g((void *)p); // p cast as void pointer
21 }

On line 12, the variable x must be assigned the value 5. However, the software assumes that p->x1
has full range of values allowed by its type.

4 Approximations Used During Verification

4-32

Assumptions About Assembly Code
Polyspace recognizes most inline assemblers as introduction of assembly code. The verification
ignores the assembly code but accounts for the fact that the assembly code can modify variables in
the C code.

If introduction of assembly code causes compilation errors:

1 Embed the assembly code between a #pragma my_asm_begin and a #pragma my_asm_end
statement.

2 Specify the analysis option -asm-begin my_asm_begin -asm-end my_asm_end.

For more information, see -asm-begin -asm-end.

Recognized Inline Assemblers
Polyspace recognizes these inline assemblers as introduction of assembly code.

• asm

Examples:

• int f(void)
{
 asm ("% reg val; mtmsr val;");
 asm("\tmove.w #$2700,sr");
 asm("\ttrap #7");
 asm(" stw r11,0(r3) ");
 assert (1); // is green
 return 1;
}

• int other_ignored2(void)
{
 asm "% reg val; mtmsr val;";
 asm mtmsr val;
 assert (1); // is green
 asm ("px = pm(0,%2); \
 %0 = px1; \
 %1 = px2;"
 : "=d" (data_16), "=d" (data_32)
 : "y" ((UI_32 pm *)ram_address):
"px");
 assert (1); // is green
}

• int other_ignored4(void)
{
 asm {
 port_in: /* byte = port_in(port); */
 mov EAX, 0
 mov EDX, 4[ESP]
 in AL, DX
 ret
 port_out: /* port_out(byte,port); */
 mov EDX, 8[ESP]
 mov EAX, 4[ESP]

 Assumptions About Assembly Code

4-33

 out DX, AL
 ret }
assert (1); // is green
}

• __asm__

Examples:

• int other_ignored6(void)
{
#define A_MACRO(bus_controller_mode) \
 __asm__ volatile("nop"); \
 __asm__ volatile("nop"); \
 __asm__ volatile("nop"); \
 __asm__ volatile("nop"); \
 __asm__ volatile("nop"); \
 __asm__ volatile("nop")
 assert (1); // is green
 A_MACRO(x);
 assert (1); // is green
 return 1;
}

• int other_ignored1(void)
{
 __asm
 {MOV R8,R8
 MOV R8,R8
 MOV R8,R8
 MOV R8,R8
 MOV R8,R8}
 assert (1); // is green
}

• int GNUC_include (void)
{
 extern int __P (char *__pattern, int __flags,
 int (*__errfunc) (char *, int),
 unsigned *__pglob) __asm__ ("glob64");
 __asm__ ("rorw $8, %w0" \
 : "=r" (__v) \
 : "0" ((guint16) (val)));
 __asm__ ("st g14,%0" : "=m" (*(AP)));
 __asm("" \
 : "=r" (__t.c) \
 : "0" ((((union { int i, j; } *) (AP))++)->i));
 assert (1); // is green
 return (int) 3 __asm__("% reg val");
}

• int other_ignored3(void)
{
 __asm {ldab 0xffff,0;trapdis;};
__asm {ldab 0xffff,1;trapdis;};
 assert (1); // is green
 __asm__ ("% reg val");
 __asm__ ("mtmsr val");
 assert (1); // is green
 return 2;
}

4 Approximations Used During Verification

4-34

• #pragma asm #pragma endasm

Examples:

• int pragma_ignored(void)
{
 #pragma asm
 SRST
 #pragma endasm
 assert (1); // is green
}

• void test(void)
{
 #asm
 mov _as:pe, reg
 jre _nop
 #endasm
 int r;
 r=0;
 r++;
}

Single Function Containing Assembly Code
The software stubs a function that is preceded by asm, even if a body is defined.
asm int h(int tt) // function h is stubbed even if body is defined
{
 % reg val; // ignored
 mtmsr val; // ignored
 return 3; // ignored
};

void f(void) {
 int x;
 x = h(3); // x is full-range
}

Multiple Functions Containing Assembly Code
The functions that you specify through the following pragma are stubbed automatically, even if
function bodies are defined.
#pragma inline_asm(list of functions)

Code examples:

#pragma inline_asm(ex1, ex2)
 // The functions ex1 and ex2 are
 // stubbed, even if their bodies are defined

int ex1(void)
{
 % reg val;
 mtmsr val;
 return 3; // ignored
};

int ex2(void)

 Assumptions About Assembly Code

4-35

{
 % reg val;
 mtmsr val;
 assert (1); // ignored
 return 3;
};

#pragma inline_asm(ex3) // the definition of ex3 is ignored

int ex3(void)
{
 % reg val;
 mtmsr val; // ignored
 return 3;
};

void f(void) {
 int x;

 x = ex1(); // ex1 is stubbed : x is full-range
 x = ex2(); // ex2 is stubbed : x is full-range
 x = ex3(); // ex3 is stubbed : x is full-range
}

Local Variables in Functions with Assembly Code
The verification ignores the content of assembly language instructions, but following the instructions,
it makes some assumptions about:

• Uninitialized local variables: The assembly instructions can initialize these variables.
• Initialized local variables: The assembly instructions can write any possible value to the variables

allowed by the variable data types.

For instance, the function f has assembly code introduced through the asm statement.
int f(void) {
 int val1, val2 = 0;
 asm("mov 4%0,%%eax"::"m"(val1));
 return (val1 + val2);
}

On the return statement, the Non-initialized local variable check has the following results:

• val1: The check is orange because the assembly instruction can initialize val1.
• val2: The check is green. However, val2 can have any int value.

If the variable is static, the assumptions are true anywhere in the function body, even before the
assembly instructions.

4 Approximations Used During Verification

4-36

Determination of Program Stack Usage
The Polyspace Code Prover analysis can estimate stack usage of each function in your program and
compute the entire program stack usage. The analysis uses the function call hierarchy of your
program to estimate stack usage. The stack usage of a function is the sum of local variable sizes in
the function plus the maximum stack usage from function callees. The stack usage of the function at
the top of the call hierarchy is the program stack usage.

For instance, for this call hierarchy, the stack usage of func is the size of local variables in func plus
the maximum stack usage from func1 and func2 (unless they are called in mutually exclusive
branches of a conditional statement).

For details, see:

• Function metrics: Maximum Stack Usage and Minimum Stack Usage
• Project metrics: Program Maximum Stack Usage and Program Minimum Stack Usage

Investigate Possible Stack Overflow
If your stack usage exceeds available stack space, you can identify which function is responsible.
Begin at the main function and navigate your program call tree. During navigation, look for the
function that has an unreasonable size of local variables. If you cannot identify such a function, look
for a call sequence that is unreasonably long. The detailed steps for navigation are:

1 On the Source pane, select the main function. On the Call Hierarchy pane, you see the
functions called from main (callees). To see the full hierarchy, right-click a function and expand
all nodes.

If the Call Hierarchy pane is not open by default, select Window > Show/Hide View > Call
Hierarchy.

 Determination of Program Stack Usage

4-37

2 To navigate to the callee definition in your source, on the Call Hierarchy pane, double-click each
callee name. Then, click the callee name on the Source pane. The Result Details pane shows
the higher estimate of local variable size and stack usage by the callee.

4 Approximations Used During Verification

4-38

Stack Usage Not Computed
For function stack usage to be computed, the analysis must be able to reach the end of the function.
The following can prevent the computation of function stack usage:

• Red checks.

If a definite run-time error occurs in a function or one of its callees, the analysis does not compute
its stack usage. The reason is that code following a red check is not analyzed. If the unanalyzed
code contains function calls, any stack usage estimate for the caller function is inaccurate.

In this example, the stack usage of func is not computed because following the red overflow, the
remainder of the function is not analyzed. If the stack usage was computed, function calls in the
unanalyzed code, such as the call to func2, would not be part of the computation.

#include <limits.h>
void func(void) {
 int val=INT_MAX;
 val++;

 Determination of Program Stack Usage

4-39

 func2();
}

• Recursive functions.

If a function calls itself directly or indirectly, its stack usage and the stack usage of all functions
that call this function are not computed.

If a program contains recursive functions, the program minimum stack usage might be computed
even if the maximum stack usage is not. In this case, the program minimum stack usage
computation uses an execution path that bypasses the call to the recursive function, and might not
be an accurate representation of the stack usage.

If the program stack usage appears as not computed, make sure that the stack usage of all functions
are computed. In the Information column on the Results List pane, check if a function stack usage
result shows the value Not computed.

Stack Usage Assumptions
If a function is called but not defined in the code that you provide to Polyspace, the stack usage
determination does not take the function call into account.

This assumption applies to:

• Implicit C++ constructors.

For instance, in this example, func calls the constructor of class myClass when myObj is defined.
Stack usage determination does not consider the constructor as a callee of func.

class myClass {std::string str;};

void func() {
 myClass myObj;
}

• Standard library functions or other functions whose definitions are missing from the code in your
Polyspace project.

For instance, in this example, func calls the standard library function cos. Unless you provide the
definition of cos, stack usage determination does not consider it as a callee of func.

#include <math.h>

double func(double arg) {
 return cos(arg);
}

4 Approximations Used During Verification

4-40

Limitations of Polyspace Verification
Code verification has certain limitations. The Polyspace Code Prover Limitations document describes
known limitations of the code verification process.

This document is stored as codeprover_limitations.pdf in the following folder:

polyspaceroot\polyspace\verifier\code_prover_desktop

Here, polyspaceroot is the Polyspace installation folder, for instance, C:\Program Files
\Polyspace\R2021a.

 Limitations of Polyspace Verification

4-41

Functions, Classes, Methods, Properties,
and Apps

5

polyspace-autosar
(DOS/UNIX) Run Polyspace Code Prover on code implementation of AUTOSAR software components

Syntax
polyspace-autosar -create-project projectFolder -arxml-dir arxmlFolder -
sources-dir codeFolder [-sources-dir codeFolder] [OPTIONS]
polyspace-autosar -create-project projectFolder -select-arxml-files
arxmlFiles [-select-arxml-files arxmlFiles] -select-source-files codeFiles [-
select-source-files codeFiles] [OPTIONS]

polyspace-autosar -update-project prevProjectFile [OPTIONS]

polyspace-autosar -update-and-clean-project prevProjectFile [OPTIONS]

polyspace-autosar -help

Description
polyspace-autosar -create-project projectFolder -arxml-dir arxmlFolder -
sources-dir codeFolder [-sources-dir codeFolder] [OPTIONS] checks the code
implementation of AUTOSAR software components for run-time errors and violation of data
constraints in the corresponding AUTOSAR XML specifications. The analysis parses the AUTOSAR
XML specifications (.arxml files) in arxmlFolder, modularizes the code implementation (.c files) in
codeFolder based on the specifications, and runs Code Prover on each module for the checks. The
Code Prover results are stored in projectFolder. After analysis, you can open the project
psar_project.psprj from projectFolder in the Polyspace user interface. You can view the
results for each software component individually or upload them to Polyspace Metrics for an
overview.

You can use additional options for troubleshooting, for instance, to only perform certain parts of the
update and track down an issue or to provide extra header files or define macros.

polyspace-autosar -create-project projectFolder -select-arxml-files
arxmlFiles [-select-arxml-files arxmlFiles] -select-source-files codeFiles [-
select-source-files codeFiles] [OPTIONS] creates a Polyspace project from AUTOSAR
specifications as in the preceding syntax but allows you to exclude specific files or folders from
analysis using shell patterns or regular expressions.

polyspace-autosar -update-project prevProjectFile [OPTIONS] updates the Code
Prover analysis results based on changes in ARXML files or C source code since the last analysis. The
update uses the html file prevProjectFile from the previous analysis and only reanalyzes the code
implementation of software components that changed since that analysis.

You can use additional options for troubleshooting.

polyspace-autosar -update-and-clean-project prevProjectFile [OPTIONS] updates
the Code Prover analysis results based on changes in ARXML files or C source code since the last
analysis. The update only reanalyzes the code implementation of software components that changed
since the previous analysis. A clean update also removes information about software components that

5 Functions, Classes, Methods, Properties, and Apps

5-2

are out of date. For instance, if you use an additional option to force the update for specific software
components and other SWC-s have also changed, a clean update removes those other SWC-s from the
Polyspace project.

You can use additional options for troubleshooting.

polyspace-autosar -help shows all options available for polyspace-autosar.

Examples

Run Code Prover on All Software Components

Suppose your ARXML files are in a folder arxml and your C source files in a folder code in the
current folder.

Run Code Prover on all software components defined in your ARXML files. Store the results in a
folder polyspace in the current folder.

polyspace-autosar -create-project polyspace -arxml-dir arxml -sources-dir code

The analysis creates a Polyspace project with several modules. Each module collects the C code
implementation of a software component. The analysis runs Code Prover on each module and checks
the code for run-time errors or mismatch with ARXML specifications.

After analysis, you can open the results in several ways. See “Review Polyspace Results on AUTOSAR
Code”.

Update an ARXML or code file. For instance, in Linux, you can touch a file to indicate an update.
Check if the updates affected results of the Code Prover analysis. For an updated analysis, provide
the project file psar_project.html created in the previous step.

polyspace-autosar -update-project polyspace\psar_project.xhtml

If you update an ARXML file, the entire analysis is repeated. If you update your source code, the
analysis is repeated only for software components whose code implementation was updated.

Run Code Prover on Specific Software Components

Instead of running Code Prover on all software components, check specific software components only.

For instance, suppose a software component has the fully qualified path pkg.component.bhv. You
can run Code Prover only on this software component.

polyspace-autosar -create-project polyspace -arxml-dir arxml -sources-dir code
 -autosar-behavior pkg.component.bhv

You can run Code Prover on all software components but later choose to update the analysis for
specific software components only.

polyspace-autosar -update-project polyspace\psar_project.xhtml
 -autosar-behavior pkg.component.bhv

 polyspace-autosar

5-3

If you do not reanalyze a software component that has been updated, the analysis shows that the
software component might be out of date.

You can also update the analysis for specific software components and remove all traces of other
software components.

polyspace-autosar -update-and-clean-project polyspace\psar_project.xhtml
 -autosar-behavior pkg.component.bhv

Run Code Prover and Upload Results to Polyspace Metrics

In the Polyspace user interface, you can see the results for individual software components. To see an
overview of Code Prover results for all software components analyzed, upload the results to
Polyspace Metrics.

If you perform verification on a server, you can specify before verification that all results must be
uploaded to Polyspace Metrics. Specify remote verification and results upload using these additional
options:

• Run Bug Finder or Code Prover analysis on a remote cluster (-batch)
• Upload results to Polyspace metrics (-add-to-results-repository)

You can specify additional options with the flag -extra-project-options.

For instance:

polyspace-autosar -create-project polyspace -arxml-dir arxml -sources-dir code
 -extra-project-options "-add-to-results-repository -batch -scheduler localhost
 -prog polyspace_project -verif-version 1.0"

Here localhost indicates that the same computer serves as the server and client. Replace it with
the name of your server. The argument of -prog can be the same as that of -create-project. You
use the options -prog and -verif-version to set the project name and version number as it
appears on Polyspace Metrics.

Alternatively, you can run Code Prover and upload each result using the polyspace-results-
repository command.

Input Arguments
projectFolder — Folder to store Polyspace results
string

Folder name, specified as a string (in double quotes). If the folder exists, it must be empty.

After analysis, the folder contains two project files psar_project.psprj and
psar_project.html.

• To see the results, open the file psar_project.psprj in the Polyspace user interface or the file
psar_project.html in a web browser.

• For subsequent updates on the command line, use the file psar_project.html.

See also “Review Polyspace Results on AUTOSAR Code”.
Example: "C:\Polyspace_Projects\proj_swc1"

5 Functions, Classes, Methods, Properties, and Apps

5-4

arxmlFolder — Root folder containing ARXML files
string

Folder name, specified as a string (in double quotes). You can omit the double quotes if your folder
paths do not contain spaces.

UNC paths are not supported for the folder name.
Example: "C:\arxml_swc1"

codeFolder — Root folder containing C files
string

Folder name, specified as a string (in double quotes). You can omit the double quotes if your folder
paths do not contain spaces.

To specify multiple root folders containing sources, repeat the -sources-dir option. If you specify
multiple root folders, they must not overlap. For instance, one root folder cannot be a subfolder of the
other.

UNC paths are not supported for the folder name.
Example: "C:\code_swc1"

arxmlFiles — Root folder containing ARXML files along with files and folders to exclude
string

Root folder containing ARXML files followed by file and folder inclusions and exclusions, specified as
a string. To create this string:

1 Use the Linux find command to search for the files and folders to include and exclude.
2 Copy the find options and enclose them in double quotes.

For examples, see “Select AUTOSAR XML (ARXML) and Code Files for Polyspace Analysis”.

codeFiles — Root folder containing source files along with files and folders to exclude
string

Root folder containing code (.c and .h) files followed by file and folder inclusions and exclusions,
specified as a string. To create this string:

1 Use the Linux find command to search for the files and folders to include and exclude.
2 Copy the find options and enclose them in double quotes.

For examples, see “Select AUTOSAR XML (ARXML) and Code Files for Polyspace Analysis”.

prevProjectFile — Path to psar_project.html
string

Path to the previously created project file psar_project.html, specified as a string (in double
quotes). You can omit the double quotes if your folder paths do not contain spaces.
Example: "C:\Polyspace_Projects\proj1\psar_project.html"

[OPTIONS] — Options to control project creation
string

 polyspace-autosar

5-5

Options to control creation of Polyspace project and subsequent analysis. You primarily use the
options for troubleshooting, for instance, to only perform certain parts of the update and narrow
down an issue or to provide extra header files or define macros.

General options

Option Description
-verbose Save additional information about the various

phases of command execution (verbose mode).
The file psar_project.log and other auxiliary
files store this additional information.

If an error occurs in command execution, the
error message is stored in a separate file,
irrespective of whether you enable verbose mode.
Running in verbose mode only stores the various
phases of execution. You can use this information
to see when an error was introduced.

-options-file OPTION_FILE Use an options file to supplement or replace the
command line options. In the options file, specify
each option on a separate line. Begin a line with
to indicate comments.

An options file opts.txt can look like this:

Store Polyspace results
-create-project polyspace
ARXML Folder
-arxml-dir arxml
SOURCE Folder
-sources-dir code

You can run polyspace-autosar as:

polyspace-autosar -options-file opts.txt

If an option that is directly specified with the
polyspace-autosar command conflicts with an
option in the options file, the directly specified
option is used. For instance, in this example, the
folder proj is used to save the Polyspace project.

polyspace-autosar -create-project proj
 -options-file opts.txt

You typically use an options file to store and
reuse options that are common to multiple
projects.

Options to control update of project

If you update a project, by default, the analysis results are updated for all AUTOSAR SWCs behaviors
with respect to any change in the arxml files or C source code since the last analysis. These options
allow you to control the update.

5 Functions, Classes, Methods, Properties, and Apps

5-6

Option Description
-autosar-behavior
AUTOSAR_QUALIFIED_NAME

Check the implementation of software
components whose internal behavior-s are
specified by AUTOSAR_QUALIFIED_NAME. The
default analysis considers all software
components present in the ARXML specifications.

To specify multiple software components, repeat
the option. Alternatively, you can do one of the
following:

• Use shell patterns similar to the patterns used
with -select-arxml-files and -select-
source-files.

For examples, see “Select AUTOSAR XML
(ARXML) and Code Files for Polyspace
Analysis”.

• Use regular expressions to specify a group of
software components under the same
package.

For instance:

• To specify the software component whose
internal behavior has the fully qualified
name pkg.component.bhv, use:

-autosar-behavior pkg.component.bhv
• To specify the software components whose

internal behavior-s have fully qualified
names beginning with pkg.component,
use:

-autosar-behavior pkg.component\..*

The \. represents the package name
separator . (dot) and the .* represents
any number of characters.

-do-not-update-autosar-prove-
environment

Do not read the ARXML specifications. Use
ARXML specifications stored from the previous
analysis.

Use this option during project updates to
compare the code against previous specifications.
Unless you use this option, project updates read
the entire ARXML specifications again.

 polyspace-autosar

5-7

Option Description
-do-not-update-extract-code Do not read the C source code. Use source code

stored from the previous analysis.

Use this option during project updates to
compare the previous source code against
ARXML specifications. Unless you use this option,
project updates consider all changes to the
source code since the previous analysis.

-do-not-update-verification Read the ARXML specifications and C code
implementation only but do not run the Code
Prover analysis.

Use this option during project updates to
investigate errors introduced in the ARXML
specifications or compilation errors introduced in
the source code. You can first fix these issues and
then run the Code Prover analysis.

Options to control parsing of ARXML specifications

5 Functions, Classes, Methods, Properties, and Apps

5-8

Option Description
-autosar-datatype
AUTOSAR_QUALIFIED_NAME

Import definition of AUTOSAR data types
specified by AUTOSAR_QUALIFIED_NAME. The
default analysis only imports data types specified
in the internal behavior of software components
that you verify.

To specify multiple data types, repeat the option.
Alternatively, you can do one of the following:

• Use shell patterns similar to the patterns used
with -select-arxml-files and -select-
source-files.

For examples, see “Select AUTOSAR XML
(ARXML) and Code Files for Polyspace
Analysis”.

• Use regular expressions to specify all data
types under the same package.

For instance:

• To specify a data type that has the fully
qualified name pkg.datatypes.type,
use:

-autosar-datatype pkg.datatypes.type
• To specify data types that have fully
qualified names beginning with
pkg.datatypes, use:

-autosar-datatype pkg.datatypes\..*

The \. represents the package name
separator . (dot) and the .* represents
any number of characters.

• To force import of all data types, use:

-autosar-datatype .*\..*

 polyspace-autosar

5-9

Option Description
-Eautosar-
xmlReaderSameUuidForDifferentElements

-Eno-autosar-
xmlReaderSameUuidForDifferentElements

If multiple elements in the ARXML specifications
have the same universal-unique-identifier (uuid),
use these options to toggle between a warning
and an error.

The default analysis stops with an error if the
issue happens. To convert to a warning, use -
Eno-autosar-
xmlReaderSameUuidForDifferentElements.
For conflicting UUID-s, the analysis stores the
last element read and continues with a warning.

The subsequent executions continue to use the
warning mode.To revert back to an error, use -
Eautosar-
xmlReaderSameUuidForDifferentElements.

-Eautosar-xmlReaderTooManyUuids

-Eno-autosar-xmlReaderTooManyUuids

If the same element in the ARXML specifications
has different universal-unique-identifiers (uuid-s),
use these options to toggle between a warning
and an error.

The default analysis stops with an error if the
issue happens. To convert to a warning, use -
Eno-autosar-xmlReaderTooManyUuids. For
conflicting UUID-s, the analysis stores the last
element read and continues with a warning.

The subsequent executions continue to use the
warning mode. To revert back to an error, use -
Eautosar-xmlReaderTooManyUuids.

Options to control reading of C source code

5 Functions, Classes, Methods, Properties, and Apps

5-10

Option Description
-include USER_RTE_TYPE_H Define additional data types and macros that are

not part of your ARXML specifications, but
needed for analysis of the code implementation.

Add the data type and macro definitions to a file
USER_RTE_TYPE_H. These definitions are
appended to a header file Rte_Type.h that is
used in the analysis. The file that you provide
must itself not be named Rte_Type.h.

You can provide the file with data type and macro
definitions only during project creation. For
subsequent updates, you can change the contents
of this file but not provide a new file. Also, this
file must not be in the same folder as the
Polyspace project and results.

If you additionally define macros or undefine
them using the options -D or -U, for definitions
that conflict with the ones in USER_RTE_TYPE_H,
the -D or -U specifications prevail.

-I INCLUDE_FOLDER Specify folders containing header files. The
analysis looks for #include-d files in this folder.
The folder must be a subfolder of your source
code folder.

Repeat the option for multiple folders. The
analysis looks for header files in these folders in
the order in which you specify them.

If you want to specify folders that are not in the
source code folder, use the option:

-extra-project-options
"-I INCLUDE_FOLDER"

-D DEFINE Specify macros that the analysis must consider as
defined.

For instance, if you specify:

-D _WIN32

the preprocessor conditional #ifdef _WIN32
succeeds and the corresponding branch is
executed.

 polyspace-autosar

5-11

Option Description
-U UNDEFINE Specify macros that the analysis must consider as

undefined.

For instance, if you specify:

-U _WIN32

the preprocessor conditional #ifndef _WIN32
succeeds and the corresponding branch is
executed.

Options to control Code Prover checks

5 Functions, Classes, Methods, Properties, and Apps

5-12

Option Description
-extra-project-options
POLYSPACE_OPTIONS

Specify additional options for the Code Prover
analysis. The options that you specify do not
apply to the ARXML parsing or code extraction,
but only to the subsequent Code Prover analysis.

Use this method to specify analysis options that
you use with the polyspace-code-prover
command. See “Analysis Options in Polyspace
Code Prover”.

Note that these options of polyspace-code-
prover do not need to be specified:

• -sources: polyspace-autosar extracts the
required source files.

• -I: You specify include folders with the -I
option of polyspace-autosar.

• “Inputs and Stubbing” options such as -
data-range-specifications: External
data constraints in your ARXML files are
extracted automatically with polyspace-
autosar. You cannot specify constraints
explicitly.

• “Multitasking” options such as -entry-
points: You cannot perform a multitasking
analysis with polyspace-autosar. To detect
data races, create a separate project for the
entire application and explicitly add your
source folders. Specify the ARXML files
relevant for multitasking and run Bug Finder.
For more information, see ARXML files
selection (-autosar-multitasking).

• “Code Prover Verification” options associated
with main generation: A main function is
generated (in the file psar_prove_main.c)
when you create a Polyspace project from an
AUTOSAR description. The main function
calls functions that implement runnable
entities in the software components. The
generated main is needed for the Code Prover
analysis. You cannot change the properties of
this main function.

 polyspace-autosar

5-13

Option Description
-extra-options-file OPTIONS_FILE Specify additional options for the Code Prover

analysis in an options file. The options that you
specify do not apply to the ARXML parsing or
code extraction, but only to the subsequent Code
Prover analysis.

For instance, you can trace your build command
to gather compiler options, macro definitions and
paths to include folders, and provide this
information in an options file for analysis of code
implementation of AUTOSAR software
components.

1 Trace your build command (for instance,
make) with polyspace-configure and
generate an options file for subsequent Code
Prover analysis. Suppress inclusion of
sources in the options file with the -no-
sources option.

polyspace-configure \
-output-options-file options.txt \
-no-sources make

2 Run Code Prover on AUTOSAR code with
polyspace-autosar. Provide your ARXML
folder, source folders and other options. In
addition, provide the earlier generated
options file with the -extra-options-file
option.

polyspace-autosar ... \
-extra-options-file options.txt

See also “Run Polyspace on AUTOSAR Code
Using Build Command”.

-show-prove AUTOSAR_QUALIFIED_NAME After analysis, open results for a specific software
component whose internal behavior is specified
by AUTOSAR_QUALIFIED_NAME.

See Also
ARXML files selection (-autosar-multitasking) | AUTOSAR runnable not
implemented | Invalid result of AUTOSAR runnable implementation | Invalid use of
AUTOSAR runtime environment function

Topics
“Run Polyspace on AUTOSAR Code”
“Review Polyspace Results on AUTOSAR Code”
“Troubleshoot Polyspace Analysis of AUTOSAR Code”
“Benefits of Polyspace for AUTOSAR”
“Using Polyspace in AUTOSAR Software Development”

5 Functions, Classes, Methods, Properties, and Apps

5-14

Introduced in R2018a

 polyspace-autosar

5-15

polyspace-code-prover
(DOS/UNIX) Run a Code Prover verification from Windows, Linux, or other command line

Syntax
polyspace-code-prover [OPTIONS]

polyspace-code-prover -sources sourceFiles [OPTIONS]

polyspace-code-prover -sources-list-file listOfSources [OPTIONS]

polyspace-code-prover -options-file optFile

polyspace-code-prover -h[elp]

Description
polyspace-code-prover [OPTIONS] runs a Code Prover verification if your current folder
contains a sources subfolder with source files (.c or .cxx files). The verification considers files in
sources and all subfolders under sources. You can customize the verification with additional
options.

polyspace-code-prover -sources sourceFiles [OPTIONS] runs a Code Prover verification
on the source file(s) sourceFiles. You can customize the verification with additional options.

polyspace-code-prover -sources-list-file listOfSources [OPTIONS] runs a Code
Prover verification on the source files listed in the text file listOfSources. You can customize the
verification with additional options.

polyspace-code-prover -options-file optFile runs a Code Prover verification with the
options specified in the option file.

polyspace-code-prover -h[elp] lists a summary of possible analysis options.

Examples

Run Verification by Directly Specifying Options

Run a local Code Prover verification by specifying analysis options in the command itself. This
example uses source files from a demo Polyspace Code Prover example. To run this example, replace
polyspaceroot with the path to your Polyspace installation, for example C:\Program Files
\Polyspace\R2019a.

Run a verification on numerical.c and programming.c, checking for MISRA C:2012 mandatory
rules and using GNU 4.7 compiler settings. This example command is split by ^ characters for
readability. In practice, you can put all commands on one line.

polyspaceroot\polyspace\bin\polyspace-code-prover -lang C^
 -sources polyspaceroot\polyspace\examples\cxx\Code_Prover_Example\sources*.c,^

5 Functions, Classes, Methods, Properties, and Apps

5-16

 -I polyspaceroot\polyspace\examples\cxx\Code_Prover_Example\sources\^
 -compiler generic -misra3 mandatory^
 -author jlittle -prog myProject -results-dir C:\Polyspace_Workspace\Results\

Open the results.

polyspaceroot\polyspace\bin\polyspace C:\Polyspace_Workspace\Results\^
ps_results.pscp

To rerun the verification, you must rerun it from the command line.

Run Verification with Options File

Run a verification by using an options file to specify your source files and analysis options. To run this
example, replace polyspaceroot with the path to your Polyspace installation, for example
C:\Program Files\Polyspace\R2019a.

Save this text to a text file called myOptsFile.txt.

Polyspace analysis options
-I polyspaceroot\polyspace\examples\cxx\Code_Prover_Example\sources
-verif-version 1.0
-sources polyspaceroot\polyspace\examples\cxx\Code_Prover_Example\sources*.c
-lang C
-target i386
-compiler generic
-dos
-do-not-generate-results-for all-headers
-misra3 mandatory-required
CustomRulesDefinition.txt
-entry-points proc1,proc2,server1,server2,tregulate
-critical-section-begin Begin_CS:Cs10
-critical-section-end End_CS:Cs10
-temporal-exclusions-file polyspaceroot\^
polyspace\examples\cxx\Code_Prover_Example\sources\temporal_exclusions.txt
-float-rounding-mode to-nearest
-signed-integer-overflows forbid
-unsigned-integer-overflows allow
-uncalled-function-checks none
-check-subnormal allow
-O2
-to Software Safety Analysis level 2
-context-sensitivity-auto
-path-sensitivity-delta 0
-author jlittle
-prog myProject
-results-dir C:\Polyspace_Workspace\Results\

Run the verification with the options specified in the text file.

polyspaceroot\polyspace\bin\polyspace-code-prover -options-file myOptsFile.txt

Open the results.

polyspaceroot\polyspace\bin\polyspace C:\Polyspace_Workspace\Results\^
ps_results.pscp

 polyspace-code-prover

5-17

To rerun the verification, you must rerun it from the command line.

Input Arguments
sourceFiles — Comma-separated names of C or C++ files to analyze
source file name or path

Comma-separated C or C++ source file names, specified as a string. If the files are not in the current
folder (pwd), sourceFiles must include a full or relative path. To avoid errors because of paths with
spaces, add quotes " " around the path. For more information, see -sources.

If your current folder contains a sources subfolder with the source files, you can omit the -sources
flag. The verification considers files in sources and all subfolders under sources.
Example: myFile.c, "C:\mySources\myFile1.c,C:\mySources\myFile2.c"

listOfSources — Text file listing names of C or C++ files to analyze
sources list file name or path

Text file which lists the name of C or C++ files, specified as a string. If the files are not in the current
folder (pwd), listOfSources must include a full or relative path. To avoid errors because of paths
with spaces, add quotes " " around the path. For more information, see -sources-list-file.
Example: filename.txt, "C:\ps_analysis\source_files.txt"

[OPTIONS] — Analysis option and corresponding value
command-line flag with optional value

Analysis options and their corresponding values, specified by the option name and if applicable value.
For syntax specifications, see the individual analysis option reference pages.
Example: -lang C-CPP, -target i386

optFile — Text file listing analysis options and values
options file name or path

Text file listing analysis options and values, specified as a string. For more information, see -
options-file.
Example: opts.txt, "C:\ps_analysis\options.txt"

See Also
polyspaceCodeProver

Topics
“Run Polyspace Analysis from Command Line”
“Analysis Options in Polyspace Code Prover”

Introduced in R2013b

5 Functions, Classes, Methods, Properties, and Apps

5-18

polyspace-configure
(DOS/UNIX) Create Polyspace project from your build system at the DOS or UNIX command line

Syntax
polyspace-configure buildCommand

polyspace-configure [OPTIONS] buildCommand

polyspace-configure [OPTIONS] -compilation-database jsonFile

Description
polyspace-configure buildCommand traces your build system and creates a Polyspace project
with information gathered from your build system.

polyspace-configure [OPTIONS] buildCommand traces your build system and uses -option
value to modify the default operation of polyspace-configure. Specify the modifiers before
buildCommand, otherwise they are considered as options in the build command itself.

polyspace-configure [OPTIONS] -compilation-database jsonFile creates a Polyspace
project with information gathered from the JSON compilation database file jsonFile that you
provide. You do not need to specify a build command or trace your build system. For more on JSON
compilation databases, see JSON Compilation Database.

Examples

Create Polyspace Project from Makefile

This example shows how to create a Polyspace project if you use the command make targetName
buildOptions to build your source code.

Create a Polyspace project specifying a unique project name. Use the -B or -W makefileName
option with make so that the all prerequisite targets in the makefile are remade.

polyspace-configure -prog myProject \
make -B targetName buildOptions

Open the Polyspace project in the Polyspace user interface.

Create Polyspace Options File from JSON Compilation Database

This example shows how to create a Polyspace options file from a JSON compilation database that you
generate with the CMake build system generator. CMake generates build instructions for the build
tool you specify, such as a Unix Makefiles for make or project files for Microsoft Visual Studio. CMake
supports the generation of a JSON compilation database only for Makefile generators and Ninja
generator. For more information, see makefile generators.

 polyspace-configure

5-19

https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://cmake.org/cmake/help/v3.5/manual/cmake-generators.7.html#makefile-generators

Generate a JSON compilation database for your CMake project. For an example of a Cmake project,
see polyspaceroot\help\toolbox\bugfinder\examples\compilation_database where
polyspaceroot is your Polyspace installation folder.

Navigate to the root of your project source tree. This folder contains the file CMakeLists.txt which
CMake uses as an input to generate build instructions. Enter these commands:

mkdir JSON_cdb
cd JSON_cdb
cmake -G "Unix Makefiles" -DCMAKE_EXPORT_COMPILE_COMMANDS=1 ../

The last command generates a Unix makefile with build instructions for the make build tool. The
command also outputs file compile_commands.json. This file lists the compiler calls for every
translation unit in your project.

Generate a Polyspace options file from the compilation database that you generated in the previous
step.

polyspace-configure -compilation-database compile_commands.json \
-output-options-file options.txt

You do not need to specify a build command and polyspace-configure does not trace your build.
Polyspace extracts information about your build system from the JSON compilation database.

Pass the options file to Polyspace to run an analysis, for instance:

polyspace-code-prover -options-file options.txt

Create Projects That Have Different Source Files from Same Build Trace

This example shows how to create different Polyspace projects from the same trace of your build
system. You can specify which source files to include for each project.

Trace your build system without creating a Polyspace project by specifying the option -no-project.
To ensure that all the prerequisite targets in your makefile are remade, use the appropriate make
build command option, for instance -B.

polyspace-configure -no-project make -B

polyspace-configure stores the cache information and the build trace in default locations inside
the current folder. To store the cache information and build trace in a different location, specify the
options -cache-path and -build-trace.

Generate Polyspace projects by using the build trace information from the previous step. Specify a
project name and use the -include-sources or -exclude-sources option to select which files to
include for each project.

polyspace-configure -no-build -prog myProject \
-include-sources "glob_pattern"

glob_pattern is a glob pattern that corresponds to folders or files you filter in or out of your
project. To ensure the shell does not expand the glob patterns you pass to polyspace-configure,
enclose them in double quotes. For more information on the supported syntax for glob patterns, see
“polyspace-configure Source Files Selection Syntax”.

5 Functions, Classes, Methods, Properties, and Apps

5-20

If you specified the options -build-trace and -cache-path in the previous step, specify them
again.

Delete the trace file and cache folder.

rm -r polyspace_configure_cache polyspace_configure_built_trace

If you used the options -build-trace and -cache-path, use the paths and file names from those
options.

Run Command-Line Polyspace Analysis from Makefile

This example shows how to run Polyspace analysis if you use the command make targetName
buildOptions to build your source code. In this example, you use polyspace-configure to trace
your build system but do not create a Polyspace project. Instead you create an options file that you
can use to run Polyspace analysis from command-line.

Create a Polyspace options file specifying the -output-options-file command. Use the -B or -W
makefileName option with make so that all prerequisite targets in the makefile are remade.

polyspace-configure -output-options-file\
 myOptions make -B targetName buildOptions

Use the options file that you created to run a Polyspace analysis at the command line:

polyspace-code-prover -options-file myOptions

Input Arguments
buildCommand — Command for building source code
build command

Build command specified exactly as you use to build your source code.
Example: make -B, make -W makefileName

[OPTIONS] — Options for changing default operation of polyspace-configure
single option starting with -, followed by argument | multiple space-separated option-argument pairs

Basic Options

Option Argument Description
-prog Project name Project name that appears in the Polyspace user

interface. The default is polyspace.

If you do not use the option -output-project, the -
prog argument also sets the project name.

Example: -prog myProject creates a project that
has the name myProject in the user interface. If you
do not use the option -output-project, the project
name is also myProject.psrprj.

 polyspace-configure

5-21

Option Argument Description
-author Author name Name of project author.

Example: -author jsmith
-output-project Path Project file name and location for saving project. The

default is the file polyspace.psprj in the current
folder.

Example: -output-project ../myProjects/
project1 creates a project project1.psprj in the
folder with the relative path ../myProjects/.

-output-options-file File name Option to create a Polyspace analysis options file. Use
this file for command-line analysis using one of these
commands:

• polyspace-bug-finder
• polyspace-code-prover
• polyspace-bug-finder-server
• polyspace-code-prover-server
• polyspace-bug-finder-access

-allow-build-error None Option to create a Polyspace project even if an error
occurs in the build process.

If an error occurs, the build trace log shows the
following message:

polyspace-configure (polyspaceConfigure)
 ERROR: build command
 command_name fail [status=status_value]

command_name is the build command name that you
use and status_value is the non-zero exit status or
error level that indicates which error occurred in
your build process.

This option is ignored when you use -compilation-
database.

-allow-overwrite None Option to overwrite a project with the same name, if
it exists.

By default, polyspace-configure
(polyspaceConfigure) throws an error if a project
with the same name already exists in the output
folder. Use this option to overwrite the project.

5 Functions, Classes, Methods, Properties, and Apps

5-22

Option Argument Description
-no-console-output

-silent (default)

-verbose

None Option to suppress or display additional messages
from running polyspace-configure
(polyspaceConfigure).

• -no-console-output – Suppress all outputs
including errors and warnings.

• -silent (default) – Show only errors and
warnings.

• -verbose – Show all messages.

If you specify more than one of these options, the
most verbose option is applied.

These options are ignored if they are used in
combination with -easy-debug.

-help None Option to display the full list of polyspace-
configure (polyspaceConfigure) commands

-debug None Option to store debug information for use by
MathWorks technical support.

This option has been superseded by the option -
easy-debug.

-easy-debug Path Option to store debug information for use by
MathWorks technical support.

After a polyspace-configure
(polyspaceConfigure) run, the path provided
contains a zipped file ending with pscfg-
output.zip. If the run fails to create a complete
Polyspace project or options file, send this zipped file
to MathWorks Technical Support for further
debugging. The zipped file does not contain source
files traced in the build. See also “Errors in Project
Creation from Build Systems”.

Options to Create Multiple Modules

These options are not compatible with -compilation-database.

 polyspace-configure

5-23

Option Argument Description
-module None Option to create a separate options file for each

binary created in build system.

You can only create separate options files for different
binaries. You cannot create multiple modules in a
Polyspace project (for running in the Polyspace user
interface).

Use this option only for build systems that use GNU
and Visual C++ compilers.

See also “Modularize Polyspace Analysis by Using
Build Command”.

-output-options-path Path name Location where generated options files are saved. Use
this option together with the option -module.

The options files are named after the binaries created
in the build system.

Advanced Options

5 Functions, Classes, Methods, Properties, and Apps

5-24

Option Argument Description
-compilation-database Path and file name Location and name of JSON compilation database

(JSON CDB) file. You generate this file from your
build system, for instance by using the flag -
DCMAKE_EXPORT_COMPILE_COMMANDS=1 with
cmake. The file contains compiler calls for all the
translation units in you projects. For more
information, see JSON Compilation Database.
polyspace-configure uses the content of this file
to get information about your build system. The
extracted compiler paths in the JSON CDB must be
accessible from the path where you run polyspace-
configure.

You do not specify a build command when you use
this option.

The build systems and compilers support the
generation of a JSON CDB:

• CMake
• Bazel
• Clang
• Ninja
• Qbs
• waf

This option is not compatible with -no-project and
with the options to create multiple modules.

The cache control options, -allow-build-error,
and -no-build are ignored when you use this
option.

-compiler-config Path and file name Location and name of compiler configuration file.

The file must be in a specific format. For guidance,
see the existing configuration files in
polyspaceroot\polyspace\configure\
compiler_configuration\. For information on the
contents of the file, see “Compiler Not Supported for
Project Creation from Build Systems”.

Example: -compiler-configuration
myCompiler.xml

 polyspace-configure

5-25

https://clang.llvm.org/docs/JSONCompilationDatabase.html

Option Argument Description
-no-project None Option to trace your build system without creating a

Polyspace project and save the build trace
information.

Use this option to save your build trace information
for a later run of polyspace-configure
(polyspaceConfigure) with the -no-build
option.

This option is not compatible with -compilation-
database.

-no-build None Option to create a Polyspace project using previously
saved build trace information.

To use this option, you must have the build trace
information saved from an earlier run of polyspace-
configure (polyspaceConfigure) with the -no-
project option.

If you use this option, you do not need to specify the
buildCommand argument.

This option is ignored when you use -compilation-
database.

5 Functions, Classes, Methods, Properties, and Apps

5-26

Option Argument Description
-no-sources None Option to create a Polyspace options file that does not

contain the source file specifications.

Use this option when you intend to specify the source
files by other means. For instance, you can use this
option when:

• Running Polyspace on AUTOSAR-specific code.

You want to create an options file that traces your
build command for the compiler options:

-output-options-file options.txt -no-sources

You later append this options file when extracting
source file names from ARXML specifications and
running the subsequent Code Prover analysis with
polyspace-autosar

-extra-options-file options.txt

See also “Run Polyspace on AUTOSAR Code Using
Build Command”.

• Running Polyspace in Eclipse™.

Your source files are already specified in your
Eclipse project. When running a Polyspace
analysis, you want to specify an options file that
has the compilation options only.

 polyspace-configure

5-27

Option Argument Description
-extra-project-options Options to use for

subsequent
Polyspace analysis.
For instance, "-
stubbed-
pointers-are-
unsafe".

Options that are used for subsequent Polyspace
analysis.

Once a Polyspace project is created, you can change
some of the default options in the project.
Alternatively, you can pass these options when
tracing your build command. The flag -extra-
project-options allows you to pass additional
options.

Specify multiple options in a space separated list, for
instance "-allow-negative-operand-in-shift
-stubbed-pointers-are-unsafe".

Suppose you have to set the option -stubbed-
pointers-are-unsafe for every Polyspace project
created. Instead of opening each project and setting
the option, you can use this flag when creating the
Polyspace project:

-extra-project-options
 "-stubbed-pointers-are-unsafe"

For the list of options available, see:

• “Analysis Options in Polyspace Code Prover”

If you are creating an options file instead of a
Polyspace project from your build command, do not
use this flag.

-tmp-path Path Location of folder where temporary files are stored.
-build-trace Path and file name Location and name of file where build information is

stored. The default is ./
polyspace_configure_build_trace.log.

Example: -build-trace ../build_info/
trace.log

-include-sources

-exclude-sources

Glob pattern Option to specify which source files polyspace-
configure (polyspaceConfigure) includes in,
or excludes from, the generated project. You can
combine both options together.

A source file is included if the file path matches the
glob pattern that you pass to -include-sources.

A source file is excluded if the file path matches the
glob pattern that you pass to -exclude-sources.

5 Functions, Classes, Methods, Properties, and Apps

5-28

Option Argument Description
-print-included-sources

-print-excluded-sources

None Option to print the list of source files that
polyspace-configure (polyspaceConfigure)
includes in, or excludes from, the generated project.
You can combine both options together. The output
displays the full path of each file on a separate line.

Use this option to troubleshoot the glob patterns that
you pass to -include-sources or -exclude-
sources. You can see which files match the pattern
that you pass to -include-sources or -exclude-
sources.

-compiler-cache-path Folder path Specify a folder path where polyspace-configure
looks for or stores the compiler cache files. If the
folder does not exist, polyspace-configure
creates it.

By default, Polyspace looks for and stores compiler
caches under these folder paths:

• Windows

%appdata%\Mathworks\R20xxY\Polyspace
• Linux

~/.matlab/R20xxY/Polyspace
• Mac

~/Library/Application Support/
MathWorks/MATLAB/R20xxY/Polyspace

R20xxY is the release version of your Polyspace
product, for instance R2020b.

-no-compiler-cache None Use this option if you do not want Polyspace to cache
your compiler configuration information or to use an
existing cache for your compiler configuration.

By default, the first time you run polyspace-
configure with a particular compiler configuration,
Polyspace queries your compiler for the size of
fundamental types, compiler macro definitions, and
other compiler configuration information then caches
this information. Polyspace reuses the cached
information in subsequent runs of polyspace-
configure for builds that use the same compiler
configuration.

-reset-compiler-cache-
entry

None Use this option to query the compiler for the current
configuration and to refresh the entry in the cache
file that corresponds to this configuration. Other
compiler configuration entries in the cache are not
updated.

 polyspace-configure

5-29

Option Argument Description
-clear-compiler-cache None Use this option to delete all compiler configurations

stored in the cache file.

If you also specify a build command or -
compilation-database, polyspace-configure
computes and caches the compiler configuration
information of the current run, except if you specify -
no-project or -no-compiler-cache.

-import-macro-definitions none

from-whitelist

from-source-
tokens

Use this option to specify how polyspace-
configure queries the compiler for macro
definitions.

You can specify:

• none — Polyspace does not query the compiler for
macro definitions. You must provide the macro
definitions manually.

• from-whitelist — Polyspace uses an internal
white list to query the compiler for macro
definitions.

Polyspace uses the white list by default when you
use the option -compilation-database.

• from-source-tokens (default, except if you use
-compilation-database) — Polyspace uses
every non-keyword token in your source code to
query your compiler for macro definitions.

-options-for-sources-
delimiter

A single character Specify an option separator to use when multiple
analysis options are associated with one source file
using the -options-for-sources option. Typically,
the -options-for-sources option uses a
semicolon as separator.

See also -options-for-sources.

Cache Control Options

These options are primarily useful for debugging. Use the options if polyspace-configure
(polyspaceConfigure) fails and MathWorks Technical Support asks you to use the option and
provide the cached files. Starting R2020a, the option -easy-debug provides an easier way to
provide debug information. See “Contact Technical Support About Issues with Running Polyspace”.

These options are ignored when you use -compilation-database.

5 Functions, Classes, Methods, Properties, and Apps

5-30

Option Argument Description
-no-cache

-cache-sources (default)

-cache-all-text

-cache-all-files

None Option to perform one of the following:

• -no-cache: Not create a cache
• -cache-sources: Cache text files temporarily

created during build for later use by polyspace-
configure (polyspaceConfigure).

• -cache-all-text: Cache all text files including
sources and headers.

• -cache-all-files: Cache all files including
binaries.

Typically, you cache temporary files created by your
build command to debug issues in tracing the
command.

-cache-path Path Location of folder where cache information is stored.

When tracing a Visual Studio build (devenv.exe), if
you see the error:

path is too long

try using a shorter path for this option to work
around the error.

Example: -cache-path ../cache
-keep-cache

-no-keep-cache (default)

None Option to preserve or clean up cache information
after polyspace-configure
(polyspaceConfigure) completes execution.

If polyspace-configure
(polyspaceConfigure) fails, you can provide this
cache information to technical support for debugging
purposes.

See Also
Topics
“Requirements for Project Creation from Build Systems”
“Compiler Not Supported for Project Creation from Build Systems”
“Modularize Polyspace Analysis by Using Build Command”

Introduced in R2013b

 polyspace-configure

5-31

polyspace-report-generator
(DOS/UNIX) Generate reports for Polyspace analysis results stored locally or on Polyspace Access

Syntax
polyspace-report-generator -template outputTemplate [OPTIONS]
polyspace-report-generator -generate-results-list-file [-results-dir
resultsFolder] [-set-language-english]
polyspace-report-generator -generate-variable-access-file [-results-dir
resultsFolder] [-set-language-english]

polyspace-report-generator -template outputTemplate -host hostName -run-id
runID> [ACCESS_OPTIONS] [OPTIONS]
polyspace-report-generator -generate-results-list-file -host hostName -run-id
runID [ACCESS_OPTIONS] [-set-language-english]
polyspace-report-generator -generate-variable-access-file -host hostName -
run-id runID [ACCESS_OPTIONS] [-set-language-english]
polyspace-report-generator -configure-keystore

Description
polyspace-report-generator -template outputTemplate [OPTIONS] generates a report
by using the template outputTemplate for the local analysis results that you specify with OPTIONS.

By default, reports for results from project-name are stored as project-name_report-name in
the PathToFolder\Polyspace-Doc folder. PathToFolder is the results folder of project-name.

polyspace-report-generator -generate-results-list-file [-results-dir
resultsFolder] [-set-language-english] exports the analysis results stored locally in
resultsFolder to a tab-delimited text file. The file contains the result information available on the
Results List pane in the user interface. For more information on the exported results list, see “View
Exported Results”.

By default, the results file for results from project-name is stored in the PathToFolder
\Polyspace-Doc folder. PathToFolder is the results folder of project-name.

For exporting results to a tab-delimited text file, the polyspace-results-export command is
preferred.

polyspace-report-generator -generate-variable-access-file [-results-dir
resultsFolder] [-set-language-english] exports the list of global variables in your code
from the Code Prover analysis stored locally in FOLDER to a tab-delimited text file. The file contains
the information available on the Variable Access pane in the user interface. For more information on
the exported variables list, see “View Exported Variable List”.

By default, the variables file for results from project-name is stored in the PathToFolder
\Polyspace-Doc folder. PathToFolder is the results folder of project-name.

polyspace-report-generator -template outputTemplate -host hostName -run-id
runID> [ACCESS_OPTIONS] [OPTIONS] generates a report by using the template

5 Functions, Classes, Methods, Properties, and Apps

5-32

outputTemplate for the analysis results corresponding to run runID on Polyspace Access.
hostName is the fully qualified host name of the machine that hosts Polyspace Access.

By default, reports for results from project-name are stored as project-name_report-name in
the PathToFolder\Polyspace-Doc folder. PathToFolder is the path from which you call the
command.

polyspace-report-generator -generate-results-list-file -host hostName -run-id
runID [ACCESS_OPTIONS] [-set-language-english] exports the analysis results
corresponding to run runID on Polyspace Access to a tab-delimited text file. The file contains the
result information available on the Results List pane in the Polyspace Access web interface.
hostName is the fully qualified host name of the machine that hosts Polyspace Access. For more
information on the exported results list, see “Results List” (Polyspace Code Prover Access).

By default, the results file for results from project-name is stored in the PathToFolder
\Polyspace-Doc folder. PathToFolder is the path from which you call the command.

For exporting results to a tab-delimited text file, the polyspace-results-export command is
preferred.

polyspace-report-generator -generate-variable-access-file -host hostName -
run-id runID [ACCESS_OPTIONS] [-set-language-english] exports the list of global
variables in your code from the Code Prover analysis corresponding to run runID on Polyspace
Access to a tab-delimited text file. The file contains the information available on the Variable Access
pane in the Polyspace Access web interface. hostName is the fully qualified host name of the machine
that hosts Polyspace Access. For more information on the exported variables list, see “View Exported
Variable List”.

By default, the variables file for results from project-name is stored in the PathToFolder
\Polyspace-Doc folder. PathToFolder is the path from which you call the command.

polyspace-report-generator -configure-keystore configures the report generator to
communicate with Polyspace Access over HTTPS.

Run this one-time configuration step if Polyspace Access is configured to use the HTTPS protocol and
you do not have a Polyspace Bug Finder desktop license, or you have a desktop license but you have
not configured the desktop UI to communicate with Polyspace Access over HTTPS. Before running
this command, generate a client keystore to store the SSL certificate that Polyspace Access uses for
HTTPS. See “Generate a Client Keystore” (Polyspace Code Prover Access).

Examples

Generate PDF Reports for Analysis Results Stored Locally

You can generate multiple reports for analysis results that you store locally.

Create a variable template_path to store the path to the report templates and create a variable
report_templates to store a comma-separated list of templates to use.

SET template_path="C:\Program Files"\Polyspace\R2019a\toolbox\polyspace^
\psrptgen\templates\
SET report_templates=%template_path%\Developer.rpt,^
%template_path%\CodingStandards.rpt

 polyspace-report-generator

5-33

Generate the reports from the templates that you specified in report_templates for analysis
results of Polyspace project myProject.

 polyspace-report-generator -template %report_templates% ^
-results-dir C:\Polyspace_Workspace\myProject\Module_1\CP_Result ^
-format PDF

The command generates two PDF reports, myProject_Developer.PDF and
myProject_CodingStandards.PDF. The reports are stored in C:\Polyspace_Workspace
\myProject\Module_1\CP_Result\Polyspace-Doc. For more information on the content of the
reports, see Bug Finder and Code Prover report (-report-template).

Configure Report Generator with Client Keystore

If you configure Polyspace Access to use the HTTPS protocol, you must generate a client keystore
where you store the SSL certificate that Polyspace Access uses, and configure polyspace-report-
generator to use that keystore. See “Generate a Client Keystore” (Polyspace Code Prover Access).
This one-time configuration enables the report generator to communicate with Polyspace Access over
HTTPS.

To configure the report generator with a client keystore, use the polyspace-report-generator -
configure-keystore command. Follow the prompts to provide the URL you use to log into
Polyspace Access, the full path to the keystore file you generated, and the keystore password.
polyspace-report-generator -configure-keystore
Location: US, user name: jsmit, id: 62600@us-jsmith, print mode: false
Enter the Polyspace Access URL using form http[s]://<host>:<port> :
https://myAccessServer:9443
Enter full path to client keystore file :
C:\R2019b\ssl\client-cert.jks
Enter client keystore password :

The keystore has been configured

You must run the keystore configuration command again if:

• The Polyspace Access URL changes, for instance if you use a different port number.
• The path to the keystore file changes.
• The keystore password changes.

Generate Report and Variables List from Polyspace Access

Note To generate reports of results on Polyspace Access at the command line, you must have a
Polyspace Bug Finder Server or Polyspace Code Prover Server installation.

Suppose that you want to generate a report and export the variables list for the results of a Code
Prover analysis stored on the Polyspace Access database.

To connect to Polyspace Access, provide a host name and your login credentials including your
encrypted password. To encrypt your password, use the polyspace-access command and enter
your user name and password at the prompt.

polyspace-access -encrypt-password
login: jsmith

5 Functions, Classes, Methods, Properties, and Apps

5-34

password:
CRYPTED_PASSWORD LAMMMEACDMKEFELKMNDCONEAPECEEKPL
Command Completed

Store the login and encrypted password in a credentials file and restrict read and write permission on
this file. Open a text editor, copy these two lines in the editor, then save the file as
myCredentials.txt for example.

 -login jsmith
 -encrypted-password LAMMMEACDMKEFELKMNDCONEAPECEEKPL

To restrict the file permissions, right-click the file and select the Permissions tab on Linux or the
Security tab on Windows.

To specify project results on Polyspace Access, specify the run ID of the project. To obtain a list of
projects with their latest run IDs, use the polyspace-access with option -list-project.
polyspace-access -host myAccessServer -credentials-file myCredentials.txt -list-project
Connecting to https://myAccessServer:9443
Connecting as jsmith
Get project list with the last Run Id
Restricted/Code_Prover_Example (Code Prover) RUN_ID 14
public/Bug_Finder_Example (Bug Finder) RUN_ID 24
public/CP/Code_Prover_Example (Polyspace Code Prover) RUN_ID 16
public/Polyspace (Code Prover) RUN_ID 28
Command Completed

For more information on this command, see polyspace-access.

Generate a Developer report for results with run ID 16 from the Polyspace Access instance with
host name myAccessServer. The URL of this instance of Polyspace Access is https://
myAccessServer:9443.

SET template_path=^
"C:\Program Files\Polyspace\R2019a\toolbox\polyspace\psrptgen\templates"

polyspace-report-generator -credentials-file myCredentials.txt ^
-template %template_path%\Developer.rpt ^
-host myAccessServer ^
-run-id 16 ^
-output-name myReport

The command creates report myReport.docx by using the template that you specify. The report is
stored in folder Polyspace-Doc on the path from which you called the command.

Generate a tab-delimited text file that contains a list of global variables in your code for the specified
analysis results.

polyspace-report-generator -credentials-file myCredentials.txt^
-generate-variable-access-file ^
-host myAccessServer ^
-run-id 16

The list of global variables Variable_View.txt is stored in the same folder as the generated
report. For more information on the exported variables list, see “View Exported Variable List”.

Input Arguments
outputTemplate — path to report template file
string

 polyspace-report-generator

5-35

Path to the report template that you use to generate an analysis report. To generate multiple reports,
specify a comma-separated list of report template paths (do not put a space after the commas). The
templates are available in polyspaceroot\toolbox\polyspace\psrptgen\templates\ as .rpt
files. Here, polyspaceroot is the Polyspace installation folder. For more information on the
available templates, see Bug Finder and Code Prover report (-report-template).

This option is not compatible with -generate-variable-access-file and -generate-
results-list-file.
Example: C:\Program Files\Polyspace\R2019a\toolbox\polyspace\psrptgen\templates
\Developer.rpt

Example: TEMPLATE_PATH\BugFinder.rpt,TEMPLATE_PATH\CodingStandards.rpt

resultsFolder — Analysis results folder path
string

Path to a folder containing Polyspace analysis results (.psbf or .pscp file). To generate a report for
multiple verifications, specify a comma-separated list of folder paths (do not put a space after the
commas). If you do not specify a folder path, the command generates a report for analysis results in
the current folder.
Example: C:\Polyspace_Workspace\My_project\Module_1\results
Example: C:\Polyspace_Workspace\My_project
\Module_2\results,C:\Polyspace_Workspace\My_project\Module_3\other_results

hostName — Polyspace Access machine host name
string

Fully qualified host name of the machine that hosts the Polyspace Access Gateway API service. You
must specify a host name to generate a report for results on the Polyspace Access database.
Example: my-company-server

runID — Polyspace Access run ID
integer

Run ID of the project findings for which you generate a report. Polyspace assigns a unique run ID to
each analysis run that you upload to the Polyspace Access.

You can see the run ID of a project in the Polyspace Access web interface. To get the run ID, use the
command polyspace-access with option -list-project.

OPTIONS — Options for generated report
string

5 Functions, Classes, Methods, Properties, and Apps

5-36

Option Description
-format HTML | PDF | WORD File format of the report that you generate. By

default, the command generates a WORD
document.

To generate reports in multiple formats, specify a
comma-separated list of formats. (Do not put a
space after the commas). For instance, -format
PDF,HTML.

This option is not compatible with -generate-
variable-access-file and -generate-
results-list-file.

-output-name outputName Name of the generated report or folder name if
you generate multiple reports.

The report or exported file is saved on the path
from which you call the command. To save in a
different folder, specify the full path to the folder,
for instance -output-name C:\PathTo
\OtherFolder.

-results-dir FOLDER_1,...,FOLDER_N Path to the locally stored results folder. To
generate reports for multiple analyses, specify a
comma-separated list of folder path. (Do not put a
space after the commas). For example:

-results-dir folderPath1,folderPath2

-set-language-english Generate the report in English. Use this option if
your display language is set to another language.

-h Display the help information.

ACCESS_OPTIONS — Options for Polyspace Access
string

Option Description
-host HOST_NAME HOST_NAME corresponds to the host name that

you specify in the URL of the Polyspace Access
interface, for example https://
HOST_NAME:port/metrics/index.html. If
you are unsure about which host name to use,
contact your Polyspace Access administrator. The
default host name is localhost.

This option is mandatory when you generate
reports for results stored on the Polyspace Access
database.

 polyspace-report-generator

5-37

Option Description
-run-id RUN_ID Run ID of the project. Polyspace assigns a unique

run ID to each analysis run that you upload. To
get the last run ID of a project, use the -list-
project option of the polyspace-access
command.

For more information on the command, see
polyspace-access.

This option is mandatory when you generate
reports for results stored on the Polyspace Access
database.

-all-units Specify this option to generate a report for all
units from a unit by unit analysis.

When you use this option, specify the run ID of
only one unit with -run-id. The command
includes the other units from the analysis in the
report.

-port portNumber portNumber corresponds to the port number
that you specify in the URL of the Polyspace
Access interface, for example https://
hostname:portNumber/metrics/
index.html. If you are unsure about which port
number to use, contact your Polyspace Access
administrator. The default port number is 9443.

-protocol http | https HTTP protocol used to connect to Polyspace
Access. Default value is https.

5 Functions, Classes, Methods, Properties, and Apps

5-38

Option Description
-credentials-file file_path Full path to the text file where you store your

login credentials. Use this option if, for instance,
you use a command that requires your Polyspace
Access credentials in a script but you do not want
to store your credentials in that script. While the
script runs, someone inspecting currently
running processes cannot see your credentials.

You can store only one set of credentials in the
file, either as -login and -encrypted-
password entries on separate lines, for instance:

-login jsmith
-encrypted-password LAMMMEACDMKEFELKMNDCONEAPECEEKPL

or as an -api-key entry:

-api-key keyValue123

Make sure that you restrict the read and write
permissions on the file where you store your
credentials. For example, to restrict read and
write permissions on file login.txt in Linux,
use this command:

chmod go-rwx login.txt

-api-key keyValue API key you use as a login credential instead of
providing your login and encrypted password. To
assign an API key to a user, see or contact your
Polyspace Access administrator.

Use the API key if, for instance, you use a
command that requires your Polyspace Access
login credentials as part of an automation script
with a CI tool like Jenkins. If a user updates his or
her password, you do not need to update the API
key associated with that user in your scripts.

It is recommended that you store the API key in a
file and pass that file to the command by using -
credentials-file.

-login username

-encryted-password ENCRYPTED_PASSWD

Credentials that you use to log into Polyspace
Access. The argument of -encrypted-
password is the output of the polyspace-
access -encrypt-password command.

For more information on the command, see
polyspace-access.

 polyspace-report-generator

5-39

Tips
You cannot use the polyspace-report-generator command with results generated with
Polyspace as You Code. Use the polyspace-results-export command instead. See polyspace-
results-export.

See Also
polyspace-results-export

Introduced in R2013b

5 Functions, Classes, Methods, Properties, and Apps

5-40

polyspace-results-export
(DOS/UNIX) Export Polyspace results to external formats such as CSV or JSON

Syntax
polyspace-results-export -format exportFormat -results-dir resultsFolder [
OPTIONS]

polyspace-results-export -format exportFormat -host hostName -run-id runID [
OPTIONS] [ACCESS_OPTIONS]

Description
polyspace-results-export -format exportFormat -results-dir resultsFolder [
OPTIONS] exports Polyspace analysis results stored locally in resultsFolder to an external format
exportFormat.

polyspace-results-export -format exportFormat -host hostName -run-id runID [
OPTIONS] [ACCESS_OPTIONS] exports Polyspace analysis results stored in Polyspace Access to an
external format exportFormat. Specify the Polyspace Access instance by using hostName and the
project on Polyspace Access by using runID.

Examples

Export Polyspace Results Stored Locally

Export results from a project myProject in the Polyspace user interface to JSON format.

Suppose your project is stored in C:\Polyspace_Workspace. To export results from a specific
module in the project, specify the path to the folder that directly contains results from the module.

polyspace-results-export -format json-sarif ^
-results-dir C:\Polyspace_Workspace\myProject\Module_1\BF_Result
-output-name C:\Polyspace_Workspace\reports\myProject\myProject.json

Export Results Stored in Polyspace Access

Note To generate reports of results on Polyspace Access at the command line, you must have a
Polyspace Bug Finder Server or Polyspace Code Prover Server installation.

Suppose that you want to export the results of a project on Polyspace Access to JSON format.

To connect to Polyspace Access, provide a host name and your login credentials including your
encrypted password. To encrypt your password, use the polyspace-access command and enter
your user name and password at the prompt.

 polyspace-results-export

5-41

polyspace-access -encrypt-password
login: jsmith
password:
CRYPTED_PASSWORD LAMMMEACDMKEFELKMNDCONEAPECEEKPL
Command Completed

Store the login and encrypted password in a credentials file and restrict read and write permission on
this file. Open a text editor, copy these two lines in the editor, then save the file as
myCredentials.txt for example.

 -login jsmith
 -encrypted-password LAMMMEACDMKEFELKMNDCONEAPECEEKPL

To restrict the file permissions, right-click the file and select the Permissions tab on Linux or the
Security tab on Windows.

To specify project results on Polyspace Access, specify the run ID of the project. To obtain a list of
projects with their latest run IDs, use the polyspace-access with option -list-project.
polyspace-access -host myAccessServer -credentials-file myCredentials.txt -list-project
Connecting to https://myAccessServer:9443
Connecting as jsmith
Get project list with the last Run Id
Restricted/Code_Prover_Example (Code Prover) RUN_ID 14
public/Bug_Finder_Example (Bug Finder) RUN_ID 24
public/CP/Code_Prover_Example (Polyspace Code Prover) RUN_ID 16
public/Polyspace (Code Prover) RUN_ID 28
Command Completed

For more information on this command, see polyspace-access.

If Polyspace Access uses the HTTPS protocol, use the polyspace-report-generator binary to
configure polyspace-results-export to enable communications with Polyspace Access over
HTTPS. See “Configure Report Generator with Client Keystore” on page 5-34.

Export results from the project with run ID 16 to JSON format.

polyspace-results-export -credentials-file myCredentials.txt
-format json-sarif^
-host myAccessServer ^
-run-id 16

Input Arguments
exportFormat — Output format for results
csv | json-sarif | console

Format in which the Polyspace results are exported: csv for CSV output or json-sarif for JSON
output. If you use the polyspace-bug-finder-access command for single-file analysis (Polyspace
as You Code), you can also export the results to the console using the format console.

Each result consists of information such as result name, family, and so on. Both CSV and JSON
formats result in almost the same content being exported but the exported content might refer to the
same type of information by different names.

• In the CSV format, each result consists of tab-separated information in columns such as ID,
Family, Group, Color, Check, and so on.

To package and potentially filter your result data, use the CSV format. For instance, you can
import the CSV file to Microsoft Excel® and use Excel filters on the results.

5 Functions, Classes, Methods, Properties, and Apps

5-42

• In the JSON format, each result consists of almost the same information as JSON object
properties. The properties shown for a result sometimes use a name that is different from the
name used in the CSV format. For instance, to get the full rule checker name for a result, use the
ruleId property of a result in combination with the id and name property of a rule. The reason
for the difference is that the JSON format follows the standard notation provided by the OASIS
Static Analysis Results Interchange Format (SARIF).

The JSON format contains some additional information such as the checker short name and the
full message that accompanies a result. Use the JSON format if you want to use this short name or
message. You can also use this format for a more standardized reporting of results. For instance, if
you use several static analysis tools and want to report their results in one interface by using a
single parsing algorithm, you can export all the results to the standard SARIF JSON format.

The console output is preformatted in a form similar to compiler errors and warnings, and contains
less information than the other formats. In particular, if you baseline Polyspace as You Code results
using integration results in the Polyspace Access web interface, use the JSON or CSV format for
maximum benefits from the baselining. See “Baseline Polyspace as You Code Results on Command
Line” (Polyspace Bug Finder Access).

resultsFolder — Result folder path
string

Path to a folder containing Polyspace analysis results (.psbf or .pscp file). If you do not specify a
folder path, the command generates a report for analysis results in the current folder.
Example: C:\Polyspace_Workspace\My_project\Module_1\results

hostName — Polyspace Access machine host name
string

hostName corresponds to the host name that you specify in the URL of the Polyspace Access
interface, for example https://hostName:port/metrics/index.html. If you are unsure about
which host name to use, contact your Polyspace Access administrator. The default host name is
localhost. You must specify a host name to generate a report for results on the Polyspace Access
database.
Example: my-company-server

runID — Polyspace Access run ID
integer

Run ID of the project findings that you export. A unique run ID is assigned to each analysis run that
you upload to Polyspace Access.

You can see the run ID of a project in the Polyspace Access web interface. To get the run ID of a
project at the command line, use the command polyspace-access with option -list-project.

OPTIONS — Additional options for exporting results
string

 polyspace-results-export

5-43

Option Description
-output-name outputName Name of the exported file. The default name is

results_list.txt (CSV) or
results_list.json (JSON).

The file is saved on the path from which you call
the command. To save the file in a different
folder, specify the full path to the folder, for
instance -output-name C:\PathTo
\OtherFolder.

-set-language-english Use this option if your display language is set to a
language other than English but you want the
exported results in English.

To see options available with this command, enter polyspace-results-export -h.

ACCESS_OPTIONS — Additional options for exporting results from Polyspace Access
string

Option Description
-port portNumber portNumber corresponds to the port number

that you specify in the URL of the Polyspace
Access interface, for example https://
hostname:portNumber/metrics/
index.html. If you are unsure about which port
number to use, contact your Polyspace Access
administrator. The default port number is 9443.

-protocol http | https HTTP protocol to connect to Polyspace Access.
Default value is https.

5 Functions, Classes, Methods, Properties, and Apps

5-44

Option Description
-credentials-file file_path Full path to the text file where you store your

login credentials. Use this option if, for instance,
you use a command that requires your Polyspace
Access credentials in a script but you do not want
to store your credentials in that script. While the
script runs, someone inspecting currently
running processes cannot see your credentials.

You can store only one set of credentials in the
file, either as -login and -encrypted-
password entries on separate lines, for instance:

-login jsmith
-encrypted-password
 LAMMMEACDMKEFELKMNDCONEAPECEEKPL

or as an -api-key entry:

-api-key keyValue123

Make sure that you restrict the read and write
permissions on the file where you store your
credentials. For example, to restrict read and
write permissions on file login.txt in Linux,
use this command:

chmod go-rwx login.txt

-api-key keyValue API key you use as a login credential instead of
providing your login and encrypted password. To
assign an API key to a user, see or contact your
Polyspace Access administrator.

Use the API key if, for instance, you use a
command that requires your Polyspace Access
login credentials as part of an automation script
with a CI tool like Jenkins. If a user updates his or
her password, you do not need to update the API
key associated with that user in your scripts.

It is recommended that you store the API key in a
file and pass that file to the command by using -
credentials-file.

-login username

-encryted-password ENCRYPTED_PASSWD

Credentials that you use to log into Polyspace
Access. The argument of -encrypted-
password is the output of the polyspace-
access -encrypt-password command.

For more information on the command, see
polyspace-access.

 polyspace-results-export

5-45

See Also

Introduced in R2020b

5 Functions, Classes, Methods, Properties, and Apps

5-46

polyspace-results-repository
(DOS/UNIX) Upload, download and otherwise interact with results in the Polyspace Metrics
repository

Syntax
polyspace-results-repository -upload resultsFolder -product productName -prog
projectName -verif-version versionNumber [OPTIONS]

polyspace-results-repository -download resultsFolder -product productName -
prog projectName -verif-version versionNumber [OPTIONS]

polyspace-results-repository -get-projects-list -product productName
polyspace-results-repository -get-versions-list -product productName -prog
projectName
polyspace-results-repository -get-run-numbers-list -product productName -prog
projectName -verif-version versionNumber
polyspace-results-repository -get-files-list -product productName -prog
projectName -verif-version versionNumber [OPTIONS]

polyspace-results-repository -get-sqo-id -product productName -prog
projectName -verif-version versionNumber [OPTIONS]
polyspace-results-repository -set-sqo-id SQOLevel -product productName -prog
projectName -verif-version versionNumber [OPTIONS]

polyspace-results-repository -delete -product productName -prog projectName -
verif-version versionNumber [OPTIONS]
polyspace-results-repository -rename -product productName -new-prog
newProjectName -new-verif-version newVersionNumber -prog projectName -verif-
version versionNumber [OPTIONS]

Description
polyspace-results-repository -upload resultsFolder -product productName -prog
projectName -verif-version versionNumber [OPTIONS] uploads Polyspace results in
resultsFolder to the Polyspace Metrics web repository.

You can customize the default upload with additional options.

polyspace-results-repository -download resultsFolder -product productName -
prog projectName -verif-version versionNumber [OPTIONS] downloads Polyspace results
from the Polyspace Metrics web repository to resultsFolder.

You can customize the default download with additional options.

polyspace-results-repository -get-projects-list -product productName displays the
Bug Finder or Code Prover projects currently in the Polyspace Metrics web repository.

polyspace-results-repository -get-versions-list -product productName -prog
projectName displays the versions of a project currently in the Polyspace Metrics web repository. If
the project involves file-by-file verification in Code Prover, add the -unit-by-unit option.

 polyspace-results-repository

5-47

polyspace-results-repository -get-run-numbers-list -product productName -prog
projectName -verif-version versionNumber displays the run numbers of a project version
currently in the Polyspace Metrics web repository.

The option is useful only if multiple results with the same project name and version number have
been uploaded to Polyspace Metrics.

polyspace-results-repository -get-files-list -product productName -prog
projectName -verif-version versionNumber [OPTIONS] displays the files involved in the
results for a certain project and version.

polyspace-results-repository -get-sqo-id -product productName -prog
projectName -verif-version versionNumber [OPTIONS] displays the Software Quality
Objectives being applied to a certain project and version.

polyspace-results-repository -set-sqo-id SQOLevel -product productName -prog
projectName -verif-version versionNumber [OPTIONS] applies Software Quality Objectives
specified by SQOLevel to a certain project and version.

polyspace-results-repository -delete -product productName -prog projectName -
verif-version versionNumber [OPTIONS] deletes a certain project version from the Polyspace
Metrics web repository.

polyspace-results-repository -rename -product productName -new-prog
newProjectName -new-verif-version newVersionNumber -prog projectName -verif-
version versionNumber [OPTIONS] renames a certain project version to another project and
version.

Examples

Upload Results to Polyspace Metrics

Suppose you want to upload Code Prover results from the folder C:\My_Results to the Polyspace
Metrics server localhost:12427. You want the project name to appear as Polyspace_Project
and the version number 1.0.

Upload the results using this information.

polyspace-results-repository -upload "C:\My_Results" \
 -prog "Polyspace_Project" \
 -verif-version "1.0" \
 -server "localhost:12427" \
 -product "CodeProver"

Download Results from Polyspace Metrics

Suppose you want to download Bug Finder results in version 1.0 of the project
Polyspace_Project from the Polyspace Metrics server localhost:12427. You want the results to
be downloaded to the folder C:\My_Results.

Download the results using this information.

5 Functions, Classes, Methods, Properties, and Apps

5-48

polyspace-results-repository -download "C:\My_Results" \
 -prog "Polyspace_Project" \
 -verif-version "1.0" \
 -server "localhost:12427" \
 -product "BugFinder"

Upload Results of Multiple Modules to Polyspace Metrics

If a Polyspace project consists of multiple modules, you can upload the analysis results for all modules
to the Polyspace Metrics interface.

For instance, if you run polyspace-autosar, a separate module is created for each AUTOSAR
Software Component. You can write a shell script (.sh file) like this (or a Windows .bat file) to
collect result files in subfolders of the project folder and upload them to Polyspace Metrics. Code
Prover result files use extension .pscp.

#! /bin/bash
Upload all results from a polyspace-autosar run to a Metrics server.
MODULES_DIR=`find "$RESULTS_DIR" -name ps_results.pscp -printf '%h\n'`
IFS='
'
for module in $MODULES_DIR; do
 # extract module name from its path foo/bar/behavior_name
 module_name=${module#*AUTOSAR/}
 # transform it to foo.bar.behavior_name
 module_name=${module_name//\//.}
 polyspace-results-repository \
 -f \
 -server localhost \
 -upload “$module” \
 -prog APPLICATION_NAME \
 -module $module_name \
 -verif-version "$RESULTS_VERSION”
done

Input Arguments
resultsFolder — Folder containing Polyspace results
string

Folder name, specified as a string (in double quotes). The folder must contain a Bug Finder result file
(.psbf) or a Code Prover file (.pscp).
Example: "C:\Polyspace_Projects\Proj1\Module_1\BF_Result", "C:\AUTOSAR\Demo
\polyspace\AUTOSAR\pkg\tst002\swc002\bhv\verification"

projectName — Name of Polyspace project
string

Name of Polyspace project, as it appears on Polyspace metrics.

 polyspace-results-repository

5-49

Example: "Polyspace_project"

newProjectName — Name of Polyspace project
string

New name of Polyspace project, as it appears on Polyspace metrics.
Example: "Polyspace_project_1"

versionNumber — Version number of Polyspace project
string

Version number of Polyspace project, as it appears on the Runs tab of Polyspace metrics.

Example: "1.0"

newVersionNumber — Version number of Polyspace project
string

New version number of Polyspace project, as it appears on the Runs tab of Polyspace metrics.
Example: "1.1"

productName — Name of product used for analysis
"CodeProver" (default) | "BugFinder"

Name of product used for producing the results, specified as "BugFinder" or "CodeProver".

SQOLevel — SQO Level or BF-QO Level to be applied to analysis results
"SQO-1" | "SQO-2" | "SQO-3" | "SQO-4" | "SQO-5" | "SQO-6" | "BF-QO-1" | "BF-QO-2" | "BF-
QO-3" | "BF-QO-4" | "BF-QO-5" | "BF-QO-6" | "Exhaustive"

Quality levels applied to analysis results. The quality levels consist of a set of criteria based on which
the analysis results are assigned a status of PASS or FAIL. Use the SQO levels for Code Prover
results and BF-QO level for Bug Finder results.

See:

• “Software Quality Objectives”
• “Bug Finder Quality Objective Levels”

5 Functions, Classes, Methods, Properties, and Apps

5-50

[OPTIONS] — Options to customize upload or download
option name

Option Description
-server serverName:portNumber Explicitly specify a server name and port number

for upload or download, for instance,
"localhost:12427".

By default, results are uploaded to or downloaded
from the server that you configured in Polyspace
preferences. See “Set Up Polyspace Metrics”.

-f Use this option in scripts so that the polyspace-
results-repository command does not
require user interaction.

By default, the command asks for confirmation
before transferring results from your local folder
to Polyspace Metrics or vice versa.

-password password_value Specify the password for uploading or download a
password-protected result in Polyspace Metrics.

-module module_name Specify that the result belongs to a module in the
current Polyspace project. Specify a module
name.

Use this option to upload results from a project
with multiple modules. In Polyspace Metrics, all
modules with the same -prog value appear
under the same project.

When you upload the results of multiple modules
in the same project, they appear as separate
modules in Polyspace Metrics. When you
download the result of a specific module, the
result appears in a subfolder of the download
folder.

-run-number If you uploaded multiple results with the same
project name and version number, they appear as
separate runs in Polyspace metrics. Use this
option to upload or download the results for a
specific run.

-integration or -unit-by-unit If you run a file-by-file verification, use -unit-
by-unit to upload or download all results
together. Otherwise, use -integration. For
more information on file-by-file verification, see
Verify files independently (-unit-by-
unit).

By default, the command assumes one result for
each upload or download.

 polyspace-results-repository

5-51

Introduced in R2013b

5 Functions, Classes, Methods, Properties, and Apps

5-52

polyspace-comments-import
(DOS/UNIX) Import review information from previous Polyspace analysis

Syntax
polyspace-comments-import -diff-rte prevResultsFolder currentResultsFolder [-
print-new-results] [-overwrite-destination-comments]

Description
polyspace-comments-import -diff-rte prevResultsFolder currentResultsFolder [-
print-new-results] [-overwrite-destination-comments] imports review information from
a results file in prevResultsFolder to currentResultsFolder. The review information includes
the severity, status and additional notes that you assign to a result.

Besides importing the review information, the command also shows the number of results where
review information could not be imported either because the result changed or the result already had
new review information. If you use the option -print-new-results, you see this information:

• Number of new results in current results folder, that is, results not present in previous results
folder

• Number of results removed from previous results folder, that is, results no longer present in the
current results folder

• Number of results in current results folder that do not have associated review information

You can also use this command to create a baseline for the analysis results. In the Polyspace user
interface, if you click the New button, only the analysis results that are new compared to the baseline
remain in the results list.

If you use the option -overwrite-destination-comments, newer review information on
previously existing results are overwritten with previous review information. For instance, if the same
result has a different status in the current and previous results folder, after using the polyspace-
comments-import command:

• Without the option, the result in the current results folder retains its status.
• With the option, the status of the result in the current results folder is overwritten with the status

from the previous results folder.

Examples

Import Review Information from Previous Polyspace Results

Run Bug Finder on a sample file and add some review information. Then, run Bug Finder a second
time and import the information from the previous run.

Copy the file numerical.c from polyspaceroot\polyspace\examples\cxx
\Bug_Finder_Example\sources to a writable folder. Open a command window and navigate to the
folder (using cd). Run Bug Finder on the file and save results in the subfolder Run_1:

 polyspace-comments-import

5-53

polyspace-bug-finder -sources numerical.c -results-dir Run_1/

Depending on the product installed, you can also run polyspace-code-prover, polyspace-bug-
finder-server or polyspace-code-prover-server.

Open the results file in the Run_1 subfolder:

polyspace Run_1/ps_results.psbf

Select a result. On the Result Details window, select a Severity and Status and add some notes.
You will import this review information to results from a later analysis.

Run Bug Finder again, but save the results in a different subfolder Run_2:

polyspace-bug-finder -sources numerical.c -results-dir Run_2/

You can open the results file in Run_2 and see that there is no review information.

Import the review information from the results file in the Run_1 subfolder to the Run_2 subfolder.
Add the option -print-new-results to see the number of new, removed and unreviewed results.

polyspace-comments-import -diff-rte Run_1/ Run_2/ -print-new-results

Open the results file in the Run_2 subfolder:

polyspace Run_2/ps_results.psbf

You see the review information imported from the results file in the Run_1 subfolder.

Input Arguments
prevResultsFolder — Folder containing previous Polyspace results with review
information
string

Path to a folder containing a Polyspace results file (.psbf file for Bug Finder results and .pscp file
for Code Prover results). The results are presumably from an earlier Polyspace analysis and contain
review information that will be imported to a later results file.
Example: "C:\Polyspace\Project_1_Run_25"

currentResultsFolder — Folder containing later Polyspace results
string

Path to a folder containing Polyspace results (.psbf file for Bug Finder results and .pscp file for
Code Prover results). The results are presumably from a later Polyspace analysis and have no review
information or review information for new results only. You want to import review information from
an earlier Polyspace analysis to these results.
Example: "C:\Polyspace\Project_1_Run_26"

See Also
-import-comments

5 Functions, Classes, Methods, Properties, and Apps

5-54

Topics
“Import Review Information from Previous Polyspace Analysis”

Introduced in R2013b

 polyspace-comments-import

5-55

pslinkfun
Manage model analysis at the command line

Syntax
pslinkfun('annotations','type',typeValue,'kind',kindValue,Name,Value)

pslinkfun('openresults',systemName)

pslinkfun('settemplate',psprjFile)
prjTemplate = pslinkfun('gettemplate')

pslinkfun('advancedoptions')
pslinkfun('enablebacktomodel')
pslinkfun('help')
pslinkfun('metrics')
pslinkfun('jobmonitor')
pslinkfun('stop')

Description
pslinkfun('annotations','type',typeValue,'kind',kindValue,Name,Value) adds an
annotation of type typeValue and kind kindValue to the selected block in the model. You can
specify a different block using a Name,Value pair argument. You can also add notes about a severity
classification, an action status, or other comments using Name,Value pairs.

In the generated code associated with the annotated block, Polyspace adds code comments before
and after the lines of code. Polyspace reads these comments and marks Polyspace results of the
specified kind with the annotated information.

Syntax limitations:

• You can have only one annotation per block. If a block produces both a rule violation and an error,
you can annotate only one type.

• Even though you apply annotations to individual blocks, the scope of the annotation can be larger.
The generated code from one block can overlap with another, causing the annotation to also
overlap.

For example, consider this model. The first summation block has a Polyspace annotation, but the
second does not.

However, the associated generated code adds all three inputs in one line of code.

5 Functions, Classes, Methods, Properties, and Apps

5-56

/* polyspace:begin<RTE:OVFL:Medium:To Fix>*/
annotate_y.Out1=(annotate_u.In1+annotate_U.In2)+annotate_U.In3;
/* polyspace:end<RTE:OVFL:Medium:To Fix> */

Therefore, the annotation justifies both summations.

pslinkfun('openresults',systemName) opens the Polyspace results associated with the model
or subsystem systemName in the Polyspace environment.

pslinkfun('settemplate',psprjFile) sets the configuration file for new verifications.

prjTemplate = pslinkfun('gettemplate') returns the template configuration file used for
new analyses.

pslinkfun('advancedoptions') opens the advanced verification options window to configure
additional options for the current model.

pslinkfun('enablebacktomodel') enables the back-to-model feature of the Simulink plug-in. If
your Polyspace results do not properly link to back to the model blocks, run this command.

pslinkfun('help') opens the Polyspace documentation in a separate window. Use this option for
only pre-R2013b versions of MATLAB.

pslinkfun('metrics') opens the Polyspace Metrics interface.

pslinkfun('jobmonitor') opens the Polyspace Job Monitor to display remote verifications in the
queue.

pslinkfun('stop') kills the code analysis that is currently running. Use this option for local
analyses only.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

Examples

Annotate a Block and Run a Polyspace Code Prover Verification

Use the Polyspace annotation function to annotate a block and see the annotation in the verification
results.

In the example model WhereAreTheErrors, set the current block to the division block of the 10*
x // (x-y) subsystem. Then, add an annotation to the current block to mark division by zero (DIV)
errors as justified with the annotation.

model = 'WhereAreTheErrors';
open(model)
gcb = 'WhereAreTheErrors/10* x // (x-y)/Divide';
pslinkfun('annotations','type','RTE','kind','ZDV','status',...
 'justified','comment','verified not an error')

In Simulink, the division block of the 10* x // (x-y) subsystem now has a Polyspace annotation.

 pslinkfun

5-57

At the command line, generate code for the model and run a verification. After the analysis is
finished, open the result in the Polyspace environment:

slbuild(model)
pslinkrun(model)
pslinkfun('openresults',model)

If you look at the orange division by zero error, the check is justified and includes the status and
comments from your annotation.

Add Batch Options to Default Configuration Template

Change advanced Polyspace options and set the new configuration as a template.

Load the model WhereAreTheErrors and open the advanced options window.

model = 'WhereAreTheErrors';
load_system(model)
pslinkfun('advancedoptions')

In the Run Settings pane, select the options Run Code Prover analysis on a remote cluster and
Upload results to Polyspace Metrics.

Set the configuration template for new Polyspace analyses to have these options.

pslinkfun('settemplate',fullfile(cd,'pslink_config',...
 'WhereAreTheErrors_config.psprj'))

View the current Polyspace template.

template = pslinkfun('gettemplate')

template =
C:\ModelLinkDemo\pslink_config\WhereAreTheErrors_config.psprj

View Polyspace Queue and Metrics

Run a remote analysis, view the analysis in the queue, and review the metrics.

Before performing this example, check that your Polyspace configuration is set up for remote analysis
and Polyspace Metrics.

Build the model WhereAreTheErrors, create a Polyspace options object, set the verification mode,
and open the advanced options window.

model = 'WhereAreTheErrors';
load_system(model)
slbuild(model)
opts = pslinkoptions(model);
opts.VerificationMode = 'CodeProver';
pslinkfun('advancedoptions')

In the Run Settings pane, select the options Run Code Prover analysis on a remote cluster and
Upload results to Polyspace Metrics.

5 Functions, Classes, Methods, Properties, and Apps

5-58

Run Polyspace, then open the Job Monitor to monitor your remote job.

pslinkrun(model,opts)
pslinkfun('jobmonitor')

After your job is finished, open the metrics server to see your job in the repository.

pslinkfun('metrics')

Input Arguments
typeValue — type of result
'RTE' | 'MISRA-C' | 'MISRA-AC-AGC' | 'MISRA-CPP' | 'JSF'

The type of result with which to annotate the block, specified as:

• 'RTE' for run-time errors.
• 'MISRA-C' for MISRA C coding rule violations (C code only).
• 'MISRA-AC-AGC' for MISRA C coding rule violations (C code only).
• 'MISRA-CPP' for MISRA C++ coding rule violations (C++ code only).
• 'JSF' for JSF C++ coding rule violations (C++ code only).

Example: 'type','MISRA-C'

kindValue — specific check or coding rule
check acronym | rule number

The specific check or coding rule specified by the acronym of the check or the coding rule number.
For the specific input for each type of annotation, see the following table.

type Value kind Values
'RTE' Use the abbreviation associated with the type of check that you want to

annotate. For example, 'UNR' – Unreachable Code.

For the list of possible checks, see: “Run-Time Checks”.
'MISRA-C' Use the rule number that you want to annotate. For example, '2.2'.

For the list of supported MISRA C rules and their numbers, see
“Supported MISRA C:2004 and MISRA AC AGC Rules”.

'MISRA-AC-AGC' Use the rule number that you want to annotate. For example, '2.2'.

For the list of supported MISRA AC AGC rules and their numbers, see
“Supported MISRA C:2004 and MISRA AC AGC Rules”.

'MISRA-CPP' Use the rule number that you want to annotate. For example, '0-1-1'.

For the list of supported MISRA C++ rules and their numbers, see
“MISRA C++:2008 Rules”.

'JSF' Use the rule number that you want to annotate. For example, '3'.

For the list of supported JSF C++ rules and their numbers, see
“Supported JSF C++ Coding Rules”.

 pslinkfun

5-59

Example: pslinkfun('annotations','type','MISRA-CPP','kind','1-2-3')
Data Types: char

systemName — Simulink model
system | subsystem

Simulink model specified by the system or subsystem name.
Example: pslinkfun('openresults','WhereAreTheErrors')

psprjFile — Polyspace project file
standard Polyspace template (default) | absolute path to .psprj file

Polyspace project file specified as the absolute path to the .psprj project file. If psprjFile is
empty, Polyspace uses the standard Polyspace template file. New Polyspace projects start with this
project configuration.
Example: pslinkfun('settemplate', fullfile(polyspaceroot, 'polyspace',
'examples', 'cxx', 'Bug_Finder_Example', 'Bug_Finder_Example.bf.psprj'));

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'block','MyModel\Sum', 'status','to fix'

block — block to be annotated
gcb (default) | block name

The block you want to annotate specified by the block name. If you do not use this option, the block
returned by the function gcb is annotated.
Example: 'block','MyModel\Sum'

class — severity of the check
'high' | 'medium' | 'low' | 'unset'

Severity of the check specified as high, medium, low, or unset.
Example: 'class','high'

status — action status
'unreviewed' | 'to investigate' | 'to fix' | 'justified' | 'no action planned' | 'not
a defect' | 'other'

Action status of the check specified as unreviewed, to investigate, to fix, justified, no
action planned, not a defect, or other.

The statuses, justified, not a defect, and no action planned also mark the result as
justified.
Example: 'status','no action planned'

comment — additional comments
character vector

5 Functions, Classes, Methods, Properties, and Apps

5-60

Additional comments specified as a character vector. The comments provide more information about
why the results are justified.
Example: 'comment','defensive code'

See Also
pslinkrun | pslinkoptions | gcb

Introduced in R2014a

 pslinkfun

5-61

pslinkoptions
Create an options object to customize configuration of a Simulink model, generated code or a S-
Function block. Use the object to specify configuration options for these Simulink objects in a
Polyspace run from the MATLAB command line

Syntax
opts = pslinkoptions(codegen)
opts = pslinkoptions(model)
opts = pslinkoptions(sfunc)

Description
opts = pslinkoptions(codegen) returns an options object with the configuration options for
code generated by codegen.

opts = pslinkoptions(model) returns an options object with the configuration options for the
Simulink model.

opts = pslinkoptions(sfunc) returns an options object with the configuration options for the
S-Function.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

Examples

Use a Simulink model to create and edit an options objects

Load closed_loop_control and create a Polyspace® options object from the model:

load_system('closed_loop_control');
model_opt = pslinkoptions('closed_loop_control')

model_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 0
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'

5 Functions, Classes, Methods, Properties, and Apps

5-62

 ModelRefVerifDepth: 'Current model only'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 1
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'
 VerifAllSFcnInstances: 0

The model is already configured for Embedded Coder®, so only the Embedded Coder configuration
options appear. Change the results folder name option and set OpenProjectManager to true.

model_opt.ResultDir = 'results_v1_$ModelName$';
model_opt.OpenProjectManager = true

model_opt =

 ResultDir: 'results_v1_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 1
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'Current model only'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 1
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'
 VerifAllSFcnInstances: 0

Create and edit an options object for Embedded Coder at the command line

Create a Polyspace® options object called new_opt with Embedded Coder parameters:

new_opt = pslinkoptions('ec')

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 0
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'

 pslinkoptions

5-63

 ModelRefVerifDepth: 'Current model only'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 1
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'

To follow the progress in the Polyspace interface, set the OpenProjectManager option to true.
Change the configuration to check for both checks and MISRA C® 2012 coding rule violations:

new_opt.OpenProjectManager = true;
new_opt.VerificationSettings = 'PrjConfigAndMisraC2012'

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfigAndMisraC2012'
 OpenProjectManager: 1
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'Current model only'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 1
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'

Create and edit an options object for TargetLink at the command line

Create a Polyspace® options object called new_opt with TargetLink® parameters:

new_opt = pslinkoptions('tl')

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 0
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 AutoStubLUT: 1

5 Functions, Classes, Methods, Properties, and Apps

5-64

Set the OpenProjectManager option to true to follow the progress in the Polyspace interface. Also
change the configuration to check for both run-time errors and MISRA C® coding rule violations:

new_opt.OpenProjectManager = true;
new_opt.VerificationSettings = 'PrjConfigAndMisra'

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfigAndMisra'
 OpenProjectManager: 1
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 AutoStubLUT: 1

Input Arguments
codegen — Code generator
'ec' | 'tl'

Code generator, specified as either 'ec' for Embedded Coder or 'tl' for TargetLink®. Each
argument creates a Polyspace options object with properties specific to that code generator.

For a description of all configuration options and their values, see pslinkoptions.
Example: ec_opt = pslinkoptions('ec')
Example: tl_opt = pslinkoptions('tl')
Data Types: char

model — Simulink model name
model name

Simulink model, specified by the model name. Creates a Polyspace options object with the
configuration options of that model. If you have not set any options, the object has the default
configuration options. If you have set a code generator, the object has the default options for that
code generator.

For a description of all configuration options and their values, see pslinkoptions.
Example: model_opt = pslinkoptions('my_model')
Data Types: char

sfunc — path to S-Function
character vector

 pslinkoptions

5-65

Path to S-Function, specified as a character vector. Creates a Polyspace options object with the
configuration options for the S-function. If you have not set any options, the object has the default
configuration options.

For a description of all configuration options and their values, see pslinkoptions.
Example: sfunc_opt = pslinkoptions('path/to/sfunction')
Data Types: char

Output Arguments
opts — Polyspace configuration options
options object

Polyspace configuration options, returned as an options object. The object is used with pslinkrun to
run Polyspace from the MATLAB command line.

For the list of object properties, see pslinkoptions.
Example: opts= pslinkoptions('ec')
opts.VerificationSettings = 'Misra'

See Also
pslinkfun | pslinkoptions | pslinkrun

Introduced in R2012a

5 Functions, Classes, Methods, Properties, and Apps

5-66

polyspacesetup
Integrate Polyspace installation with Simulink

Syntax
polyspacesetup('install')
polyspacesetup('install', 'polyspacefolder', folder)
polyspacesetup('install', 'polyspacefolder', folder, 'silent', isSilent)
polyspacesetup('uninstall')
polyspacesetup('showpolyspacefolders')

Description
polyspacesetup('install') integrates Polyspace from the default installation folder with
MATLAB or Simulink. If you installed Polyspace in a nondefault folder, the function prompts you for
the installation folder. See “Installation Folder”.

To run MATLAB scripts for Polyspace analysis, install MATLAB and Polyspace in separate folders, and
then integrate them by using this function. See also “Integrate Polyspace with MATLAB and
Simulink”.

polyspacesetup('install', 'polyspacefolder', folder) integrates Polyspace installed in
the folder folder with MATLAB or Simulink.

polyspacesetup('install', 'polyspacefolder', folder, 'silent', isSilent)
integrates Polyspace installed in the folder folder with MATLAB or Simulink silently when
isSilent is true or with a prompt if isSilent is false. When you start MATLAB with the option
-batch, isSilent is set to true by default. If you use a nondefault folder to install Polyspace and
then do not specify the folder in folder, you are prompted to specify the install location even if you
use -batch to start MATLAB.

polyspacesetup('uninstall') unlinks the currently linked installation of Polyspace from
MATLAB.

polyspacesetup('showpolyspacefolders') lists all Polyspace folders that are linked to your
current installation of MATLAB.

Examples

Integrate Polyspace with MATLAB or Simulink

To integrate Polyspace with MATLAB or Simulink, use the function polyspacesetup.

Open MATLAB with administrator or root privilege.

At the MATLAB command prompt, enter:

polyspacesetup('install');

 polyspacesetup

5-67

If you install Polyspace in the default folder C:\Program Files\Polyspace\R2021a, the
command integrates Polyspace with MATLAB. You might be prompted that the workspace will be
cleared and all open models closed. Click Yes. The process might take a few minutes to complete.
When you start MATLAB with the -batch option, the installation completes without any prompts .

If a Polyspace installation is not detected at the default location, you are prompted for the installation
location. Use this command:

polyspacesetup('install', 'polyspaceFolder', Folder)

where Folder is the Polyspace installation folder.

Restart MATLAB.

Integrate Polyspace Noninteractively with MATLAB at Command Line by Using -batch

To integrate Polyspace with MATLAB in the command line noninteractively, start MATLAB with the
startup option -batch. See “Commonly Used Startup Options”.

When you start MATLAB with the startup option -batch, polyspacesetup is silent by default. That
is, the function does not emit any messages unless there is any input error.

1 Open a Windows command-line prompt with administrator or root privilege.
2 To ensure that the integration takes place noninteractively, specify the install folder for

Polyspace. At the command-line prompt, enter:

matlab -batch "polyspacesetup('install','polyspaceFolder',folder)"

where folder is the installation location of Polyspace.
3 If the integration is successful, this message is displayed:

Polyspace plug-in: installation complete.
Restart MATLAB before using Polyspace plug-in.

You can also enter the command in a script. For instance, you might have a script that performs
the installations of MATLAB and Polyspace. Append the preceding command to your script to
integrate MATLAB and Polyspace noninteractively.

Silently Integrate Polyspace with MATLAB or Simulink

To integrate Polyspace with MATLAB or Simulink silently, use the function polyspacesetup. By
default, Polyspace is installed in the folder C:\Program Files\Polyspace\R2021a.

Open MATLAB with administrator or root privilege.

At the MATLAB command prompt, enter:

polyspacesetup('install', 'polyspaceFolder', Folder, 'silent', true);

where Folder is the Polyspace installation folder. The process might take a few minutes to complete.

5 Functions, Classes, Methods, Properties, and Apps

5-68

Restart MATLAB.

Input Arguments
folder — Polyspace installation folder
C:\Program Files\Polyspace\R2021a | path to Polyspace installation

A character array containing the path to the Polyspace installation folder.
Example: polyspacesetup('install','polyspacefolder','C:\Program Files\Polyspace
\R2020b')

Data Types: char

isSilent — Indicator for silent integration
false (default) | true

Specifies whether to integrate Polyspace with MATLAB or Simulink silently (true) or not (false). When
you start MATLAB with the -batch option, this argument is set to true by default .
Example: polyspacesetup('install','polyspacefolder','C:\Program Files\Polyspace
\R2020b','silent',true)

Data Types: logical

See Also
polyspace.Project

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”

Introduced in R2019a

 polyspacesetup

5-69

polyspacePackNGo
Generate and package options files to run Polyspace analysis on code generated from Simulink model

Syntax
archivePath = polyspacePackNGo(mdlName)
archivePath = polyspacePackNGo(mdlName,psOpt)
archivePath = polyspacePackNGo(mdlName,psOpt,asModelRef)

Description
archivePath = polyspacePackNGo(mdlName) examines the Simulink model mdlName, extracts
Polyspace options files from it, and packages the options files in the zip file located at archivePath.
Before using polyspacePackNGo, generate code from your Simulink model. Then archive the
generated code, for instance, by using packNGo. Generate the Polyspace options files from the
Simulink model and include them in the code archive by using polyspacePackNGo. In a different
development environment, when running a Polyspace analysis of the generated code, use the options
files included in the code archive to preserve model-specific information, such as design range
specifications. You must have Embedded Coder to use slbuild.

archivePath = polyspacePackNGo(mdlName,psOpt) generates and packages the Polyspace
options files that are generated according to the specification in psOpt. The object psOpt must be a
Polyspace options object that is generated by using pslinkoptions. Using psOpt, modify the
options for the Polyspace analysis.

archivePath = polyspacePackNGo(mdlName,psOpt,asModelRef) generates and packages
the Polyspace options files by using asModelRef to specify whether to generate option files for
model reference code or standalone code.

Examples

Generate and Package Polyspace Options Files

To generate and package Polyspace options files for a Simulink model, use polyspacePacknGo.

Open the Simulink model rtwdemo_counter and specify a folder for storing the generated code.

% Open the model
mdlName = 'rtwdemo_counter';
open_system(mdlName);
% Specify a folder for generated code
codegenFolder = 'rtwdemo_counter_ert_rtw';

To enable packing the generated code in an archive, set the option
PackageGeneratedCodeAndArtifacts to true. Specify the name of the generated code archive
as genCodeArchive.zip.

5 Functions, Classes, Methods, Properties, and Apps

5-70

configSet = getActiveConfigSet(mdlName);
set_param(configSet, 'PackageGeneratedCodeAndArtifacts', true);
set_param(configSet, 'PackageName', 'genCodeArchive.zip');

To make the model compatible with Polyspace, set SystemTargetFile to etr.tlc.

set_param(configSet, 'SystemTargetFile', 'ert.tlc');

After configuring the model, generate code.

if exist(fullfile(pwd,codegenFolder), 'dir') == 0
 slbuild(mdlName)
end

Because PackageGeneratedCodeAndArtifacts is set to true, the generated code is packed into
the archive genCodeArchive.zip.

Generate and package Polyspace options files.

zipFile = polyspacePackNGo(mdlName);

In the code archive genCodeArchive.zip, the Polyspace options files are packaged in the
polyspace folder.

Package Polyspace Options Files That Have Specific Polyspace Analysis Options

To specify the Polyspace analysis options when packaging and generating options files, use
pslinktoptions.

Open the Simulink model rtwdemo_counter and configure the model for generating a code archive
that is compatible with Polyspace.

% Open the model
mdlName = 'rtwdemo_counter';
open_system(mdlName);
% Specify a folder for generated code
codegenFolder = 'rtwdemo_counter_ert_rtw';
configSet = getActiveConfigSet(mdlName);
% Enable packing the generated code into an archive
set_param(configSet, 'PackageGeneratedCodeAndArtifacts', true);
% Specify a name for the code archive
set_param(configSet, 'PackageName', 'genCodeArchive.zip');
% Configure the model to be Polyspace Compatible
set_param(configSet, 'SystemTargetFile', 'ert.tlc');

After configuring the model, generate code.

if exist(fullfile(pwd,codegenFolder), 'dir') == 0
 slbuild(mdlName)
end

Because PackageGeneratedCodeAndArtifacts is set to true, the generated code is packed into
the archive genCodeArchive.zip.

To specify the model configuration for the Polyspace analysis, use a pslinkoptions object. Create
this object by using the function pslinkoptions.

 polyspacePackNGo

5-71

psOpt = pslinkoptions(mdlName);

The object psopt is a structure where the fields are model configurations that you can specify.

Specify the model configuration by using psOpt object. For instance, set InputRangeMode to full
range. For a full options list, see the input argument psOpt.

psOpt.InputRangeMode = 'FullRange';

Generate and package Polyspace options files. Use the psOpt object as the second argument in
polyspacePacknGo.

zipFile = polyspacePackNGo(mdlName,psOpt);

In the code archive genCodeArchive.zip, the Polyspace options files are packaged in the
polyspace folder. The file optionsFile.txt contains the specified Polyspace analysis options.

Package Polyspace Options Files for Code Generated as a Model Reference

To accelerate model simulations, invoke referenced Simulink models as simulation targets. To
generate model reference simulation targets from a Simulink model, generate code from the model
by using slbuild with the build process specified as ModelReferenceCoderTargetOnly. Then,
package the generated code by using packNGo. To generate and package Polyspace options files for
analyzing such code, use the function polyspacePacknGo with the optional argument asModelRef
set to true.

Open the Simulink model rtwdemo_counter and configure the model for generating a code archive
that is compatible with Polyspace.

% Load model
mdlName = 'rtwdemo_counter';
load_system(mdlName);
configSet = getActiveConfigSet(mdlName);
% Enable packing the generated code into an archive
set_param(configSet, 'PackageGeneratedCodeAndArtifacts', true);
set_param(configSet, 'PackageName', '');
% Configure the model to be Polyspace Compatible
set_param(configSet, 'SystemTargetFile', 'ert.tlc');

After configuring the model, generate a model reference simulation target from it by using the
function slbuild. Specify the option ModelReferenceCoderTargetOnly. See slbuild.

slbuild(mdlName,'ModelReferenceCoderTargetOnly');

The code that is generated is stored in the folder slprj.

To package the code that is generated as a model reference, use the function packNGo. Locate the
file buildinfo.mat in <working folder>/slprj/ert/rtwdemo_counter and use the full path
to it as the input to packNGo. This command generates an archive containing the generated code and
the object buildinfo.mat. See packNGo.

% Locate buildinfo and generate code archive
buildinfo = fullfile(pwd,'slprj','ert',mdlName,'buildinfo.mat');
packNGo(buildinfo)

5 Functions, Classes, Methods, Properties, and Apps

5-72

Generate and package Polyspace options files. Omit the optional second argument. Set the third
argument asModelRef to true.

zipFile = polyspacePackNGo(mdlName,[],true);

In the code archive rtwdemo_counter.zip, the Polyspace options files are packaged in the
polyspace folder.

Input Arguments
mdlName — Name of Simulink model for which to generate Polyspace options files
model name

A character array containing the name of the model for which you want to generate and package the
Polyspace options files.
Example: polyspacePackNGo('rtwdemo_roll')
Data Types: char

psOpt — Polyspace options object
options associated with model (default) | object created by using pslinkoptions

Specifies the model configuration for the Polyspace analysis by using a pslinkoptions object. You
can modify certain analysis options by modifying psOpt, which is a structure where individual fields
represent analysis options. For a fill list of options that you can modify, see the table Polyspace
Analysis Options Supported by polyspacePacknGo.

 polyspacePackNGo

5-73

Polyspace Analysis Options Supported by polyspacePacknGo

Property Value Description
EnableAdditionalFileList:
Enable an additional file list to
be analyzed, specified as true
or false. Use with the
AdditionalFileList option.

true Polyspace verifies additional
files specified in the
AdditionalFileList option.

false (default) Polyspace does not verify
additional files.

AdditionalFileList: List of
additional files to be analyzed
specified as a cell array of files.
To add these files to the
analysis, use the
EnableAdditionalFileList
option.

cell array Polyspace considers the listed
files for verification.

InputRangeMode: Specifies the
range of the input variables.

'DesignMinMax' (default) Polyspace uses the input range
defined in the workspace or a
block.

'Fullrange' Polyspace uses full range inputs.
ParamRangeMode: Specifies the
range of the constant
parameters.

'DesignMinmax' Polyspace uses the constant
parameter range defined in the
workspace or in a block.

'None' (default) Polyspace uses the value of
parameters specified in the
code.

OutputRangeMode: Specifies
the output assertions.

'DesignMinMax' Polyspace applies assertions to
outputs by using a range
defined in a block or the
workspace.

'None' (default) Polyspace does not apply
assertions to the output
variables.

ModelRefVerifDepth: Specify
the depth for analyzing the
models that are referenced by
the current model.

'Current model Only'
(default)

Polyspace analyzes only the top
model without analyzing the
referenced models. Use this
option when you refer to models
that do not need to be analyzed,
such as library models.

5 Functions, Classes, Methods, Properties, and Apps

5-74

Property Value Description
'1'|'2'|'3' Polyspace analyzes referenced

models up to the specified depth
in the reference hierarchy. To
analyze the models that are
referenced by the top model,
specify the property
ModelRefVerifDepth as '1'.
To analyze models that are
referenced by the first level of
references, specify this property
as '2'.

'All' Polyspace verifies all referenced
models.

ModelRefByModelRefVerif:
Specify whether you want to
analyze all referenced models
together or individually.

true Polyspace analyzes the top
model and the referenced
models together. Use this option
to check for integration or
scaling issues.

false (default) Polyspace analyzes the top
model and the referenced
models individually.

AutoStubLUT: Specifies how
lookup tables are used.

true (default) Polyspace stubs the lookup
tables and verifies the model
without analyzing the lookup
table code.

false Polyspace includes the lookup
table code in the analysis.

CheckConfigBeforeAnalysis:
Specifies the level of
configuration checking done
before the Polyspace analysis
starts.

'Off' Polyspace checks only for
errors. The analysis stops if
errors are found.

'OnWarn' (default) Polyspace stops the analysis
when errors are found and
displays a message when
warnings are found.

'OnHalt' Polyspace stops the analysis
when either errors or warnings
are found.

Example: polyspacePackNGo('rtwdemo_roll', psOpt), where ps_opt is an options object
created by calling pslinkoptions

asModelRef — Indicator for model reference analysis
false (default) | true

Indicator for model reference analysis, specified as true or false.

• If asModelRef is false (default), the function generates options files so that Polyspace analyzes
the generated code as standalone code.

 polyspacePackNGo

5-75

• If asModelRef is true, the function generates options files so that Polyspace analyzes the
generated code as model reference code.

Note If you set asModelRef to true, use slbuild to generate code.

Example: polyspacePackNGo('rtwdemo_roll', psOpt,true)
Data Types: logical

Output Arguments
archivePath — The full path to the archive containing the generated options files
path to archive

A character array containing the path to the generated archive. The options files are located in the
polyspace folder in the archive. The polyspace folder contains these options files:

• optionsFile.txt: a text file containing the Polyspace options required to run a Polyspace
analysis on the generated code without losing model-specific information, such as design range
specification.

• model_drs.xml: A file containing the design range specification of the model.
• linkdata.xml: A file that links the generated code to the components of the model.

To run a Polyspace analysis on the generated code in an environment that is different than the
environment where the code was generated from the Simulink model, use these files.
Data Types: char

See Also
pslinkoptions | slbuild

Topics
“Run Polyspace Analysis on Generated Code by Using Packaged Options Files”
“Run Polyspace Analysis by Using MATLAB Scripts”
pslinkoptions Properties

Introduced in R2020b

5 Functions, Classes, Methods, Properties, and Apps

5-76

pslinkrun
Run Polyspace analysis on model, system, or S-Function

Syntax
[polyspaceFolder, resultsFolder] = pslinkrun
[polyspaceFolder, resultsFolder]= pslinkrun(target)
[polyspaceFolder, resultsFolder] = pslinkrun('-slcc',target)
[polyspaceFolder, resultsFolder] = pslinkrun(target, opts)
[polyspaceFolder, resultsFolder] = pslinkrun('-slcc', target, opts)
[polyspaceFolder, resultsFolder] = pslinkrun(target, opts, asModelRef)
[polyspaceFolder, resultsFolder] = pslinkrun('-codegenfolder', codegenFolder,
opts)

Description
[polyspaceFolder, resultsFolder] = pslinkrun analyzes code generated from the current
system using the configuration options associated with the current system. It returns the location of
the results folder. The current system is the system returned by the command bdroot.

[polyspaceFolder, resultsFolder]= pslinkrun(target) analyzes target with the
configuration options associated with the model containing target. Before you run an analysis, you
must:

• Generate code for models and subsystems.
• Compile S-Functions.

[polyspaceFolder, resultsFolder] = pslinkrun('-slcc',target) runs Polyspace on C/C
++ custom code included in C Caller blocks and Stateflow charts in the model.

[polyspaceFolder, resultsFolder] = pslinkrun(target, opts) analyzes target using
the configuration options specified in the object opts. It returns the location of the results folder.

[polyspaceFolder, resultsFolder] = pslinkrun('-slcc', target, opts) runs
Polyspace on C/C++ custom code included in C Caller blocks and Stateflow charts in the model. The
analysis uses the configuration options specified in the object opts.

[polyspaceFolder, resultsFolder] = pslinkrun(target, opts, asModelRef) uses
asModelRef to specify which type of generated code to analyze—standalone code or model reference
code. This option is useful when you want to analyze code that is generated as model reference. Code
that is generated as model reference is intended to be called or used in other models or code.

[polyspaceFolder, resultsFolder] = pslinkrun('-codegenfolder', codegenFolder,
opts) runs Polyspace on C/C++ code generated from MATLAB code and stored in codegenFolder.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

 pslinkrun

5-77

Examples

Analyze Generated Code

Use a Simulink model to generate code, set configuration options, and then run an analysis from the
command line.

% Generate code from the model WhereAreTheErrors.
model = 'WhereAreTheErrors';
load_system(model);
slbuild(model);

% Create a Polyspace options object from the model.
opts = pslinkoptions(model);

% Set properties that define the Polyspace analysis.
opts.VerificationMode = 'CodeProver';
opts.VerificationSettings = 'PrjConfigAndMisraC2012';

% Run Polyspace using the options object.
[polyspaceFolder, resultsFolder] = pslinkrun(model,opts);
bdclose(model);

The results and the corresponding Polyspace project are saved to the
results_WhereAreTheErrors folder, listed in the polyspaceFolder variable. The full path to the
results folder is in the resultsFolder variable.

Analyze Referenced Model Code

Use a Simulink model to generate model reference code, set configuration options, and then run an
analysis from the command line.

% Generate code from the model WhereAreTheErrors.
% Treat WhereAreTheErrors as if referenced by another model.
model = 'WhereAreTheErrors';
load_system(model);
slbuild(model,'ModelReferenceCoderTargetOnly');

% Create a Polyspace options object from the model.
opts = pslinkoptions(model);

% Set properties that define the Polyspace analysis.
opts.VerificationMode = 'CodeProver';
opts.VerificationSettings = 'PrjConfigAndMisraC2012';

% Run Polyspace with the options object.
[polyspaceFolder, resultsFolder] = pslinkrun(model,opts,true);
bdclose(model);

5 Functions, Classes, Methods, Properties, and Apps

5-78

The results and corresponding Polyspace project are saved to the
results_mr_WhereAreTheErrors folder, listed in the polyspaceFolder variable. The full path to
the results folder is in the resultsFolder variable.

Reuse Analysis Options for Multiple Models

This example shows how to reuse a subset of options for Polyspace analysis of multiple models.
Create a generic options object and specify properties that describe the common options. Associate
the generic options object with a model-specific options object. Optionally, set some model-specific
options and run the Polyspace analysis.

% Generate code from the model WhereAreTheErrors.
model = 'psdemo_model_link_sl';
load_system(model);
slbuild(model);

% Create a generic options object to use for multiple model analyses.
opts = polyspace.ModelLinkOptions();
opts.CodingRulesCodeMetrics.EnableMisraC3 = true;
opts.CodingRulesCodeMetrics.MisraC3Subset = 'all';
opts.MergedReporting.ReportOutputFormat = 'PDF';
opts.MergedReporting.EnableReportGeneration = true;

% Create a model-specific options object.
mlopts = pslinkoptions(model);

% Create a project from the generic options object.
% Associate the project with the model-specific options object.
prjfile = opts.generateProject('model_link_opts');
mlopts.EnablePrjConfigFile = true;
mlopts.PrjConfigFile = prjfile;
mlopts.VerificationMode = 'BugFinder';

% Run Polyspace with the model-specific options object.
[polyspaceFolder, resultsFolder] = pslinkrun(model,mlopts);
bdclose(model);

After the analysis completes, results open automatically in the Polyspace interface.

Analyze C/C++ Code Generated from MATLAB Code

This example shows how to analyze C/C++ code generated from MATLAB code.

% Generate code
codeName = 'average_filter';
matlabFileName = fullfile(polyspaceroot, 'help',...
 'toolbox','codeprover','examples','matlab_coder','averaging_filter.m');
codegenFolder = fullfile(pwd, 'codegenFolder');
codegen(matlabFileName, '-config:lib', '-c', '-args', ...
 {zeros(1,100,'double')}, '-d', codegenFolder);

% Configure Polyspace analysis
opts = pslinkoptions('ec');

 pslinkrun

5-79

opts.ResultDir = ['results_',codeName];
opts.OpenProjectManager = 1;

% Run Polyspace
[polyspaceFolder, resultsFolder] = pslinkrun('-codegenfolder', codegenFolder, opts);

After the analysis completes, results open automatically in the Polyspace interface.

Input Arguments
target — Target of the analysis
bdroot (default) | model or system name | path to S-Function block

Target of the analysis specified as a character vector, with the model, system, or S-function in single
quotes. The default value is the system returned by bdroot.

If you analyze custom code in C Caller blocks and Stateflow charts using pslinkrun('-
slcc',...), the argument target cannot be an S-Function block.
Example: [polyspaceFolder, resultsFolder] = pslinkrun('demo') where demo is the
name of a model.
Example: [polyspaceFolder, resultsFolder] = pslinkrun('path/to/sfunction')
Data Types: char

opts — Configuration options
configuration options associated with target (default) | object created by pslinkoptions

Specify configuration options of target, specified as a Polyspace options object. The function
pslinkoptions creates such an options object. You can customize the options object by changing
the pslinkoption properties.
Example: pslinkrun('demo', opts_demo) where demo is the name of a model and opts_demo is
an options object.

asModelRef — Indicator for model reference analysis
false (default) | true

Indicator for model reference analysis, specified as true or false.

• If asModelRef is false (default), Polyspace analyzes the generated code as stand-alone code. This
option is equivalent to choosing Verify Code Generated For > Model in the Simulink Polyspace
options.

• If asModelRef is true, Polyspace analyzes the generated code as a model reference code. This
option is equivalent to choosing Verify Code Generated For > Referenced Model in the
Simulink Polyspace options. Specifying model reference code indicates that Polyspace must look
for the generated code in a different location from the location for standalone code.

Data Types: logical

codegenFolder — Folder containing generated C/C++ code
character vector

Folder containing C/C++ code generated from MATLAB code, specified as a character vector. You
specify this folder with the codegen command using the flag -d.

5 Functions, Classes, Methods, Properties, and Apps

5-80

Output Arguments
polyspaceFolder — Folder containing Polyspace project and results
character vector

Name of the folder containing Polyspace project and results, specified as a character vector. The
default value of this variable is results_$ModelName$.

To change this value, see “Output folder” on page 12-16.

resultsFolder — Full path to subfolder containing Polyspace results
character vector

Full path to subfolder containing Polyspace results, specified as a character vector.

The folder results_$ModelName$ contains your Polyspace project and a subfolder $ModelName$
with the analysis results. This variable gives you the full path to the subfolder. You can use this path
with a polyspace.BugFinderResults or polyspace.CodeProverResults object.

To change the parent folder results_$ModelName$, see “Output folder” on page 12-16.

See Also
pslinkfun | pslinkoptions | pslinkoptions

Topics
“Run Polyspace Analysis on Code Generated from Simulink Model”
“Run Polyspace Analysis on S-Function Code”
“Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts”
“Recommended Model Configuration Parameters for Polyspace Analysis”

Introduced in R2012a

 pslinkrun

5-81

pslinkrunCrossRelease
Analyze C/C++ code generated by R2020b or newer Embedded Coder versions by using a different
version of Polyspace that is more recent than the Simulink version

Syntax
[polyspaceFolder, resultsFolder] = pslinkrunCrossRelease(ModelOrSubsystem)
[polyspaceFolder, resultsFolder] = pslinkrunCrossRelease(ModelOrSubsystem,
psOpt)
[polyspaceFolder, resultsFolder] = pslinkrunCrossRelease(ModelOrSubsystem,
psOpt,asModelRef)
[polyspaceFolder, resultsFolder] = pslinkrunCrossRelease(ModelOrSubsystem,
psOpt,asModelRef,OptionsFile)

Description
[polyspaceFolder, resultsFolder] = pslinkrunCrossRelease(ModelOrSubsystem)
runs a Polyspace analysis of the code generated from ModelOrSubsystem by using Embedded Coder
from an earlier release of Simulink.

[polyspaceFolder, resultsFolder] = pslinkrunCrossRelease(ModelOrSubsystem,
psOpt) runs a Polyspace analysis of the code generated from ModelOrSubsystem through an
earlier release of Simulink. The analysis uses the model configuration options that are specified in the
pslinkoptions object psOpt.

[polyspaceFolder, resultsFolder] = pslinkrunCrossRelease(ModelOrSubsystem,
psOpt,asModelRef) runs a Polyspace analysis of the code generated as a model reference from
ModelOrSubsystem through an earlier release of Simulink.The analysis uses asModelRef to specify
which type of generated code to analyze—standalone code or model reference code.

[polyspaceFolder, resultsFolder] = pslinkrunCrossRelease(ModelOrSubsystem,
psOpt,asModelRef,OptionsFile) runs a Polyspace analysis of the code generated from
ModelOrSubsystem through an earlier release of Simulink. The analysis uses the Polyspace analysis
options specified in the options file OptionsFile.

Examples

Analyze Code Generated by Using Earlier Simulink Release

To run a Polyspace analysis on code generated by using an earlier release of Simulink, use the
function pslinkrunCrossRelease. The analysis uses the configuration options associated with
ModelOrSubsystem. The Simulink release must be R2020b or later. Before you run an analysis, you
must integrate Polyspace with Simulink. See “Integrate Polyspace with MATLAB or Simulink
Installation from Earlier Release”.

1 Open the Simulink model rtwdemo_roll and configure the model for code generation.

% Load the model
model = 'rtwdemo_roll';

5 Functions, Classes, Methods, Properties, and Apps

5-82

load_system(model);
% Configure the Solver
configSet = getActiveConfigSet(model);
set_param(configSet,'Solver','FixedStepDiscrete');
set_param(configSet, 'SystemTargetFile', 'ert.tlc');

2 To enable packing the generated code in an archive, set the option
PackageGeneratedCodeAndArtifacts to true.

set_param(configSet, 'PackageGeneratedCodeAndArtifacts', true)
3 Create temporary folders for code generation and generate code.

[TEMPDIR, CGDIR] = rtwdemodir();
slbuild(model);

4 Start a Polyspace analysis.

% Run Polyspace analysis
[~,resultsFolder] = pslinkrunCrossRelease(model);
bdclose(model);

The character vector resultsFolder contains the full path to the results folder.

Run Polyspace Analysis with Modified Configuration While Analyzing Code Generated by
Using Earlier Simulink Release

To run a Polyspace analysis with modified model configurations, use a pslinkoptions object. For a
list of model configurations related to Polyspace analysis that you can modify, see the table
Polyspace Configuration Parameters Supported by pslinkrunCrossRelease on this page.
Before you run an analysis, you must integrate Polyspace with Simulink. See “Integrate Polyspace
with MATLAB or Simulink Installation from Earlier Release”.

1 Open the Simulink model rtwdemo_roll and configure the model for code generation.

% Load the model
model = 'rtwdemo_roll';
load_system(model);
% Configure the Solver
configSet = getActiveConfigSet(model);
set_param(configSet,'Solver','FixedStepDiscrete');
set_param(configSet, 'SystemTargetFile', 'ert.tlc');

2 To enable packing the generated code in an archive, set the option
PackageGeneratedCodeAndArtifacts to true.

set_param(configSet, 'PackageGeneratedCodeAndArtifacts', true)
3 Create temporary folders for code generation and generate code.

[TEMPDIR, CGDIR] = rtwdemodir();
slbuild(model);

4 To specify the model configurations for the Polyspace analysis, use a pslinkoptions object.
Create this object by using the function pslinkoptions. To run a Bug Finder analysis, set
psOpt.VerificationMode to 'BugFinder'. To assert the range defined in a block on its input
variables, specify psOpts.InputRangeMode as 'DesignMinMax'.

% Create a Polyspace options object from the model.
psOpts = pslinkoptions(model);

 pslinkrunCrossRelease

5-83

% Set model configurtion for the Polyspace analysis.
psOpts.VerificationMode = 'BugFinder';
psOpts.InputRangeMode = 'DesignMinMax';

5 Start a Polyspace analysis. To specify model configuration for the Polyspace analysis, set the
object psOpt as the optional second argument in pslinkrunCrossRelease.

% Run Polyspace analysis
[~,resultsFolder] = pslinkrunCrossRelease(model,psOpt);
bdclose(model);

The character vector resultsFolder contains the full path to the results folder.

Analyze Code Generated as Model Reference by Using an Earlier Simulink Release

To accelerate model simulations, invoke referenced Simulink models as simulation targets. To
generate model reference simulation targets from a Simulink model, generate code from the
ModelOrSubsystem by using slbuild with the build process specified as
ModelReferenceCoderTargetOnly. Package the generated code by using packNGo. Then, analyze
the generated code by running a cross-release Polyspace analysis. Before you run an analysis, you
must integrate Polyspace with Simulink. See “Integrate Polyspace with MATLAB or Simulink
Installation from Earlier Release”.

1 Open the Simulink model rtwdemo_roll and configure the model for code generation.

% Load the model
model = 'rtwdemo_roll';
load_system(model);
% Configure the Solver
configSet = getActiveConfigSet(model);
set_param(configSet,'Solver','FixedStepDiscrete');
set_param(configSet, 'SystemTargetFile', 'ert.tlc');
set_param(configSet, 'PackageGeneratedCodeAndArtifacts', true)

2 Create temporary folders for code generation and generate code. Specify the option
ModelReferenceCoderTargetOnly. See slbuild.

[TEMPDIR, CGDIR] = rtwdemodir();
slbuild(model,'ModelReferenceCoderTargetOnly');

The generated code is stored in the folder slprj
3 To package the code that is generated as a model reference, use the function packNGo. Locate

the file buildinfo.mat in <working folder>/slprj/ert/rtwdemo_counter and use the
full path to it as the input to packNGo. This command generates an archive containing the
generated code and the object buildinfo.mat. See packNGo.

% Locate buildinfo and generate code archive
buildinfo = fullfile(pwd,'slprj','ert',model,'buildinfo.mat');
packNGo(buildinfo)

4 To specify the Polyspace analysis options, use a pslinkoptions object. Create this object by
using the function pslinkoptions. To run a Bug Finder analysis, set
psOpt.VerificationMode to 'BugFinder'.

% Create a Polyspace options object from the model.
psOpts = pslinkoptions(model);

5 Functions, Classes, Methods, Properties, and Apps

5-84

% Set properties that define the Polyspace analysis.
psOpts.VerificationMode = 'BugFinder';
psOpts.InputRangeMode = 'DesignMinMax';

5 Start a Polyspace analysis. To specify Polyspace analysis options, set the object psOpt as the
optional second argument in pslinkrunCrossRelease. To analyze the code as a model
reference, set the optional third argument asModelRef to true.

% Run Polyspace analysis
[~,resultsFolder] = pslinkrunCrossRelease(model,psOpt,true);
bdclose(model);

The character vector resultsFolder contains the full path to the results folder.

Specify Polyspace Analysis Options While Analyzing Code Generated by Using an Earlier
Simulink Release

1 Open the Simulink model rtwdemo_roll and configure the model for code generation.

% Load the model
model = 'rtwdemo_roll';
load_system(model);
% Configure the Solver
configSet = getActiveConfigSet(model);
set_param(configSet,'Solver','FixedStepDiscrete');
set_param(configSet, 'SystemTargetFile', 'ert.tlc');

2 To enable packing the generated code in an archive, set the option
PackageGeneratedCodeAndArtifacts to true.

set_param(configSet, 'PackageGeneratedCodeAndArtifacts', true)
3 Create temporary folders for code generation and generate code.

[TEMPDIR, CGDIR] = rtwdemodir();
slbuild(model);

4 To specify the model configuration for the Polyspace analysis, use a pslinkoptions object.
Create this object by using the function pslinkoptions. To run a Bug Finder analysis, set
psOpt.VerificationMode to 'BugFinder'.

% Create a Polyspace options object from the model.
psOpts = pslinkoptions(model);

% Set properties that define the Polyspace analysis.
psOpts.VerificationMode = 'BugFinder';
psOpts.InputRangeMode = 'DesignMinMax';

5 To specify Polyspace analysis options, create an options file. An options file is a text file that
contains Polyspace options in a flat list, one line for each option. For instance, to enable all Bug
Finder checkers and AUTOSAR C++14 coding rules, create a text file named OptionFile.txt.
In the text file, enter:

-checkers all
-autosarcpp14 all

Save the options file. You can save the preceding options in an options file named Options.txt
in the default work folder.

See “Analysis Options in Polyspace Code Prover”.

 pslinkrunCrossRelease

5-85

6 Start a Polyspace analysis.

• To specify the model configurations for the Polyspace analysis run, set the object psOpt as
the optional second argument in pslinkrunCrossRelease.

• Because the code is generated as standalone code, set the third argument asModelRef to
false.

• To specify the Polyspace analysis options, specify the relative path to the created options file
as the fourth argument.

% Locate options file
optionsPath = fullfile(userpath,'Options.txt');
% Run Polyspace analysis
[~,resultsFolder] = pslinkrunCrossRelease(model,psOpts,false,optionsPath);
bdclose(model);

The character vector resultsFolder contains the full path to the results folder.

Input Arguments
ModelOrSubsystem — Target of the analysis
bdroot (default) | model or system name

Target of the analysis specified as a character vector with the model or system in single quotes. The
default value is the system returned by bdroot.
Example: resultsDir = pslinkrunCrossRelease('rtwdemo_roll') where rtwdemo_roll is
the name of a model.
Data Types: char

psOpt — Options object
configuration options associated with ModelOrSubsystem (default) | configuration object created by
using pslinkoptions

Specifies the model configuration for the Polyspace analysis by using a pslinkoptions object. You
can modify certain analysis options by modifying psOpt, which is an object where individual fields
represent model configuration options. For a full list of options that you can modify, see this table.

5 Functions, Classes, Methods, Properties, and Apps

5-86

Polyspace Configuration Parameters Supported by pslinkrunCrossRelease

Property Description Value Description
EnableAdditionalFileLis
t

Enable an additional file
list to be analyzed,
specified as true or
false. Use with the
AdditionalFileList
option.

true Polyspace verifies
additional files specified
in the
AdditionalFileList
option.

false (default) Polyspace does not
verify additional files.

AdditionalFileList List of additional files to
be analyzed, specified
as a cell array of files.
To add these files to the
analysis, use the
EnableAdditionalFi
leList option.

cell array Polyspace considers the
listed files for
verification.

VerificationMode Polyspace analysis mode
specified as
'BugFinder', for a
Bug Finder analysis, or
'CodeProver', for a
Code Prover
verification.

'BugFinder' Polyspace runs a Bug
Finder analysis.

'CodeProver' (default) Polyspace runs a Code
Prover analysis.

InputRangeMode Specifies the range of
the input variables.

'DesignMinMax'
(default)

Polyspace uses the
input range defined in
the workspace or a
block.

'Fullrange' Polyspace uses full
range inputs.

ParamRangeMode Specifies the range of
the constant
parameters.

'DesignMinmax' Polyspace uses the
constant parameter
range defined in the
workspace or in a block.

'None' (default) Polyspace uses the
value of parameters
specified in the code.

OutputRangeMode Specifies the output
assertions.

'DesignMinMax' Polyspace applies
assertions to outputs by
using a range defined in
a block or the
workspace.

'None' (default) Polyspace does not
apply assertions to the
output variables.

 pslinkrunCrossRelease

5-87

Property Description Value Description
ModelRefVerifDepth Specify the depth for

analyzing the models
that are referenced by
the current model.

'Current model
Only' (default)

Polyspace analyzes only
the top model without
analyzing the
referenced models. Use
this option when you
refer to models that do
not need to be analyzed,
such as library models.

'1'|'2'|'3' Polyspace analyzes
referenced models up to
the specified depth in
the reference hierarchy.
To analyze the models
that are referenced by
the top model, specify
the property
ModelRefVerifDepth
as '1'. To analyze
models that are
referenced by the first
level of references,
specify this property as
'2'.

'All' Polyspace verifies all
referenced models.

ModelRefByModelRefVe
rif

Specify whether you
want to analyze all
referenced models
together or individually.

true Polyspace analyzes the
top model and the
referenced models
together. Use this
option to check for
integration or scaling
issues.

false (default) Polyspace analyzes the
top model and the
referenced models
individually.

AutoStubLUT Specifies how lookup
tables are used.

true (default) Polyspace stubs the
lookup tables and
verifies the model
without analyzing the
lookup table code.

false Polyspace includes the
lookup table code in the
analysis.

5 Functions, Classes, Methods, Properties, and Apps

5-88

Property Description Value Description
CheckConfigBeforeAnal
ysis

Specifies the level of
configuration checking
done before the
Polyspace analysis
starts.

'Off' Polyspace checks only
for errors. The analysis
stops if errors are
found.

'OnWarn' (default) Polyspace stops the
analysis when errors
are found and displays a
message when warnings
are found.

'OnHalt' Polyspace stops the
analysis when either
errors or warnings are
found.

Example: pslinkrunCrossRelease('rtwdemo_roll', psOpt), where psOpt is an options
object created by calling pslinkoptions

asModelRef — Indicator for model reference analysis
false (default) | true

Indicator for model reference analysis, specified as true or false.

• If asModelRef is false (default), the function generates options files so that Polyspace analyzes
the generated code as standalone code.

• If asModelRef is true, the function generates options files so that Polyspace analyzes the
generated code as model reference code.

Example: pslinkrunCrossRelease('rtwdemo_roll', psOpt,true)
Data Types: logical

OptionsFile — Relative path to a Polyspace options file
default Polyspace analysis options (default) | relative path to a custom options file

Relative path to a text file that contains a list of Polyspace analysis options. The options file must have
each option in a separate line.
Example: pslinkrunCrossRelease('rtwdemo_roll', psOpt,true,'OptionsFile.txt')
Data Types: char

Output Arguments
polyspaceFolder — Folder containing Polyspace project and results
character vector

Name of the folder containing Polyspace projects and results, specified as a character vector. The
default value of this variable is results_$ModelName$.

To change this value, see “Output folder” on page 12-16.

resultsFolder — Full path to subfolder containing Polyspace results
character vector

 pslinkrunCrossRelease

5-89

Full path to subfolder containing Polyspace results, specified as a character vector.

The folder results_$ModelName$ contains your Polyspace project and a subfolder $ModelName$
containing the analysis results. This variable provides the full path to the subfolder.

To change the parent folder results_$ModelName$, see “Output folder” on page 12-16.

See Also
polyspacePackNGo | pslinkoptions | pslinkrunCrossRelease | slbuild

Topics
“Run Polyspace on Code Generated by Using Previous Releases of Simulink”
“Run Polyspace Analysis on Generated Code by Using Packaged Options Files”
“Run Polyspace Analysis by Using MATLAB Scripts”
pslinkoptions Properties

Introduced in R2021a

5 Functions, Classes, Methods, Properties, and Apps

5-90

polyspaceAutosar
Run Polyspace Code Prover on code implementation of AUTOSAR software components using
MATLAB scripts

Syntax
[status, msg] = polyspaceAutosar('-create-project',projectFolder,'-arxml-
dir',arxmlFolder,'-sources-dir',codeFolder,options)
[status, msg] = polyspaceAutosar('-update-project',prevProjectFile,options)
[status, msg] = polyspaceAutosar('-update-and-clean-project',prevProjectFile,
options)

[status, msg, out] = polyspaceAutosar(___)

Description
[status, msg] = polyspaceAutosar('-create-project',projectFolder,'-arxml-
dir',arxmlFolder,'-sources-dir',codeFolder,options) checks the code implementation
of AUTOSAR software components for run-time errors and violation of data constraints in the
corresponding AUTOSAR XML specifications. The analysis parses the AUTOSAR XML specifications
(.arxml files) in arxmlFolder, modularizes the code implementation (.c files) in codeFolder
based on the specifications, and runs Code Prover on each module for the checks. The Code Prover
results are stored in projectFolder. After analysis, you can open the project
psar_project.psprj from projectFolder in the Polyspace user interface or the file
psar_project.xhtml in a web browser. You can view the results for each software component
individually.

You can use additional options for troubleshooting, for instance, to perform only certain parts of the
update and track down an issue or to provide extra header files or define macros.

[status, msg] = polyspaceAutosar('-update-project',prevProjectFile,options)
updates the Code Prover analysis results based on changes in ARXML files or C source code since the
last analysis. The update uses the XHTML file prevProjectFile from the previous analysis and
reanalyzes only the code implementation of software components that changed since that analysis.

You can use additional options for troubleshooting.

[status, msg] = polyspaceAutosar('-update-and-clean-project',prevProjectFile,
options) updates the Code Prover analysis results based on changes in ARXML files or C source
code since the last analysis. The update reanalyzes only the code implementation of software
components that changed since the previous analysis. A clean update also removes information about
software components that are out of date. For instance, if you use an additional option to force the
update for specific software components and other SWC-s have also changed, a clean update removes
those other SWC-s from the Polyspace project.

You can use additional options for troubleshooting.

[status, msg, out] = polyspaceAutosar(___) runs a Code Prover analysis using the same
options as before. The output, instead of appearing in the MATLAB Command Window, is redirected
to a character vector out.

 polyspaceAutosar

5-91

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

Examples

Run Code Prover on All Software Components

Suppose your ARXML files are in a folder arxml and your C source files in a folder code in the
current folder.

Run Code Prover on all software components defined in your ARXML files. Store the results in a
folder polyspace-project in a temporary folder.

The folder must not already exist. If previous results exist in that folder, you can update those results.
An update only reanalyzes source files that changed since the previous run.

exampleDir = fullfile(polyspaceroot,'help',...
 'toolbox','codeprover','examples','polyspace_autosar');
arxmlDir = fullfile(exampleDir, 'arxml');
sourceDir = fullfile(exampleDir, 'code');

tempDir = tempdir;
projectDir = fullfile(tempDir, 'polyspace-project');
prevProjectFile = fullfile(projectDir, 'psar_project.xhtml');

% Update project file if it already exists, else create new project
projectDirAlreadyExists = isfolder(projectDir);

if projectDirAlreadyExists
 [status, msg] = polyspaceAutosar('-update-project', ...
 prevProjectFile);
else
 [status, msg] = polyspaceAutosar('-create-project', projectDir, ...
 '-arxml-dir', arxmlDir, ...
 '-sources-dir', sourceDir);
end

Input Arguments
projectFolder — Folder to store Polyspace results
character vector

Folder name, specified as a character vector. If the folder exists, it must be empty.

After analysis, the folder contains two project files psar_project.psprj and
psar_project.xhtml.

• To see the results, open the project file psar_project.psprj in the Polyspace user interface or
the file psar_project.xhtml in a web browser.

• For subsequent updates using MATLAB scripts, use the project file psar_project.xhtml.

See also “Review Polyspace Results on AUTOSAR Code”.
Example: 'C:\Polyspace_Projects\proj_swc1'

5 Functions, Classes, Methods, Properties, and Apps

5-92

arxmlFolder — Folder containing ARXML files
character vector

Folder name, specified as a character vector.

UNC paths are not supported for the folder name.
Example: 'C:\arxml_swc1'

codeFolder — Folder containing C files
character vector

Folder name, specified as a character vector.

UNC paths are not supported for the folder name.
Example: 'C:\code_swc1'

prevProjectFile — Path to psar_project.xhtml
character vector

Path to the previously created project file psar_project.xhtml, specified as a character vector.
Example: 'C:\Polyspace_Projects\proj1\psar_project.xhtml'

options — Options to control project creation
character vector

Options to control creation of a Polyspace project and subsequent analysis. You primarily use the
options for troubleshooting, for instance, to perform only certain parts of the update and narrow
down an issue or to provide extra header files or define macros.

Specify each option as a character vector, followed by the option value as a separate character vector.
For instance, you can specify an options file opts.txt by using the syntax
polyspaceAutosar(...,'-options-file','opts.txt').

General options

 polyspaceAutosar

5-93

Option Value Description
'-verbose' Save additional information

about the various phases of
command execution (verbose
mode). The file
psar_project.log and other
auxiliary files store this
additional information.

If an error occurs in command
execution, the error message is
stored in a separate file,
irrespective of whether you
enable verbose mode. Running
in verbose mode only stores the
various phases of execution. Use
this information to see when an
error was introduced.

'-options-file' Options file name, for instance,
'opts.txt'.

Use an options file to
supplement or replace the
command-line options. In the
options file, specify each option
on a separate line. Begin a line
with # to indicate comments.

An options file opts.txt can
look like this:

Store Polyspace results
-create-project polyspace
ARXML Folder
-arxml-dir arxml
SOURCE Folder
-sources-dir code

If an option that is directly
specified with the
polyspaceAutosar function
conflicts with an option in the
options file, the directly
specified option is used.

You typically use an options file
to store and reuse options that
are common to multiple
projects.

Options to control update of project

If you update a project, by default, the analysis results are updated for all AUTOSAR SWC behaviors
with respect to any change in the ARXML files or C source code since the last analysis. Control the
update by using these options.

5 Functions, Classes, Methods, Properties, and Apps

5-94

Option Value Description
'-autosar-behavior' Full qualified name of SWC

behavior, for instance,
'pkg.component.bhv'.

Check the implementation of
software components whose
internal behavior-s are
specified. The default analysis
considers all software
components present in the
ARXML specifications.

To specify multiple software
components, repeat the option.
Alternatively, use regular
expressions to specify a group
of software components under
the same package.

For instance:

• To specify the software
component whose internal
behavior has the fully
qualified name
pkg.component.bhv, use:

polyspaceAutosar(...,
'-autosar-behavior',...
'pkg.component.bhv')

• To specify the software
components whose internal
behavior-s have fully
qualified names beginning
with pkg.component, use:

polyspaceAutosar(...,
'-autosar-behavior',...
'pkg.component\..*')

The \. represents the
package name separator .
(dot) and the .* represents
any number of characters.

'-do-not-update-autosar-
prove-environment'

 Do not read the ARXML
specifications. Use ARXML
specifications stored from the
previous analysis.

Use this option during project
updates to compare the code
against previous specifications.
If you do not use this option,
project updates read the entire
ARXML specifications again.

 polyspaceAutosar

5-95

Option Value Description
'-do-not-update-extract-
code'

 Do not read the C source code.
Use source code stored from the
previous analysis.

Use this option during project
updates to compare the
previous source code against
ARXML specifications. If you do
not use this option, project
updates consider all changes to
the source code since the
previous analysis.

'-do-not-update-
verification'

 Read the ARXML specifications
and C code implementation only
but do not run the Code Prover
analysis.

Use this option during project
updates to investigate errors
introduced in the ARXML
specifications or compilation
errors introduced in the source
code. You can first fix these
issues, and then run the Code
Prover analysis.

Options to control parsing of ARXML specifications

5 Functions, Classes, Methods, Properties, and Apps

5-96

Option Value Description
'-autosar-datatype' Full qualified name of data type,

for instance,
'pkg.datatypes.type'

Import definition of AUTOSAR
data types specified. The default
analysis imports only data types
specified in the internal
behavior of software
components that you verify.

To specify multiple data types,
repeat the option. Alternatively,
use regular expressions to
specify all data types under the
same package.

For instance:

• To specify a data type that
has the fully qualified name
pkg.datatypes.type, use:

polyspaceAutosar(...,
'-autosar-datatype',...
'pkg.datatypes.type')

• To specify data types that
have fully qualified names
beginning with
pkg.datatypes, use:

polyspaceAutosar(...,
'-autosar-datatype',...
'pkg.datatypes\..*')

The \. represents the
package name separator .
(dot) and the .* represents
any number of characters.

• To force import of all data
types, use:

polyspaceAutosar(...,
'-autosar-datatype',...
'.*\..*')

 polyspaceAutosar

5-97

Option Value Description
'-Eautosar-
xmlReaderSameUuidForDiff
erentElements'

'-Eno-autosar-
xmlReaderSameUuidForDiff
erentElements'

 If multiple elements in the
ARXML specifications have the
same universal-unique-identifier
(UUID), use these options to
toggle between a warning and
an error.

The default analysis stops with
an error if this issue happens.
To convert to a warning, use '-
Eno-autosar-
xmlReaderSameUuidForDiff
erentElements'. For
conflicting UUIDs, the analysis
stores the last element read and
continues with a warning.

The subsequent executions
continue to use the warning
mode. To revert back to an
error, use '-Eautosar-
xmlReaderSameUuidForDiff
erentElements'.

'-Eautosar-
xmlReaderTooManyUuids'

'-Eno-autosar-
xmlReaderTooManyUuids'

 If the same element in the
ARXML specifications has
different universal-unique-
identifiers (UUID), use these
options to toggle between a
warning and an error.

The default analysis stops with
an error if this issue happens.
To convert to a warning, use '-
Eno-autosar-
xmlReaderTooManyUuids'.
For conflicting UUIDs, the
analysis stores the last element
read and continues with a
warning.

The subsequent executions
continue to use the warning
mode. To revert back to an
error, use '-Eautosar-
xmlReaderTooManyUuids'.

Options to control reading of C source code

5 Functions, Classes, Methods, Properties, and Apps

5-98

Option Value Description
'-include' File with data type and macro

definitions.
Define additional data types and
macros that are not part of your
ARXML specifications, but
needed for analysis of the code
implementation.

Add the data type and macro
definitions to a file. These
definitions are appended to a
header file Rte_Type.h that is
used in the analysis. The file
that you provide must itself not
be named Rte_Type.h.

You can provide the file with
data type and macro definitions
only during project creation. For
subsequent updates, you can
change the contents of this file
but not provide a new file. Also,
this file must not be in the same
folder as the Polyspace project
and results.

If you additionally define macros
or undefine them using the
options '-D' or '-U', for
definitions that conflict with the
ones in USER_RTE_TYPE_H, the
-D or -U specifications prevail.

'-I' Folder containing header files. Specify folders containing
header files. The analysis looks
for #include-d files in this
folder. The folder must be a
subfolder of your source code
folder.

Repeat the option for multiple
folders. The analysis looks for
header files in these folders in
the order in which you specify
them.

If you want to specify folders
that are not in the source code
folder, use the option:

polyspaceAutosar(...,
 '-extra-project-options',...
'-I INCLUDE_FOLDER')

 polyspaceAutosar

5-99

Option Value Description
'-D' Name of macro, for instance,

'_WIN32.
Specify macros that the analysis
must consider as defined.

For instance, if you specify:the
preprocessor conditional
#ifdef _WIN32 succeeds and
the corresponding branch is
executed.

'-U' Name of macro, for instance,
'_WIN32.

Specify macros that the analysis
must consider as undefined.

For instance, if you specify:the
preprocessor conditional
#ifndef _WIN32 succeeds and
the corresponding branch is
executed.

Options to control Code Prover checks

Option Value Description
'-extra-project-options' Space-separated list of options. Specify additional options for

the Code Prover analysis. The
options that you specify do not
apply to the ARXML parsing or
code extraction, but only to the
subsequent Code Prover
analysis.

Use this method to specify
analysis options that are used in
a non-AUTOSAR Code Prover
analysis. See “Analysis Options
in Polyspace Code Prover”.

For instance, you might want to
specify a compiler and target
architecture. By default,
compilation of projects created
from AUTOSAR specifications
use the gnu4.7 compiler and
i386 architecture.

To specify a visual11.0 compiler
with x86_64 architecture, enter
this option:See also Compiler
(-compiler) and Target
processor type (-target).

5 Functions, Classes, Methods, Properties, and Apps

5-100

Option Value Description
'-extra-options-file' File with Polyspace options. Specify additional options for

the Code Prover analysis in an
options file. The options that
you specify do not apply to the
ARXML parsing or code
extraction, but only to the
subsequent Code Prover
analysis.

For instance, you can trace your
build command to gather
compiler options, macro
definitions and paths to include
folders, and provide this
information in an options file for
analysis of code implementation
of AUTOSAR software
components.

1 Trace your build command
(for instance, make) with
the polyspaceConfigure
function and generate an
options file for subsequent
Code Prover analysis.
Suppress inclusion of
sources in the options file
with the -no-sources
option.

polyspaceConfigure ...
-output-options-file ...
options.txt ...
-no-sources make

2 Run Code Prover on
AUTOSAR code with
polyspace-autosar.
Provide your ARXML folder,
source folders and other
options. In addition, provide
the earlier generated
options file with the -
extra-options-file
option.

'-show-prove' Full qualified name of SWC
behavior, for instance,
'pkg.component.bhv'.

After analysis, open results for a
specific software component
whose internal behavior is
specified.

 polyspaceAutosar

5-101

Output Arguments
status — Value indicating completion
0 | 1-10 (error values)

Boolean flag indicating whether the analysis ran to completion. If the analysis is completed, the
return value is 0, otherwise it is a nonzero value.

If you see a nonzero value, check the second output argument of polyspaceAutosar for error
messages.

You can also look for error messages in the file psar_project.xhtml in your project folder. You can
use this XHTML file to determine which software components were analyzed.

See “Troubleshoot Polyspace Analysis of AUTOSAR Code”.

msg — Analysis log
structure

Analysis log, specified as a structure with these fields:

Criticity — Type of message
'info' | 'warning' | 'error'

Type of message, returned as one of three character vectors:

• 'info': Information such as current stage of analysis.
• 'warning': Warnings that do not stop analysis but can cause errors later.
• 'error': Errors that can stop the entire analysis or analysis of specific software components.

To check for errors, use this type information. For instance, to check for errors in the structure msg,
use this code:

% Convert to table for logical indexing
msgTable = struct2table(msg);

% Check which messages have the type 'error'
errorMatches = (strcmp(msgTable.Criticity, 'error'));

% Read the error messages to another table
errorMessage = msgTable(errorMatches, :);

Message — Content of message
character vector

Content of message, returned as a character vector.
Example: 'Start Extract user-implementation for Behavior
''pkg.tst002.swc001.bhv001''...'

out — Raw data in analysis log
character vector

Analysis log, returned as a character vector.

5 Functions, Classes, Methods, Properties, and Apps

5-102

See Also
Topics
“Run Polyspace on AUTOSAR Code”
“Review Polyspace Results on AUTOSAR Code”
“Benefits of Polyspace for AUTOSAR”
“Using Polyspace in AUTOSAR Software Development”

Introduced in R2018b

 polyspaceAutosar

5-103

polyspaceCodeProver
Run Polyspace Code Prover verification from MATLAB

Note For easier scripting, run Polyspace® analysis using a polyspace.Project object.

Syntax
polyspaceCodeProver
status = polyspaceCodeProver(projectFile)

status = polyspaceCodeProver(optsObject)
status = polyspaceCodeProver(projectFile, '-nodesktop')

status = polyspaceCodeProver(resultsFile)
status = polyspaceCodeProver('-results-dir',resultsFolder)

status = polyspaceCodeProver('-help')

status = polyspaceCodeProver('-sources',sourceFiles)
polyspaceCodeProver('-sources',sourceFiles,Name,Value)

Description
polyspaceCodeProver opens Polyspace Code Prover.

status = polyspaceCodeProver(projectFile) opens a Polyspace project file in Polyspace
Code Prover.

status = polyspaceCodeProver(optsObject) runs a verification on the Polyspace options
object in MATLAB.

status = polyspaceCodeProver(projectFile, '-nodesktop') runs a verification on the
Polyspace project file in MATLAB. If you have multiple modules or configurations, Polyspace runs the
active configuration and active module. To see which module and configuration are active, open the
project in the Polyspace interface and look for the bold, selected module and configuration. To change
which module or configuration is active, before closing the Polyspace interface, select the module and
configuration you want to verify.

status = polyspaceCodeProver(resultsFile) opens a Polyspace results file in Polyspace
Code Prover.

status = polyspaceCodeProver('-results-dir',resultsFolder) opens a Polyspace
results file from resultsFolder in Polyspace Code Prover.

status = polyspaceCodeProver('-help') displays all options that can be supplied to the
polyspaceCodeProver command to run a Polyspace Code Prover verification.

status = polyspaceCodeProver('-sources',sourceFiles) runs a Polyspace Code Prover
verification on the source files specified in sourceFiles.

5 Functions, Classes, Methods, Properties, and Apps

5-104

polyspaceCodeProver('-sources',sourceFiles,Name,Value) runs a Polyspace Code Prover
verification on the source files with additional options specified by one or more Name,Value pair
arguments.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

Examples
Open Polyspace Projects from MATLAB

This example shows how to open a Polyspace project file with extension .psprj from MATLAB. In
this example, open the project file Code_Prover_Example.psprj.

Assign the full project file path to a MATLAB variable prjFile.

prjFile = fullfile(polyspaceroot, 'polyspace', 'examples', 'cxx', ...
 'Code_Prover_Example', 'Code_Prover_Example.psprj');

Open the project.

polyspaceCodeProver(prjFile)

Open Polyspace Results from MATLAB

This example shows how to open a Polyspace results file from MATLAB. In this example, you open the
results file from the folder polyspaceroot\polyspace\examples\cxx\Code_Prover_Example
\Module_1\CP_Result.

Assign the full folder path to a MATLAB variable resFolder.

resFolder = fullfile(polyspaceroot, 'polyspace', 'examples', ...
 'cxx', 'Code_Prover_Example', 'Module_1', 'CP_Result');

Open the results.

polyspaceCodeProver('-results-dir',resFolder)

Run Polyspace Verification with Options Object

This example shows how to run a Polyspace verification in MATLAB using objects.

Create an options object and add the source file and include folder to the properties.

opts = polyspace.CodeProverOptions;
opts.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
opts.EnvironmentSettings.IncludeFolders = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources')};
opts.ResultsDir = fullfile(pwd,'results');

Run the verification and view the results.

 polyspaceCodeProver

5-105

polyspaceCodeProver(opts);
polyspaceCodeProver('-results-dir',opts.ResultsDir)

Run Polyspace Verification from MATLAB with DOS/UNIX Options

This example shows how to run a Polyspace verification in MATLAB using DOS/UNIX-style options.

Run the analysis and open the results.

sourceFiles = fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c');
includeFolders = fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources');
resultsDir = fullfile(pwd,'results');
polyspaceCodeProver('-sources',sourceFiles, ...
 '-I',includeFolders, ...
 '-results-dir',resultsDir,...
 '-main-generator');
polyspaceCodeProver('-results-dir',resultsDir);

Run Polyspace Verification with Coding Rules Checking

This example shows two different ways to customize a verification in MATLAB. You can customize as
many additional options as you want by changing properties in an options object or by using Name-
Value pairs. You specify checking of MISRA C 2012 coding rules, exclude headers from coding rule
checking, and generate a main.

To create variables for source file path, include folder path, and results folder path that you can use
for either analysis method.

sourceFileName = fullfile(polyspaceroot, 'polyspace','examples', 'cxx', ...
'Code_Prover_Example','sources','example.c');
includeFileName = fullfile(polyspaceroot, 'polyspace','examples', 'cxx', ...
 'Code_Prover_Example','sources','include.h');
resFolder1 = fullfile('Polyspace_Results_1');
resFolder2 = fullfile('Polyspace_Results_2');

Verify coding rules with an options object.

opts = polyspace.CodeProverOptions('C');
opts.Sources = {sourceFileName};
opts.EnvironmentSettings.IncludeFolders = {includeFileName};
opts.ResultsDir = resFolder1;
opts.CodingRulesCodeMetrics.MisraC3Subset = 'mandatory';
opts.CodingRulesCodeMetrics.EnableMisraC3 = true;
opts.CodeProverVerification.EnableMain = true;
opts.InputsStubbing.DoNotGenerateResultsFor = 'all-headers';
polyspaceCodeProver(opts);
polyspaceCodeProver('-results-dir',resFolder1);

Verify coding rules with DOS/UNIX options.

polyspaceCodeProver('-sources',sourceFileName,...
 '-I',includeFileName, ...
 '-results-dir',resFolder2,...
 '-misra3','mandatory',...
 '-do-not-generate-results-for','all-headers',...

5 Functions, Classes, Methods, Properties, and Apps

5-106

 '-main-generator');
polyspaceCodeProver('-results-dir',resFolder2);

Input Arguments
optsObject — Polyspace options object name
object handle

Polyspace options object name, specified as the object handle.

To create an options object, use one of the Polyspace options classes: polyspace.Options or
polyspace.ModelLinkOptions.
Example: opts

projectFile — Name of .psprj file
character vector

Name of project file with extension .psprj, specified as a character vector.

If the file is not in the current folder, projectFile must include a full or relative path. To identify
the current folder, use pwd. To change the current folder, use cd.
Example: 'C:\Polyspace_Projects\myProject.psprj'

resultsFile — Name of .pscp file
character vector

Name of results file with extension .pscp, specified as a character vector.

If the file is not in the current folder, resultsFile must include a full or relative path.
Example: 'myResults.pscp'

resultsFolder — Name of result folder
character vector

Name of result folder, specified as a character vector. The folder must contain the results file with
extension .pscp. If the results file resides in a subfolder of the specified folder, this command does
not open the results file.

If the folder is not in the current folder, resultsFolder must include a full or relative path.
Example: 'C:\Polyspace\Results\'

sourceFiles — Comma-separated names of .c or .cpp files
character vector

Comma-separated source file names with extension .c or .cpp, specified as a single character vector.

If the files are not in the current folder, sourceFiles must include a full or relative path.
Example: 'myFile.c', 'C:\mySources\myFile1.c,C:\mySources\myFile2.c'

 polyspaceCodeProver

5-107

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: '-target','i386','-compiler','gnu4.6' specifies that the source code is intended
for i386 processors and contains non-ANSI C syntax for the GCC 4.6 compiler.

For the full list of analysis options, see “Analysis Options in Polyspace Code Prover”.

Output Arguments
status — Status indicating whether the Polyspace Code Prover verification completed
successfully or not
true | false

If the Code Prover verification completes without error, status is false. Otherwise, it is true.

The verification might fail for multiple reasons, including:

• You provided a source file, project file, or results file that does not exist.
• You specified an invalid path.
• One of your files did not compile.

See Also
polyspace.CodeProverOptions | polyspace.ModelLinkCodeProverOptions

Introduced in R2013b

5 Functions, Classes, Methods, Properties, and Apps

5-108

polyspaceConfigure
Create Polyspace project from your build system at the MATLAB command line

Syntax
polyspaceConfigure buildCommand

polyspaceConfigure -option value buildCommand

Description
polyspaceConfigure buildCommand traces your build system and creates a Polyspace project
with information gathered from your build system. You can run an analysis on a Polyspace project
only in the user interface of the Polyspace desktop products.

polyspaceConfigure -option value buildCommand traces your build system and uses -
option value to modify the default operation of polyspaceConfigure. Specify the modifiers
before buildCommand, otherwise they are considered as options in the build command itself.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

Examples

Create Polyspace Project from Makefile

This example shows how to create a Polyspace project if you use the command make targetName
buildOptions to build your source code. The example creates a Polyspace project that can be
opened only in the user interface of the Polyspace desktop products.

Create a Polyspace project specifying a unique project name. Use the -B or -W makefileName
option with make so that the all prerequisite targets in the makefile are remade.

polyspaceConfigure -prog myProject ...
 make -B targetName buildOptions

Open the Polyspace project in the Project Browser.

polyspaceCodeProver('myProject.psprj')

Create Projects That Have Different Source Files from Same Build Trace

This example shows how to create different Polyspace projects from the same trace of your build
system. You can specify which source files to include for each project. The example creates a
Polyspace project that can be opened only in the user interface of the Polyspace desktop products.

Trace your build system without creating a Polyspace project by specifying the option -no-project.
To ensure that all the prerequisite targets in your makefile are remade, use the appropriate make
build command option, for instance -B.

 polyspaceConfigure

5-109

polyspaceConfigure -no-project make -B;

polyspace-configure stores the cache information and the build trace in default locations inside
the current folder. To store the cache information and build trace in a different location, specify the
options -cache-path and -build-trace.

Generate Polyspace projects by using the build trace information from the previous step. Specify a
project name and use the -include-sources or -exclude-sources option to select which files to
include for each project.

polyspaceConfigure -no-build -prog myProject ...
-include-sources "glob_pattern";

glob_pattern is a glob pattern that corresponds to folders or files you filter in or out of your
project. To ensure the shell does not expand the glob patterns you pass to polysapce-configure,
enclose them in double quotes.For more information on the supported syntax for glob patterns, see
“polyspace-configure Source Files Selection Syntax”.

If you specified the options -build-trace and -cache-path in the previous step, specify them
again.

Delete the trace file and cache folder.

rmdir('polyspace_configure_cache', 's');
delete polyspace_configure_built_trace;

If you used the options -build-trace and -cache-path, use the paths and file names from those
options.

Run Command-Line Polyspace Analysis from Makefile

This example shows how to run Polyspace analysis if you use a build command such as make
targetName buildOptions to build your source code. In this example, you use
polyspaceConfigure to trace your build system but do not create a Polyspace project. Instead you
create an options file that you can use to run Polyspace analysis from the command-line.

Create a Polyspace options file specifying the -output-options-file command. Use the -B or -W
makefileName option with make so that all prerequisite targets in the makefile are remade.

polyspaceConfigure -output-options-file ...
 myOptions make -B targetName buildOptions

Use the options file that you created to run a Polyspace analysis at the command line:

polyspaceCodeProver -options-file myOptions

Input Arguments
buildCommand — Command for building source code
build command

Build command specified exactly as you use to build your source code.
Example: make -B, make -W makefileName

5 Functions, Classes, Methods, Properties, and Apps

5-110

-option value — Options for changing default operation of polyspaceConfigure
single option starting with -, followed by argument | multiple space-separated option-argument pairs

Basic Options

Option Argument Description
-prog Project name Project name that appears in the Polyspace user

interface. The default is polyspace.

If you do not use the option -output-project, the -
prog argument also sets the project name.

Example: -prog myProject creates a project that
has the name myProject in the user interface. If you
do not use the option -output-project, the project
name is also myProject.psrprj.

-author Author name Name of project author.

Example: -author jsmith
-output-project Path Project file name and location for saving project. The

default is the file polyspace.psprj in the current
folder.

Example: -output-project ../myProjects/
project1 creates a project project1.psprj in the
folder with the relative path ../myProjects/.

-output-options-file File name Option to create a Polyspace analysis options file. Use
this file for command-line analysis using one of these
commands:

• polyspace-bug-finder
• polyspace-code-prover
• polyspace-bug-finder-server
• polyspace-code-prover-server
• polyspace-bug-finder-access

 polyspaceConfigure

5-111

Option Argument Description
-allow-build-error None Option to create a Polyspace project even if an error

occurs in the build process.

If an error occurs, the build trace log shows the
following message:

polyspace-configure (polyspaceConfigure)
 ERROR: build command
 command_name fail [status=status_value]

command_name is the build command name that you
use and status_value is the non-zero exit status or
error level that indicates which error occurred in
your build process.

This option is ignored when you use -compilation-
database.

-allow-overwrite None Option to overwrite a project with the same name, if
it exists.

By default, polyspace-configure
(polyspaceConfigure) throws an error if a project
with the same name already exists in the output
folder. Use this option to overwrite the project.

-no-console-output

-silent (default)

-verbose

None Option to suppress or display additional messages
from running polyspace-configure
(polyspaceConfigure).

• -no-console-output – Suppress all outputs
including errors and warnings.

• -silent (default) – Show only errors and
warnings.

• -verbose – Show all messages.

If you specify more than one of these options, the
most verbose option is applied.

These options are ignored if they are used in
combination with -easy-debug.

-help None Option to display the full list of polyspace-
configure (polyspaceConfigure) commands

-debug None Option to store debug information for use by
MathWorks technical support.

This option has been superseded by the option -
easy-debug.

5 Functions, Classes, Methods, Properties, and Apps

5-112

Option Argument Description
-easy-debug Path Option to store debug information for use by

MathWorks technical support.

After a polyspace-configure
(polyspaceConfigure) run, the path provided
contains a zipped file ending with pscfg-
output.zip. If the run fails to create a complete
Polyspace project or options file, send this zipped file
to MathWorks Technical Support for further
debugging. The zipped file does not contain source
files traced in the build. See also “Errors in Project
Creation from Build Systems”.

Options to Create Multiple Modules

These options are not compatible with -compilation-database.

Option Argument Description
-module None Option to create a separate options file for each

binary created in build system.

You can only create separate options files for different
binaries. You cannot create multiple modules in a
Polyspace project (for running in the Polyspace user
interface).

Use this option only for build systems that use GNU
and Visual C++ compilers.

See also “Modularize Polyspace Analysis by Using
Build Command”.

-output-options-path Path name Location where generated options files are saved. Use
this option together with the option -module.

The options files are named after the binaries created
in the build system.

Advanced Options

 polyspaceConfigure

5-113

Option Argument Description
-compilation-database Path and file name Location and name of JSON compilation database

(JSON CDB) file. You generate this file from your
build system, for instance by using the flag -
DCMAKE_EXPORT_COMPILE_COMMANDS=1 with
cmake. The file contains compiler calls for all the
translation units in you projects. For more
information, see JSON Compilation Database.
polyspace-configure uses the content of this file
to get information about your build system. The
extracted compiler paths in the JSON CDB must be
accessible from the path where you run polyspace-
configure.

You do not specify a build command when you use
this option.

The build systems and compilers support the
generation of a JSON CDB:

• CMake
• Bazel
• Clang
• Ninja
• Qbs
• waf

This option is not compatible with -no-project and
with the options to create multiple modules.

The cache control options, -allow-build-error,
and -no-build are ignored when you use this
option.

-compiler-config Path and file name Location and name of compiler configuration file.

The file must be in a specific format. For guidance,
see the existing configuration files in
polyspaceroot\polyspace\configure\
compiler_configuration\. For information on the
contents of the file, see “Compiler Not Supported for
Project Creation from Build Systems”.

Example: -compiler-configuration
myCompiler.xml

5 Functions, Classes, Methods, Properties, and Apps

5-114

https://clang.llvm.org/docs/JSONCompilationDatabase.html

Option Argument Description
-no-project None Option to trace your build system without creating a

Polyspace project and save the build trace
information.

Use this option to save your build trace information
for a later run of polyspace-configure
(polyspaceConfigure) with the -no-build
option.

This option is not compatible with -compilation-
database.

-no-build None Option to create a Polyspace project using previously
saved build trace information.

To use this option, you must have the build trace
information saved from an earlier run of polyspace-
configure (polyspaceConfigure) with the -no-
project option.

If you use this option, you do not need to specify the
buildCommand argument.

This option is ignored when you use -compilation-
database.

 polyspaceConfigure

5-115

Option Argument Description
-no-sources None Option to create a Polyspace options file that does not

contain the source file specifications.

Use this option when you intend to specify the source
files by other means. For instance, you can use this
option when:

• Running Polyspace on AUTOSAR-specific code.

You want to create an options file that traces your
build command for the compiler options:

-output-options-file options.txt -no-sources

You later append this options file when extracting
source file names from ARXML specifications and
running the subsequent Code Prover analysis with
polyspace-autosar

-extra-options-file options.txt

See also “Run Polyspace on AUTOSAR Code Using
Build Command”.

• Running Polyspace in Eclipse.

Your source files are already specified in your
Eclipse project. When running a Polyspace
analysis, you want to specify an options file that
has the compilation options only.

5 Functions, Classes, Methods, Properties, and Apps

5-116

Option Argument Description
-extra-project-options Options to use for

subsequent
Polyspace analysis.
For instance, "-
stubbed-
pointers-are-
unsafe".

Options that are used for subsequent Polyspace
analysis.

Once a Polyspace project is created, you can change
some of the default options in the project.
Alternatively, you can pass these options when
tracing your build command. The flag -extra-
project-options allows you to pass additional
options.

Specify multiple options in a space separated list, for
instance "-allow-negative-operand-in-shift
-stubbed-pointers-are-unsafe".

Suppose you have to set the option -stubbed-
pointers-are-unsafe for every Polyspace project
created. Instead of opening each project and setting
the option, you can use this flag when creating the
Polyspace project:

-extra-project-options
 "-stubbed-pointers-are-unsafe"

For the list of options available, see:

• “Analysis Options in Polyspace Code Prover”

If you are creating an options file instead of a
Polyspace project from your build command, do not
use this flag.

-tmp-path Path Location of folder where temporary files are stored.
-build-trace Path and file name Location and name of file where build information is

stored. The default is ./
polyspace_configure_build_trace.log.

Example: -build-trace ../build_info/
trace.log

-include-sources

-exclude-sources

Glob pattern Option to specify which source files polyspace-
configure (polyspaceConfigure) includes in,
or excludes from, the generated project. You can
combine both options together.

A source file is included if the file path matches the
glob pattern that you pass to -include-sources.

A source file is excluded if the file path matches the
glob pattern that you pass to -exclude-sources.

 polyspaceConfigure

5-117

Option Argument Description
-print-included-sources

-print-excluded-sources

None Option to print the list of source files that
polyspace-configure (polyspaceConfigure)
includes in, or excludes from, the generated project.
You can combine both options together. The output
displays the full path of each file on a separate line.

Use this option to troubleshoot the glob patterns that
you pass to -include-sources or -exclude-
sources. You can see which files match the pattern
that you pass to -include-sources or -exclude-
sources.

-compiler-cache-path Folder path Specify a folder path where polyspace-configure
looks for or stores the compiler cache files. If the
folder does not exist, polyspace-configure
creates it.

By default, Polyspace looks for and stores compiler
caches under these folder paths:

• Windows

%appdata%\Mathworks\R20xxY\Polyspace
• Linux

~/.matlab/R20xxY/Polyspace
• Mac

~/Library/Application Support/
MathWorks/MATLAB/R20xxY/Polyspace

R20xxY is the release version of your Polyspace
product, for instance R2020b.

-no-compiler-cache None Use this option if you do not want Polyspace to cache
your compiler configuration information or to use an
existing cache for your compiler configuration.

By default, the first time you run polyspace-
configure with a particular compiler configuration,
Polyspace queries your compiler for the size of
fundamental types, compiler macro definitions, and
other compiler configuration information then caches
this information. Polyspace reuses the cached
information in subsequent runs of polyspace-
configure for builds that use the same compiler
configuration.

-reset-compiler-cache-
entry

None Use this option to query the compiler for the current
configuration and to refresh the entry in the cache
file that corresponds to this configuration. Other
compiler configuration entries in the cache are not
updated.

5 Functions, Classes, Methods, Properties, and Apps

5-118

Option Argument Description
-clear-compiler-cache None Use this option to delete all compiler configurations

stored in the cache file.

If you also specify a build command or -
compilation-database, polyspace-configure
computes and caches the compiler configuration
information of the current run, except if you specify -
no-project or -no-compiler-cache.

-import-macro-definitions none

from-whitelist

from-source-
tokens

Use this option to specify how polyspace-
configure queries the compiler for macro
definitions.

You can specify:

• none — Polyspace does not query the compiler for
macro definitions. You must provide the macro
definitions manually.

• from-whitelist — Polyspace uses an internal
white list to query the compiler for macro
definitions.

Polyspace uses the white list by default when you
use the option -compilation-database.

• from-source-tokens (default, except if you use
-compilation-database) — Polyspace uses
every non-keyword token in your source code to
query your compiler for macro definitions.

-options-for-sources-
delimiter

A single character Specify an option separator to use when multiple
analysis options are associated with one source file
using the -options-for-sources option. Typically,
the -options-for-sources option uses a
semicolon as separator.

See also -options-for-sources.

Cache Control Options

These options are primarily useful for debugging. Use the options if polyspace-configure
(polyspaceConfigure) fails and MathWorks Technical Support asks you to use the option and
provide the cached files. Starting R2020a, the option -easy-debug provides an easier way to
provide debug information. See “Contact Technical Support About Issues with Running Polyspace”.

These options are ignored when you use -compilation-database.

 polyspaceConfigure

5-119

Option Argument Description
-no-cache

-cache-sources (default)

-cache-all-text

-cache-all-files

None Option to perform one of the following:

• -no-cache: Not create a cache
• -cache-sources: Cache text files temporarily

created during build for later use by polyspace-
configure (polyspaceConfigure).

• -cache-all-text: Cache all text files including
sources and headers.

• -cache-all-files: Cache all files including
binaries.

Typically, you cache temporary files created by your
build command to debug issues in tracing the
command.

-cache-path Path Location of folder where cache information is stored.

When tracing a Visual Studio build (devenv.exe), if
you see the error:

path is too long

try using a shorter path for this option to work
around the error.

Example: -cache-path ../cache
-keep-cache

-no-keep-cache (default)

None Option to preserve or clean up cache information
after polyspace-configure
(polyspaceConfigure) completes execution.

If polyspace-configure
(polyspaceConfigure) fails, you can provide this
cache information to technical support for debugging
purposes.

See Also
Topics
“Modularize Polyspace Analysis by Using Build Command”
“Requirements for Project Creation from Build Systems”
“Compiler Not Supported for Project Creation from Build Systems”

Introduced in R2013b

5 Functions, Classes, Methods, Properties, and Apps

5-120

polyspaceJobsManager
Manage Polyspace jobs on a MATLAB Parallel Server cluster

Syntax
polyspaceJobsManager('listjobs')
polyspaceJobsManager('cancel','-job',jobNumber)
polyspaceJobsManager('remove','-job',jobNumber)
polyspaceJobsManager('getlog','-job',jobNumber)
polyspaceJobsManager('wait','-job',jobNumber)
polyspaceJobsManager('promote','-job',jobNumber)
polyspaceJobsManager('demote','-job',jobNumber)

polyspaceJobsManager('download','-job',jobNumber)
polyspaceJobsManager('download','-job',jobNumber,'-results-folder',
resultsFolder)

polyspaceJobsManager(___ ,'-scheduler',scheduler)

Description
polyspaceJobsManager('listjobs') lists all Polyspace jobs in your cluster.

polyspaceJobsManager('cancel','-job',jobNumber) cancels the specified job. The job
appears in your queue as cancelled.

polyspaceJobsManager('remove','-job',jobNumber) removes the specified job from your
cluster.

polyspaceJobsManager('getlog','-job',jobNumber) displays the log for the specified job.

polyspaceJobsManager('wait','-job',jobNumber) pauses until the specified job is done.

polyspaceJobsManager('promote','-job',jobNumber) moves the specified job up in the
MATLAB job scheduler queue.

polyspaceJobsManager('demote','-job',jobNumber) moves the specified job down in the
MATLAB job scheduler queue.

polyspaceJobsManager('download','-job',jobNumber) downloads the results from the
specified job. The results are downloaded to the folder you specified when starting analysis, using the
-results-dir on page 2-44 option.

polyspaceJobsManager('download','-job',jobNumber,'-results-folder',
resultsFolder) downloads the results from the specified job to resultsFolder.

polyspaceJobsManager(___ ,'-scheduler',scheduler) performs the specified action on the
job scheduler specified. If you do not specify a server with any of the previous syntaxes, Polyspace
uses the server stored in your Polyspace preferences.

 polyspaceJobsManager

5-121

Examples

Manipulate Two Jobs in the Cluster

In this example, use a MATLAB Job Scheduler scheduler to run Polyspace remotely and monitor your
jobs through the queue.

Before performing this example, set up a MATLAB Job Scheduler and Polyspace Metrics. This
example uses the myMJS@myCompany.com scheduler. When you perform this example, replace this
scheduler with your own cluster name.

Set up your source files.

tempDir = fullfile(tempdir, 'psdemo', 'src');
mkdir(tempDir);
demo = fullfile(polyspaceroot,'polyspace','examples','cxx',...
'Code_Prover_Example','sources');
copyfile(demo,tempDir);

Submit two jobs to your scheduler.

If your jobs have not started running, promote the second job to run before the first job.

polyspaceJobsManager('promote','-job','20','-scheduler',...
 'myMJS@myCompany.com')

Job 20 starts running before job 19.

Cancel job 19.

polyspaceJobsManager('cancel','-job','19','-scheduler',...
 'myMJS@myCompany.com')
polyspaceJobsManager('listjobs','-scheduler','myMJS@myCompany.com')

Remove job 19.

polyspaceJobsManager('remove','-job','19','-scheduler',...
 'myMJS@myCompany.com')
polyspaceJobsManager('listjobs','-scheduler','myMJS@myCompany.com')

Get the log for job 20.

polyspaceJobsManager('getlog','-job','20','-scheduler',...
 'myMJS@myCompany.com')

Download the information from job 20.

resFolder3 = fullfile(tempDir, 'res3');
polyspaceJobsManager('download','-job','20','-results-folder', ...
 resFolder3,'-scheduler','myCluster')

Input Arguments
jobNumber — Queued job number
character vector of job number

5 Functions, Classes, Methods, Properties, and Apps

5-122

Number of the queued job that you want to manage, specified as a character vector in single quotes.
Example: '-job','10'

resultsFolder — Path to results folder
character vector

Path to results folder specified as a character vector in single quotes. This folder stores the
downloaded results files.
Example: '-results-folder','C:\psdemo\myresults'

scheduler — job scheduler
head node of your cluster | job scheduler name | cluster profile

Job scheduler for remote verifications specified as one of the following:

• Name of the computer that hosts the head node of your MATLAB Parallel Server cluster
(NodeHost).

• Name of the MATLAB Job Scheduler on the head node host (MJSName@NodeHost).
• Name of a MATLAB cluster profile (ClusterProfile).

Example: '-scheduler','myscheduler@mycompany.com'

See Also
polyspaceCodeProver

Topics
“Discover Clusters and Use Cluster Profiles” (Parallel Computing Toolbox)
“Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”

Introduced in R2013b

 polyspaceJobsManager

5-123

polyspaceroot
Get Polyspace installation folder

Syntax
polyspaceroot

Description
polyspaceroot returns the Polyspace installation folder.

Starting in R2019a, to run MATLAB scripts for Polyspace analysis, you install MATLAB and Polyspace
in separate folders and link between them. After installation and linking, to access files in the
Polyspace installation folder from MATLAB, use this function. See also “Integrate Polyspace with
MATLAB and Simulink”.

Examples

Get Polyspace Installation Folder

To determine the Polyspace installation folder, use the polyspaceroot function.

polyspaceroot

C:\Program Files\Polyspace\R2019a

With the products, Polyspace Bug Finder Server or Polyspace Code Prover Server, the default
installation folder in Windows is:

C:\Program Files\Polyspace Server\R2019a

Run Polyspace on Sample Files in Polyspace Installation Folder

To access sample files in the Polyspace installation folder, use the polyspaceroot function to get the
root of the installation folder. Append subfolders to the root folder path with the fullfile function.

Run Bug Finder on the file numerical.c in the subfolder polyspace\examples\cxx
\Bug_Finder_Example\sources of the Polyspace installation folder.

proj = polyspace.Project

% Specify sources and includes
sourceFile = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c');
includeFolder = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources');

% Configure analysis
proj.Configuration.Sources = {sourceFile};

5 Functions, Classes, Methods, Properties, and Apps

5-124

proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.EnvironmentSettings.IncludeFolders = {includeFolder};
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

See Also
polyspace.Project

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”

Introduced in R2019a

 polyspaceroot

5-125

polyspace_report
Generate reports from Polyspace analysis results

Syntax
polyspace_report('-template', template, '-results-dir', resultsFolder,
options)
polyspace_report('-generate-results-list-file', '-results-dir',
resultsFolder, options)
polyspace_report('-generate-variable-access-file', '-results-dir',
resultsFolder, options)

Description
polyspace_report('-template', template, '-results-dir', resultsFolder,
options) generates a report using a predefined template specified by template. By default, the
report is named after the results file in the folder resultsFolder and saved in the Polyspace-Doc
subfolder. You can change the default behavior using additional options.

polyspace_report('-generate-results-list-file', '-results-dir',
resultsFolder, options) exports the list of Polyspace results to a tab-delimited text file.

polyspace_report('-generate-variable-access-file', '-results-dir',
resultsFolder, options) exports the list of global variables to a tab-delimited text file.

Note

• Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB installations.
See “Integrate Polyspace with MATLAB and Simulink”.

• You need MATLAB Report Generator™ to use this function.

Examples

Generate PDF Report from Results

Generate a PDF report from sample Polyspace Code Prover results.

template = fullfile(polyspaceroot,'toolbox','polyspace','psrptgen','templates',...
 'Developer.rpt');
resPath = fullfile(polyspaceroot,'polyspace','examples','cxx','Code_Prover_Example',...
 'Module_1','CP_Result');
polyspace_report('-template', template, '-results-dir', resPath, '-format', 'PDF');

Input Arguments
template — Path to report template file
character vector

5 Functions, Classes, Methods, Properties, and Apps

5-126

Path to report template file, specified as a character vector. To generate multiple reports, specify a
comma-separated list of report template paths in the character vector (do not put a space after the
commas). The templates are available in polyspaceroot\toolbox\polyspace\psrptgen
\templates\ as .rpt files. Here, polyspaceroot is the Polyspace installation folder. For more
information on the available templates, see Bug Finder and Code Prover report (-report-
template).
Example: fullfile(polyspaceroot,'toolbox','polyspace','psrptgen','templates',
'Developer.rpt');

resultsFolder — Folder containing analysis results
character vector

Folder containing analysis results, specified as a character vector. The folder must contain a .psbf
file containing Polyspace Bug Finder results or a .pscp file containing Polyspace Code Prover results.

To generate reports for multiple analyses, specify a comma-separated list of folder paths (do not put a
space after the commas).
Example: 'C:\Polyspace_Workspace\My_project\Module_1\results'

options — Options for generating report
character vector

Options to control report generation, for instance, output format and output name.

Specify each option as a character vector, followed by the option value as a separate character vector.
For instance, you can specify the PDF format by using the syntax polyspace_report(..., '-
format','PDF').

Option Value Description
'-format' 'PDF', 'HTML' or 'WORD' File format of the report that

you generate. By default, the
command generates a Word
document.

To generate reports in multiple
formats, specify a comma-
separated list of formats. (Do
not put a space after the
commas). For instance,
polyspace_report(..., '-
format', 'PDF,HTML').

This option is not compatible
with -generate-variable-
access-file and -generate-
results-list-file.

'-set-language-english' Generate the report in English.
Use this option if your display
option is set to another
language.

 polyspace_report

5-127

Option Value Description
'-output-name' Report name, for instance,

PolyspaceReport.
Name of the generated report or
folder name if you generate
multiple reports.

The full path to the report is
created by appending the name
to the current working folder. To
store the reports on a different
path, specify the full path as
value for this option.

See Also

Introduced in R2013b

5 Functions, Classes, Methods, Properties, and Apps

5-128

polyspace.Project
Run Polyspace analysis on C and C++ code and read results

Description
Run a Polyspace analysis on C and C++ source files by using this MATLAB object. To specify source
files and customize analysis options, use the Configuration property. To run the analysis, use the
run method. To read results after analysis, use the Results property.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

Creation
proj = polyspace.Project creates an object that you can use to configure and run a Polyspace
analysis, and then read the analysis results.

Properties
Configuration — Analysis options
polyspace.Options object

Options for running Polyspace analysis, implemented as a polyspace.Options object. The object
has properties corresponding to the analysis options. For more information on those properties, see
polyspace.Project.Configuration properties.

You can retain the default options or change them in one of these ways:

• Set the source code language to 'C', 'CPP', or 'C-CPP' (default). Some analysis options might not be
available depending on the language setting of the object.

proj=polyspace.Project;
proj.Configuration=polyspace.Options('C');

• Modify the properties directly.

proj = polyspace.Project;
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';

• Obtain the options from another polyspace.Project object.

proj1 = polyspace.Project;
proj1.Configuration.TargetCompiler.Compiler = 'gnu4.9';

proj2 = proj1;

To use common analysis options across multiple projects, follow this approach. For instance, you
want to reuse all options and change only the source files.

• Obtain the options from a project created in the user interface of the Polyspace desktop products
(.psprj file).

 polyspace.Project

5-129

proj = polyspace.Project;
projectLocation = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'Bug_Finder_Example.psprj')
proj.Configuration = polyspace.loadProject(projectLocation);

To determine the optimal set of options, set your options in the user interface and then import
them to a polyspace.Project object. In the user interface, you can access help from features
such as the Compilation Assistant and get tooltip help on options.

• Obtain the options from a Simulink model (applies only to Polyspace desktop products). Before
obtaining the options, generate code from the model.

modelName = 'rtwdemo_roll';
load_system(modelName);

% Set parameters for Embedded Coder target
set_param(modelName, 'SystemTargetFile', 'ert.tlc');
set_param(modelName,'Solver','FixedStepDiscrete');
set_param(modelName,'SupportContinuousTime','on');
set_param(modelName,'LaunchReport','off');
set_param(modelName,'InitFltsAndDblsToZero','on');

if exist(fullfile(pwd,'rtwdemo_roll_ert_rtw'), 'dir') == 0
 slbuild(modelName);
end

% Obtain configuration from model
proj = polyspace.Project;
proj.Configuration = polyspace.ModelLinkOptions(modelName);

Use the options to analyze the code generated from the model.

Results — Analysis results
polyspace.BugFinderResults or polyspace.CodeProverResults object

Results of Polyspace analysis. When you create a polyspace.Project object, this property is
initially empty. The property is populated only after you execute the run method of the object.
Depending on the argument to the run method, 'bugFinder' or 'codeProver', the property is
implemented as a polyspace.BugFinderResults object orpolyspace.CodeProverResults
object.

To read the results, use these methods of the polyspace.BugFinderResults or
polyspace.CodeProverResults object:

• getSummary: Obtain a summarized format of the results into a MATLAB table.

proj = polyspace.Project;
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.ResultsDir = fullfile(pwd,'results');

run(proj, 'bugFinder');

resObj = proj.Results;
resTable = getSummary(resObj, 'defects');

For more information, see getSummary.

5 Functions, Classes, Methods, Properties, and Apps

5-130

• getResults: Obtain the full results or a more readable format into a MATLAB table.

proj = polyspace.Project;
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.ResultsDir = fullfile(pwd,'results');

run(proj, 'bugFinder');

resObj = proj.Results;
resTable = getResults(resObj, 'readable');

For more information, see getResults.

Object Functions
run Run a Polyspace analysis

Examples
Check for Bugs

Run a Polyspace Bug Finder analysis on the example file numerical.c. Configure these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = run(proj, 'bugFinder');

% Read results
resObj = proj.Results;
bfSummary = getSummary(resObj, 'defects');

Prove Absence of Run-Time Errors

Run a Polyspace Code Prover analysis on the example file single_file_analysis.c. Configure
these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.
• Specify that a main function must be generated, if the function does not exist in the source code.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};

 polyspace.Project

5-131

proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodeProverVerification.MainGenerator = true;

% Run analysis
cpStatus = run(proj, 'codeProver');

% Read results
resObj = proj.Results;
cpSummary = getSummary(resObj, 'runtime');

Check for Bugs and MISRA C:2012 Violations

Run a Polyspace Bug Finder analysis on the example file single_file_analysis.c. Configure
these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.
• Enable checking of MISRA C:2012 rules. Check for the mandatory rules only.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;
proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset = 'mandatory';

% Run analysis
bfStatus = run(proj, 'bugFinder');

% Read results
resObj = proj.Results;
defectsSummary = getSummary(resObj, 'defects');
misraSummary = getSummary(resObj, 'misraC2012');

See Also
Topics
“Run Polyspace Analysis by Using MATLAB Scripts”
“Generate MATLAB Scripts from Polyspace User Interface”
“Troubleshoot Polyspace Analysis from MATLAB”

Introduced in R2017b

5 Functions, Classes, Methods, Properties, and Apps

5-132

polyspace.Options class
Package: polyspace

Create object for running Polyspace analysis on handwritten code

Note For easier scripting, specify the Polyspace® analysis options using the Configuration
property of a polyspace.Project object. Do not create a polyspace.Options object directly.

Description
Run a Polyspace analysis from MATLAB by using an options object. To specify source files and
customize analysis options, change the object properties.

To analyze model-generated code (using the Polyspace desktop products), use
polyspace.ModelLinkOptions instead.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

Construction
opts = polyspace.Options creates an object whose properties correspond to options for running
a Polyspace analysis.

proj = polyspace.Project creates a polyspace.Project object. The object has a property
Configuration, which is a polyspace.Options object.

opts = polyspace.Options(lang) creates a Polyspace options object with options that are
applicable to the language lang.

opts = polyspace.loadProject(projectFile) creates a Polyspace options object from an
existing Polyspace project projectFile. You set the options in your project in the Polyspace user
interface and create the options object from that project for programmatically running the analysis.

Input Arguments

lang — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

The language of the analysis specified as 'C-CPP', 'C', or 'CPP'. This argument determines the
object properties.
Data Types: char

projectFile — Name of .psprj file
character vector

Name of Polyspace project file with extension .psprj, specified as a character vector.

 polyspace.Options class

5-133

If the file is not in the current folder, projectFile must include a full or relative path. To identify
the current folder, use pwd. To change the current folder, use cd.

Note You cannot use the loadProject method on a project file that is created from a build
command by using polyspace-configure.

Example: 'C:\projects\myProject.psprj'

Properties
The object properties correspond to the analysis options for Polyspace projects. The properties are
organized in the same categories as the Polyspace interface. The property names are a shortened
version of the DOS/UNIX command-line name. For syntax details, see polyspace.Project.Configuration
properties.

Methods
copyTo Copy common settings between Polyspace options objects
generateProject Generate psprj project from options object
toScript Add Polyspace options object definition to a script

Examples

Customize and Run Analysis

Create a Polyspace analysis options object and customize the properties. Then, run an analysis.

Create object and customize properties. In case you do not have write access to your current folder, a
temporary folder is being used for storing analysis results.

sources = fullfile(polyspaceroot, 'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
opts = polyspace.Options();
opts.Prog = 'MyProject';
opts.Sources = {sources};
opts.TargetCompiler.Compiler = 'gnu4.7';
opts.ResultsDir = tempname;

Run a Bug Finder analysis. To run a Code Prover analysis, use polyspaceCodeProver instead of
polyspaceBugFinder.

results = polyspaceBugFinder(opts);

With the Polyspace Server products, you can use the functions polyspaceBugFinderServer or
polyspaceCodeProverServer.

Open the results in the Polyspace user interface of the desktop products.

polyspaceBugFinder('-results-dir',opts.ResultsDir);

5 Functions, Classes, Methods, Properties, and Apps

5-134

Run Polyspace by Generating a Project File

Create a Polyspace analysis options object and customize the properties. Then, run a Bug Finder
analysis.

Create object and customize properties.

sources=fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
opts = polyspace.Options();
opts.Prog = 'MyProject';
opts.Sources = {sources};
opts.TargetCompiler.Compiler = 'gnu4.7';
opts.ResultsDir = tempname;

Generate a Polyspace project, name it using the Prog property, and open the project in the Polyspace
interface.

psprj = opts.generateProject(opts.Prog);
polyspaceBugFinder(psprj);

You can also analyze the project from the command line. Run the analysis and open the results in the
Polyspace interface.

results = polyspaceBugFinder(psprj, '-nodesktop');
polyspaceBugFinder('-results-dir',opts.ResultsDir);

Alternatives
If you are analyzing code generated from a model, use polyspace.ModelLinkOptions instead.

See Also
polyspace.ModelLinkOptions | polyspace.Project | polyspaceCodeProver

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”
“Generate MATLAB Scripts from Polyspace User Interface”

Introduced in R2017a

 polyspace.Options class

5-135

polyspace.ModelLinkOptions class
Package: polyspace

Create a project configuration object for running Polyspace analysis on generated code

Description
Run a Polyspace analysis from MATLAB by using a project configuration object. To specify source files
and customize analysis options, change the object properties.

This class is intended for model-generated code. If you are analyzing handwritten code, use
polyspace.Options instead.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

Construction
psprjConfig = polyspace.ModelLinkOptions creates a project configuration object that is
configured for running a Polyspace analysis on generated code.

psprjConfig = polyspace.ModelLinkOptions(lang) creates a project configuration object
that is configured to run analysis on code generated in the language lang.

psprjConfig = polyspace.ModelLinkOptions(model) creates a project configuration object
that is configured by using model specific information from the Simulink model model. Prior to
extracting options from model, you must load the model and generate code from it.

psprjConfig = polyspace.ModelLinkOptions(model, psOpt) creates a model-specific
project configuration object that is configured by using the Polyspace analysis options specified in
psOpt.

psprjConfig = polyspace.ModelLinkOptions(model, psOpt, asModelRef) creates a
project configuration object that uses asModelRef to specify which type of generated code to
analyze—standalone code or model reference code.

Input Arguments

lang — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

The language of the analysis specified as 'C-CPP', 'C', or 'CPP'. This argument determines the
object properties.

model — Model or subsystem name
character vector

Name or path to model or subsystem, specified as a character vector.

Prior to extracting options from the model, you must:

5 Functions, Classes, Methods, Properties, and Apps

5-136

1 Load the model. Use load_system or open_system.
2 Generate code from the model. Use slbuild or slbuild.

Example: 'psdemo_model_link_sl'

psOpt — Polyspace analysis options object
pslinkoptions object

An object containing the options that you use for the Polyspace analysis. You create this by calling the
function pslinkoptions. You can customize the options object by changing the properties of the
psOpt object.
Example: psOpt = pslinkoptions(model) where model is the name of a Simulink model.

asModelRef — Indicator for model reference analysis
false (default) | true

Indicator for model reference analysis, specified as true or false.

• To analyze generated code used or called elsewhere, set the flag asModelRef to true. This
option is equivalent to choosing Analyze Code from > Code Generated as Model Reference
on the Polyspace tab in the Simulink toolstrip.

• To analyze code that is generated to be used as stand-alone code, set the flag asModelRef to
false. This option is equivalent to choosing Analyze Code from > Code Generated as Top
model on the Polyspace tab in the Simulink toolstrip.

Data Types: logical

Properties
The object properties correspond to the configuration options for Polyspace projects. The properties
are organized in the same categories as the Polyspace interface. The property names are a shortened
version of the DOS command-line name. For syntax details, see polyspace.ModelLinkOptions.

Methods
copyTo Copy common settings between Polyspace options objects
generateProject Generate psprj project from options object
toScript Add Polyspace options object definition to a script

Examples

Script Analysis of Model Generated Code

This example shows how to customize and run an analysis on code generated from a model.

Generate code from the model sldemo_bounce. Before code generation, set a system target file
appropriate for code analysis. See also “Recommended Model Configuration Parameters for
Polyspace Analysis”.

modelName = 'rtwdemo_roll';
load_system(modelName);

 polyspace.ModelLinkOptions class

5-137

% Set parameters for Embedded Coder target
set_param(modelName, 'SystemTargetFile', 'ert.tlc');
set_param(modelName,'Solver','FixedStepDiscrete');
set_param(modelName,'SupportContinuousTime','on');
set_param(modelName,'LaunchReport','off');
set_param(modelName,'InitFltsAndDblsToZero','on');

if exist(fullfile(pwd,'rtwdemo_roll_ert_rtw'), 'dir') == 0
 slbuild(modelName);
end

Associate a polyspace.ModelLinkOptions object with the model. A subset of the object properties
are set from the configuration parameters associated with the model. The other properties take their
default values. For details on the configuration parameters, see “Polyspace Analysis in Simulink”.

psprjCfg = polyspace.ModelLinkOptions(modelName);

Change the property values if needed. For instance, you can specify that the analysis must check for
all MISRA C: 2012 violations and generate a PDF report of the results. You can also specify a folder
for the analysis results.

psprjCfg.CodingRulesCodeMetrics.EnableMisraC3 = true;
psprjCfg.CodingRulesCodeMetrics.MisraC3Subset = 'all';
psprjCfg.MergedReporting.EnableReportGeneration = true;
psprjCfg.MergedReporting.ReportOutputFormat = 'PDF';
psprjCfg.ResultsDir = 'newResfolder';

Create a polyspace.Project object. Associate the Configuration property of this object to the
options that you previously specified.

proj = polyspace.Project;
proj.Configuration = psprjCfg;

Run analysis and open results.

cpStatus = proj.run('codeProver');
proj.Results.getResults('readable');

Analyze Code Generated as Model Reference

This example shows how to analyze generated code used as a callable entity in another model or
code.

Load the Simulink model rtwdemo_roll and configure it for a Polyspace analysis. For details, see
“Recommended Model Configuration Parameters for Polyspace Analysis” for details.

% Specify model name
model = 'rtwdemo_roll';
% Load the model
load_system(model);
% Configure the model for generating code
set_param(model, 'SystemTargetFile', 'ert.tlc');
set_param(model,'MatFileLogging','off');
set_param(model,'GenerateComments','on');

5 Functions, Classes, Methods, Properties, and Apps

5-138

set_param(model,'Solver','FixedStepDiscrete');
set_param(model,'LaunchReport','off');

To generate code as a model reference from the Simulink model, use slbuild. Set the buildspec
parameter to 'ModelReferenceCoderTargetOnly'.

if exist(fullfile(pwd,'slprj','ert'), 'dir') == 0
 slbuild(model,'ModelReferenceCoderTargetOnly');
end

To configure the Polyspace analysis of the generated code, create an options object psOpt by using
the function pslinkoptions. Change the properties of the object as needed. For instance, to run a
Code Prover analysis, set the Verificationmode to 'CodeProver'.

psOpt = pslinkoptions(model);
psOpt.VerificationMode = 'CodeProver';

To run a Polyspace analysis, create and configure a Polyspace project configuration object.

• To create the Polyspace project configuration object, use the function
polyspace.ModelLinkOptions.

• To associate the Polyspace analysis options with the project configuration, set the object psOpt as
the second argument in polyspace.ModelLinkOptions().

• To specify that the generated code must be analyzed as a model reference, specify the third
argument as 'true'.

For instance:

psprjCfg = polyspace.ModelLinkOptions(model, psOpt,true);

To configure the Polyspace project, change the properties of the psprjCfg object. For instance, to
enable checkers for the mandatory MISRA C: 2012 rules and to generate a PDF report of the results,
use:

psprjCfg = polyspace.ModelLinkOptions(model, psOpt,asModelRef);
psprjCfg.CodingRulesCodeMetrics.EnableMisraC3 = true;
psprjCfg.CodingRulesCodeMetrics.MisraC3Subset = 'mandatory-required';
psprjCfg.MergedReporting.EnableReportGeneration = true;
psprjCfg.MergedReporting.ReportOutputFormat = 'PDF';

For convenience, you can specify a separate result folder.

psprjCfg.ResultsDir = 'newResfolder';

Create a Polyspace project by using polyspace.Project and associate the project configuration
with it.

proj = polyspace.Project;
proj.Configuration = psprjCfg;

Run the Polyspace analysis by using the run function of the object proj.

cpStatus = proj.run('codeProver');

Because you enabled PDF report generation, the result of the Polyspace analysis is reported in a PDF
file, which can be found in newResfolder/Polyspace-Doc. To view the results in a MATLAB table,
use:

 polyspace.ModelLinkOptions class

5-139

result = proj.Results.getResults('readable');

Alternatives
If you are analyzing handwritten code, use a polyspace.Project object directly. Alternatively, use
a polyspace.Options object.

See Also
polyspace.Options | polyspace.Project | polyspaceCodeProver | pslinkrun

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”
polyspace.ModelLinkOptions Properties

Introduced in R2017a

5 Functions, Classes, Methods, Properties, and Apps

5-140

polyspace.CodeProverOptions class
Package: polyspace

Create Polyspace Code Prover object for handwritten code

Note This class is deprecated and will be removed in a future release. Use polyspace.Options
instead.

Description
Customize a Polyspace Code Prover verification from MATLAB by creating a Code Prover options
object. To specify source files and customize analysis options, change the object properties.

If you are verifying model-generated code, use polyspace.ModelLinkCodeProverOptions
instead.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

Construction
opts = polyspace.CodeProverOptions creates a Code Prover options object with options for C
code verification.

opts = polyspace.CodeProverOptions(lang) creates a Code Prover options object with
options applicable for the language lang.

Input Arguments

lang — Language of analysis
'C' (default) | 'CPP'

Language of verification specified as either 'C' or 'CPP'. This argument determines which
properties the object has.

Properties
The object properties match the analysis options found in the Polyspace interface. For syntax details,
see polyspace.Options.

Methods

copyTo Copy common settings between Polyspace options objects
generateProject Generate psprj project from options object
toScript Add Polyspace options object definition to a script

 polyspace.CodeProverOptions class

5-141

Examples

Use Code Prover Object to Customize and Run Verification

Create a Code Prover options object and customize the properties. Then, run a verification.

Create object and customize properties.

sources = fullfile(polyspaceroot, 'polyspace','examples','cxx','Code_Prover_Example', ...
'sources','single_file_analysis.c');
includes = fullfile(polyspaceroot, 'polyspace','examples','cxx','Code_Prover_Example', ...
'sources');
optsCP = polyspace.CodeProverOptions();
optsCP.Prog = 'MyProject';
optsCP.Sources = {sources};
optsCP.EnvironmentSettings.IncludeFolders = {includes};
optsCP.TargetCompiler.Compiler = 'gnu4.7';
optsCP.ResultsDir = tempname;

Run the analysis and open the results in the Polyspace interface.

results = polyspaceCodeProver(optsCP);
polyspaceCodeProver('-results-dir',optsCP.ResultsDir);

Run Polyspace by Generating a Project File

Create a Code Prover analysis options object and customize the properties. Then, run an analysis.

Create object and customize properties.

sources = fullfile(polyspaceroot, 'polyspace','examples','cxx','Code_Prover_Example', ...
'sources','single_file_analysis.c');
includes = fullfile(polyspaceroot, 'polyspace','examples','cxx','Code_Prover_Example', ...
'sources');
optsCP = polyspace.CodeProverOptions();
optsCP.Prog = 'MyProject';
optsCP.Sources = {sources};
optsCP.EnvironmentSettings.IncludeFolders = {includes};
optsCP.TargetCompiler.Compiler = 'gnu4.7';
optsCP.ResultsDir = tempname;

Generate a Polyspace project, name it using the Prog property, and open the project in the Polyspace
interface.

psprj = generateProject(optsCP, optsCP.Prog);
polyspaceCodeProver(psprj);

You can also analyze the project from the command line. Run the analysis and open the results in the
Polyspace interface.

5 Functions, Classes, Methods, Properties, and Apps

5-142

results = polyspaceCodeProver(psprj, '-nodesktop');
polyspaceCodeProver('-results-dir',optsCP.ResultsDir);

Alternatives
If you are verifying model-generated code, use polyspace.ModelLinkCodeProverOptions
instead.

See Also
polyspace.ModelLinkCodeProverOptions | polyspace.Options | polyspaceCodeProver

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”

Introduced in R2016b

 polyspace.CodeProverOptions class

5-143

polyspace.ModelLinkCodeProverOptions class
Package: polyspace

Create Polyspace Code Prover object for generated code

Note This class is deprecated and will be removed in a future release. Use
polyspace.ModelLinkOptions instead.

Description
Customize a Polyspace Code Prover verification from MATLAB by creating a Code Prover options
object. To specify source files and customize analysis options, change the object properties.

If you are verifying handwritten code, use polyspace.CodeProverOptions instead.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

Construction
opts = polyspace.ModelLinkCodeProverOptions creates a Code Prover options object with
options for C code verification.

opts = polyspace.ModelLinkCodeProverOptions(lang) creates a Code Prover options object
with options applicable for the language lang.

Input Arguments

lang — Language of analysis
C (default) | CPP

Language of verification specified as either 'C' or 'CPP'. This argument determines which
properties the object has.
Example: opts = polyspace.ModelLinkCodeProverOptions('CPP')

Properties
The object properties are the analysis options for Polyspace Code Prover model link projects. The
properties are organized in the same categories as in the Polyspace interface. The property names
are a shortened version of the DOS command-line name. For syntax details, see
polyspace.ModelLinkOptions.

5 Functions, Classes, Methods, Properties, and Apps

5-144

Methods

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

To copy properties between Polyspace objects, use . You can copy corresponding properties between
BugFinderOptions objects and CodeProverOptions objects.

Examples

Script Verification of Model Generated Code

This example shows how to customize and run a verification on model-generated code with MATLAB
functions and objects.

Create a custom configuration that checks MISRA C 2012 rules and generates a PDF report.

opts = polyspace.ModelLinkCodeProverOptions('C');
opts.CodingRulesCodeMetrics.EnableMisraC3 = true;
opts.CodingRulesCodeMetrics.MisraC3Subset = 'all';
opts.MergedReporting.ReportOutputFormat = 'PDF';
opts.MergedReporting.EnableReportGeneration = true;

Generate code from psdemo_model_link_sl.

model = 'psdemo_model_link_sl';
load_system(model);
slbuild(model);

Add the configuration to pslinkoptions object.

prjfile = opts.generateProject('model_link_opts');
mlopts = pslinkoptions(model);
mlopts.EnablePrjConfigFile = true;
mlopts.PrjConfigFile = prjfile;
mlopts.VerificationMode = 'CodeProver';

Run the verification.

[polyspaceFolder, resultsFolder] = pslinkrun(model);

Alternatives
If you are verifying handwritten code, use polyspace.CodeProverOptions instead.

See Also
polyspace.CodeProverOptions | polyspace.ModelLinkOptions | polyspaceCodeProver |
pslinkrun

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”

 polyspace.ModelLinkCodeProverOptions class

5-145

Introduced in R2016b

5 Functions, Classes, Methods, Properties, and Apps

5-146

polyspace.GenericTargetOptions class
Package: polyspace

Create a generic target configuration

Description
Create a custom target for a Polyspace analysis if your target processor does not match one of the
predefined targets,.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

Construction
genericTarget = polyspace.GenericTargetOptions creates a generic target that you can
customize. To specify the sizes and alignment of data types, change the properties of the object. For
instance:

target = polyspace.GenericTargetOptions;
target.CharNumBits = 16;

Properties
For more details about any of the properties below, see Generic target options.

Alignment — Largest alignment of struct or array objects
32 (default) | 16 | 8

Largest alignment of struct or array objects, specified as 32, 16, or 8. Comparable with the DOS/
UNIX command-line option -align.
Example: target.Alignment = 8

CharNumBits — Define the number of bits for a char
8 (default) | 16

Define the number of bits for a char, specified as 8 or 16. Comparable with the DOS/UNIX command-
line option -char-is-16bits.
Example: target.CharNumBits = 16

DoubleNumBits — Define the number of bits for a double
32 (default) | 64

Define the number of bits for a double, specified as 32 or 64. Comparable with the DOS/UNIX
command-line option -double-is-64bits.
Example: target.DoubleNumBits = 64

 polyspace.GenericTargetOptions class

5-147

Endianness — Endianness of target architecture
little (default) | big

Endianness of target architecture, specified as little or big. Comparable with the DOS/UNIX
command-line options -little-endian or -big-endian.
Example: target.Endianess = 'big'

IntNumBits — Define the number of bits for an int
16 (default) | 32

Define the number of bits for an int, specified as 16 or 32. Comparable with the DOS/UNIX
command-line option -int-is-32bits.
Example: target.IntNumBits = 32

LongLongNumBits — Define the number of bits for a long long
32 (default) | 64

Define the number of bits for a long long, specified as 32 or 64. Comparable with the DOS/UNIX
command-line option -long-long-is-64bits.
Example: target.LongNumBits = 64

LongNumBits — Define the number of bits for a long
32 (default)

Define the number of bits for a long, specified as 32. Comparable with the DOS/UNIX command-line
option -long-is-32bits.
Example: target.LongNumBits = 32

PointerNumBits — Define the number of bits for a pointer
16 (default) | 24 | 32

Define the number of bits for a pointer, specified as 16, 24, or 32. Comparable with the DOS/UNIX
command-line options -pointer-is-24bits and -pointer-is-32bits.
Example: target.PointerNumBits = 32

ShortNumBits — Define the number of bits for a short
16 (default) | 8

Define the number of bits for an int, specified as 16 or 8. Comparable with the DOS/UNIX command-
line option -short-is-8bits.
Example: target.ShortNumBits = 8

SignOfChar — Default sign of plain char
signed (default) | unsigned

Default sign of plain char, specified as signed or unsigned. Comparable with the DOS/UNIX
command-line option -default-sign-of-char.
Example: target.SignOfChar = 'unsigned'

5 Functions, Classes, Methods, Properties, and Apps

5-148

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples
Customize Generic Target Settings

Use a custom target for the Polyspace analysis.

Create two objects: a polyspace.GenericTargetOptions object for creating a custom target and
a polyspace.Project object for running the Polyspace analysis.

target = polyspace.GenericTargetOptions;
proj = polyspace.Project;

Customize the generic target.

target.Endianess = 'big';
target.LongLongNumBits = 64;
target.ShortNumBits = 8;

Add the custom target to the Configuration property of the polyspace.Project object.

proj.Configuration.TargetCompiler.Target = target;

You can now use the polyspace.Project object to run the analysis.

Generic target options | polyspace.CodingRulesOptions |
polyspace.ModelLinkOptions | polyspace.Options | polyspace.Project

Introduced in R2016b

 polyspace.GenericTargetOptions class

5-149

polyspace.CodingRulesOptions class
Package: polyspace

Create custom list of coding rules to check

Description
Create a custom list of coding rules to check in a Polyspace analysis.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

Construction
ruleList = polyspace.CodingRulesOptions(RuleSet) creates the coding rules object
ruleList for the RuleSet coding rule set. Set the active rules in the coding rules object.

Input Arguments

RuleSet — Standard coding rule set
misraC (default) | misraC2012 | misraAcAgc | misraCpp | jsf | certC | certCpp | iso17961 |
autosarCpp14

Standard coding rule set specified as one of the coding rule acronyms.
Example: 'misraCpp'
Data Types: char

Properties
For each coding rule set, an object is created with all supported rules divided into sections. By
default, all rules are on. To turn off a rule, set the rule to false. For example:

misraRules = polyspace.CodingRulesOptions('misraC');
misraRules.Section_20_Standard_libraries.rule_20_1 = false;

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Customize List of Coding Rules to Check

Customize the coding rules that are checked in a Polyspace analysis. Since all rules are enabled by
default, you can create a custom subset by disabling some rules.

5 Functions, Classes, Methods, Properties, and Apps

5-150

Create two objects: a polyspace.CodingRulesOptions object for setting coding rules and a
polyspace.Project object for running the Polyspace analysis.

misraRules = polyspace.CodingRulesOptions('misraC2012');
proj = polyspace.Project;

Customize the coding rule list by turning off rules 2.1-2.7.

misraRules.Section_2_Unused_code.rule_2_1 = false;
misraRules.Section_2_Unused_code.rule_2_2 = false;
misraRules.Section_2_Unused_code.rule_2_3 = false;
misraRules.Section_2_Unused_code.rule_2_4 = false;
misraRules.Section_2_Unused_code.rule_2_5 = false;
misraRules.Section_2_Unused_code.rule_2_6 = false;
misraRules.Section_2_Unused_code.rule_2_7 = false;

Add the customized list of coding rules to the Configuration property of the polyspace.Project
object.

proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset = misraRules;
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;
proj.Configuration.CodingRulesCodeMetrics.EnableCheckersSelectionByFile = true;

You have to enable checkers selection by file because the Polyspace run uses an XML file underneath
to enable the coding rule checkers. The XML file is saved in a .settings subfolder of the results
folder.

You can now use the polyspace.Project object to run the analysis. For instance, you can enter:

proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
run(proj, 'bugfinder');

Create Coding Rules Object Using Rule Numbers to Enable

Suppose that you want to specify a subset of MISRA C: 2012 rules for the analysis. Instead of
enumerating rules that you want disabled, you can specify the rules that you want to keep enabled.
You can also specify the rule numbers only without the MISRA C: 2012 sections containing the rules.

Specify the rule numbers in a cell array to the createRulesObject function defined as follows.

function rulesObject = createRulesObject(rulesToEnable)

%% This function takes a cell array of MISRA C:2012 rules and returns
%% a polyspace.CodingRulesOptions object with the rules enabled.
%% Example input argument: {'2.7', '3.1'}

 rulesObject = polyspace.CodingRulesOptions('misraC2012');

 % Coding Standards documents have many sections. Loop over all
 % sections.
 ruleSections = properties(rulesObject);
 for i=1:length(ruleSections)
 sectionName = ruleSections{i};
 rulesInSection = properties(rulesObject.(sectionName));

 polyspace.CodingRulesOptions class

5-151

 % Loop over all rules in a section, enable or disable rule based
 % on input
 for j=1:length(rulesInSection)
 ruleNumberAsProperty = rulesInSection{j};
 ruleNumber = strrep(strrep(ruleNumberAsProperty,'rule_',''),'_','.');
 if(any(strcmp(rulesToEnable,ruleNumber)))
 rulesObject.(sectionName).(ruleNumberAsProperty)=1;
 else
 rulesObject.(sectionName).(ruleNumberAsProperty)=0;
 end
 end
 end
end

For instance, to enable rules 1.1 and 2.2, enter:

createRulesObject({'1.1','2.2'})

See Also
polyspace.ModelLinkOptions | polyspace.Options | polyspace.Project

Introduced in R2016b

5 Functions, Classes, Methods, Properties, and Apps

5-152

polyspace.CodeProverResults
Read Polyspace Code Prover results from MATLAB

Description
Read Polyspace Code Prover analysis results to MATLAB tables by using this object. You can obtain a
high-level overview of results or details such as each instance of a run-time check.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See .

Creation

Syntax
resObj = polyspace.CodeProverResults(resultsFolder)
proj = polyspace.Project; resObj = proj.Results;

Description

resObj = polyspace.CodeProverResults(resultsFolder) creates an object for reading a
specific set of Code Prover results into MATLAB tables. Use the object methods to read the results.

proj = polyspace.Project; resObj = proj.Results; creates a polyspace.Project
object with a Results property. If you run a Code Prover analysis, this property is a
polyspace.CodeProverResults object.

Input Arguments

resultsFolder — Name of result folder
character vector

Name of result folder, specified as a character vector. The folder must directly contain the results file
with extension .psbf. Even if the results file resides in a subfolder of the specified folder, it cannot
be accessed.

If the folder is not in the current folder, resultsFolder must include a full or relative path.
Example: 'C:\Polyspace\Results\'

Object Functions
getSummary View number of Polyspace results organized by results type (Bug Finder) or color

and file (Code Prover)
getResults View all instances of Bug Finder or Code Prover results
variableAccess View C/C++ global variables along with read/write operations

 polyspace.CodeProverResults

5-153

Examples

Read Existing Results to MATLAB Tables

This example shows how to read Code Prover analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath = fullfile(polyspaceroot,'polyspace','examples','cxx','Code_Prover_Example',...
'Module_1','CP_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.CodeProverResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = getSummary (resObj);
resTable = getResults (resObj);

Run Analysis and Read Results to MATLAB Tables

Run a Polyspace Code Prover analysis on the demo file single_file_analysis.c. Configure these
options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.
• Specify that a main function must be generated, if it does not exist in the source code.

proj = polyspace.Project;

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodeProverVerification.MainGenerator = true;

% Run analysis
cpStatus = run(proj, 'codeProver');

% Read results
resObj = proj.Results;
cpSummary = getResults(resObj, 'readable');

See Also

Introduced in R2017a

5 Functions, Classes, Methods, Properties, and Apps

5-154

copyTo
Class: polyspace.Options
Package: polyspace

Copy common settings between Polyspace options objects

Syntax
optsFrom.copyTo(optsTo)

Description
optsFrom.copyTo(optsTo) copies the common options from optsFrom to optsTo. The options
objects do not need to be the same type of options object. This method copies only properties that are
common between the two objects.

Input Arguments
optsFrom — Options object you want to copy properties from
polyspace.Options or polyspace.ModelLinkOptions object

Option object that you want to copy properties from, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

optsTo — Options object you want to copy properties to
polyspace.Options object

Option object that you want to copy properties to, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

Examples

Copy Polyspace Options Object

This example shows how to set the properties of one options object and then copy that object to
another one.

Create a Polyspace options object and set properties.

opts1 = polyspace.Options();
opts1.Prog = 'DataRaceProject';
opts1.Sources = {'datarace.c'};
opts1.TargetCompiler.Compiler = 'gnu4.9';

Create another object and use copyTo to copy over options from the previous object.

 copyTo

5-155

opts2 = polyspace.Options();
opts1.copyTo(opts2);

See Also
generateProject | polyspace.ModelLinkOptions | polyspace.Options

Introduced in R2016b

5 Functions, Classes, Methods, Properties, and Apps

5-156

generateProject
Class: polyspace.Options
Package: polyspace

Generate psprj project from options object

Syntax
opts.generateProject(projectName)

Description
opts.generateProject(projectName) creates a .psprj project called projectName from the
options specified in the polyspace.Options object opts. You can open a .psprj project in the
user interface of the Polyspace desktop products.

Input Arguments
opts — Options object to convert into a psprj file
polyspace.Options or polyspace.ModelLinkOptions object

Option object convert into a psprj file, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

projectName — Project file name
character vector

Project file name specified as a character vector. This argument is used as the name of the psprj file.
Example: 'myProject'

Examples

Generate Project from a Bug Finder Options Object

This example shows how to create and use a Polyspace project that was generated from an options
object.

Create a Bug Finder object and set properties.

sources = fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
opts = polyspace.Options();
opts.Prog = 'MyProject';
opts.Sources = {sources};
opts.TargetCompiler.Compiler = 'gnu4.7';

Generate a Polyspace project. Name the project using the Prog property.

 generateProject

5-157

psprj = opts.generateProject(opts.Prog);

Run a Bug Finder analysis using one of these commands. Both commands produce identical analysis
results. The only difference is that the psprj project can be rerun in the Polyspace interface.

polyspaceBugFinder(psprj, '-nodesktop');
polyspaceBugFinder(opts);

To run a Code Prover analysis, use polyspaceCodeProver instead of polyspaceBugFinder.

Tips
If you want to include an options object in a pslinkoptions object:

1 Use this method to convert your object to a project.
2 Add the project to the pslinkoptions property PrjConfig.
3 Turn on the property EnablePrjConfig.

See Also
copyTo | polyspace.ModelLinkOptions | polyspace.Options

Introduced in R2016b

5 Functions, Classes, Methods, Properties, and Apps

5-158

toScript
Class: polyspace.Options
Package: polyspace

Add Polyspace options object definition to a script

Syntax
filePath = opts.toScript(fileName,positionInScript)

Description
filePath = opts.toScript(fileName,positionInScript) adds the properties of a
polyspace.Options object to a MATLAB script. The script shows the values assigned to all the
properties of the object. You can run the script later to define the object in the MATLAB workspace
and use it.

Input Arguments
opts — Options object with Polyspace analysis options
polyspace.Options or polyspace.ModelLinkOptions object

Option object to store in MATLAB script, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

fileName — Script name
character vector

Name or path to script, specified as a character vector. If you specify a relative path, the script is
created in subfolder of the current working folder.
Example: 'runPolyspace.m'

positionInScript — Where to add object definition
'create' (default) | 'append'

Position in script where the object properties are added, specified as 'create' or 'append'. If you
specify 'append', the object properties are added to the end of an existing script. Otherwise, a new
script is created.

Output Arguments
filePath — Full path to script
character vector

Full path to script, specified as a character vector.
Example: 'C:\myScripts\runPolyspace.m'

 toScript

5-159

See Also
copyTo | generateProject | polyspace.ModelLinkOptions | polyspace.Options

Introduced in R2017b

5 Functions, Classes, Methods, Properties, and Apps

5-160

run
Run a Polyspace analysis

Syntax
run(proj, product)

Description
status = run(proj, product) runs a Polyspace Bug Finder or Polyspace Code Prover analysis
using the configuration specified in the polyspace.Project object proj. The analysis results are
also stored in proj.

Input Arguments
proj — Polyspace project
polyspace.Project object

Polyspace project with configuration and results, specified as a polyspace.Project object.

product — Type of analysis
'bugFinder' | 'codeProver'

Type of analysis to run.

Output Arguments
status — Results of a Code Prover analysis
true | false

Status of analysis. If the analysis succeeds, the status is false. Otherwise, it is true.

The analysis can fail for multiple reasons:

• You provide source files that do not exist.
• None of your files compile. Even if one file compiles, unless you set the property

StopWithCompileError to true, the analysis succeeds and returns a false status.

There can be many other reasons why the analysis fails. If the analysis fails, in your results folder,
check the log file. You can see the results folder using the Configuration property of the
polyspace.Project object:

proj = polyspace.Project;
proj.Configuration.ResultsDir

The log file is named Polyspace_R20##n_ProjectName_date-time.log.

 run

5-161

Examples
Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = run(proj, 'bugFinder');

% Read results
bfSummary = proj.Results.getSummary('defects');

Introduced in R2017b

5 Functions, Classes, Methods, Properties, and Apps

5-162

getSummary
View number of Polyspace results organized by results type (Bug Finder) or color and file (Code
Prover)

Syntax
resSummary = getSummary(resObj, resultsType)

Description
resSummary = getSummary(resObj, resultsType) returns the distribution of results of type
resultsType in a Polyspace results set, resObj. The results set resObj can be a Bug Finder results
set denoted by a polyspace.BugFinderResults object or a Code Prover results set denoted by a
polyspace.CodeProverResults object.

For instance:

• If you choose to see Bug Finder defects, you can see how many defects of each type are present in
the result set, for instance, how many non-initialized variables or declaration mismatches.

• If you choose to see Code Prover run-time checks, you see how many red, orange, gray and green
checks are present in each file.

Examples

Read Existing Bug Finder Results to MATLAB Tables

This example shows how to read Bug Finder analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath=fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example', ...
'Module_1','BF_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.BugFinderResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = getSummary(resObj, 'defects');
resTable = getResults(resObj);

Run Bug Finder Analysis and Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these options:

 getSummary

5-163

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = run(proj, 'bugFinder');

% Read results
resObj = proj.Results;
bfSummary = getSummary(resObj, 'defects');

Read Existing Code Prover Results to MATLAB Tables

This example shows how to read Code Prover analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath = fullfile(polyspaceroot,'polyspace','examples','cxx','Code_Prover_Example', ...
'Module_1','CP_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.CodeProverResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = getSummary(resObj, 'runtime');
resTable = getResults(resObj);

Run Code Prover Analysis and Read Results to MATLAB Tables

Run a Polyspace Code Prover analysis on the demo file single_file_analysis.c. Configure these
options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.
• Specify that a main function must be generated, if it does not exist in the source code.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';

5 Functions, Classes, Methods, Properties, and Apps

5-164

proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodeProverVerification.MainGenerator = true;

% Run analysis
cpStatus = run(proj, 'codeProver');

% Read results
resObj = proj.Results;
cpSummary = getResults(resObj, 'readable');

Input Arguments
resObj — Bug Finder or Code Prover results
polyspace.BugFinderResults or polyspace.CodeProverResults object

Bug Finder or Code Prover results set, specified as a polyspace.BugFinderResults or
polyspace.CodeProverResults object respectively.

resultsType — Type of Bug Finder or Code Prover analysis result
'defects' | 'runtime' | 'misraC' | 'misraCAGC' | 'misraCPP' | 'misraC2012' | 'jsf' |
'certC' | 'certCpp' | 'iso17961' | 'autosarCPP14' | 'metrics' | 'customRules'

Type of result, specified as a character vector. The default for a Bug Finder results set is 'defects'
and the default for a Code Prover results set is 'runtime'.

Entry Meaning
'defects' Bug Finder defects.
'runtime' Code Prover checks for run-time errors.
'misraC' MISRA C:2004 rules.
'misraCAGC' MISRA C:2004 rules for generated code.
'misraCPP' MISRA C++ rules.
'misraC2012' MISRA C:2012 rules.
'jsf' JSF C++ rules.
'certC' CERT C rules.
'certCpp' CERT C++ rules.
'iso17961' ISO/IEC TS 17961 rules.
'autosarCPP14' AUTOSAR C++ 14 rules.
'metrics' Code complexity metrics.
'customRules' Custom rules enforcing naming conventions for

identifiers.

Output Arguments
resSummary — Distribution of Bug Finder results by result type or Code Prover run-time
checks by check color and file
table

 getSummary

5-165

Distribution of results, specified as a table. For instance:

• If you choose to see a summary of Bug Finder defects, an extract of the table looks like this:

Category Defect Impact Total
Concurrency Data race High 2
Concurrency Deadlock High 1
Data flow Non-initialized

variable
High 2

The table above shows that the result set contains two data races, one deadlock and two non-
initialized variables.

• If you choose to see a summary of Code Prover run-time checks, an extract of the table looks like
this:

File Proven Green Red Gray Orange
file1.c 92.0% 87 3 2 8
file2.c 97.7% 41 0 1 1

The table above shows that file1.c has:

• 3 red, 2 gray and 8 orange checks.
• 92% of operations proven.

In other words, of every 100 operations that the verification checked, 92 operations were
proven green, red or gray. See “Code Prover Result and Source Code Colors”.

For more information on MATLAB tables, see “Tables”.

See Also
polyspace.BugFinderResults | polyspace.CodeProverResults

Introduced in R2017a

5 Functions, Classes, Methods, Properties, and Apps

5-166

getResults
View all instances of Bug Finder or Code Prover results

Syntax
resTable = getResults(resObj, content)

Description
resTable = getResults(resObj, content) returns a table showing all results in a Polyspace
result set, resObj. The results set resObj can be a Bug Finder results set denoted by a
polyspace.BugFinderResults object or a Code Prover results set denoted by a
polyspace.CodeProverResults object. You can manipulate the table to produce graphs and
statistics about your results that you cannot obtain readily from the user interface.

Examples

Read Existing Bug Finder Results to MATLAB Tables

This example shows how to read Bug Finder analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath = fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example', ...
'Module_1','BF_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.BugFinderResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = getSummary(resObj, 'defects');
resTable = getResults(resObj);

Run Bug Finder Analysis and Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};

 getResults

5-167

proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
resObj = proj.Results;
bfSummary = getResults(resObj, 'readable');

Read Existing Code Prover Results to MATLAB Tables

This example shows how to read Code Prover analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath=fullfile(polyspaceroot,'polyspace','examples','cxx','Code_Prover_Example', ...
'Module_1','CP_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.CodeProverResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = getSummary (resObj);
resTable = getResults (resObj);

Run Code Prover Analysis and Read Results to MATLAB Tables

Run a Polyspace Code Prover analysis on the demo file single_file_analysis.c. Configure these
options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.
• Specify that a main function must be generated, if it does not exist in the source code.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodeProverVerification.MainGenerator = true;

% Run analysis
cpStatus = proj.run('codeProver');

% Read results

5 Functions, Classes, Methods, Properties, and Apps

5-168

resObj = proj.Results;
cpSummary = getResults(resObj, 'readable');

Input Arguments
resObj — Bug Finder or Code Prover results
polyspace.BugFinderResults or polyspace.CodeProverResults object

Bug Finder or Code Prover results set, specified as a polyspace.BugFinderResults or
polyspace.CodeProverResults object respectively.

content — Result information to include
'' (default) | 'readable'

Amount of information to be included for each result. If you specify '', all information is included. If
you specify 'readable', the following information is not included:

• ID: Unique number for a result for the current analysis.
• Group: , , Check groupsMISRA C:2012 groups, etc.
• Status, Severity, Comment: Information that you enter about a result.

If you do not specify this argument, the full table is included.

See “Export Polyspace Analysis Results”.

Output Arguments
resTable — Results of a Bug Finder or Code Prover analysis
table

Table showing all results from a single Bug Finder or Code Prover analysis. For each result, the table
has information such as file, family, and so on. If a particular information is not available for a result,
the entry in the table states <undefined>.

For more information on:

• The columns of the table, see “Export Polyspace Analysis Results”.
• MATLAB tables, see “Tables”.

See Also
polyspace.BugFinderResults | polyspace.CodeProverResults

Introduced in R2017a

 getResults

5-169

variableAccess
View C/C++ global variables along with read/write operations

Syntax
varList = variableAccess(resObj)

Description
varList = variableAccess(resObj) returns the distribution of global variables in a Code
Prover result set denoted by the polyspace.CodeProverResults object resObj. The list also
contains all read and write operations on the global variables.

Examples

Read Global Variables from Existing Results to MATLAB Tables

This example shows how to read Code Prover analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath = fullfile(polyspaceroot,'polyspace','examples','cxx','Code_Prover_Example', ...
'Module_1','CP_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.CodeProverResults(userResPath);

Read list of global variables to MATLAB tables using the object.

varList = variableAccess(resObj);

Run Code Prover Analysis and Read Global Variables to MATLAB Tables

Run a Polyspace Code Prover analysis on the demo file single_file_analysis.c. Configure these
options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.
• Specify that a main function must be generated, if it does not exist in the source code.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};

5 Functions, Classes, Methods, Properties, and Apps

5-170

proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodeProverVerification.MainGenerator = true;

% Run analysis
cpStatus = proj.run('codeProver');

% Read results
resObj = proj.Results;
cpSummary = variableAccess(resObj);

Input Arguments
resObj — Code Prover results
polyspace.CodeProverResults object

Code Prover results set, specified as a polyspace.CodeProverResults object.

Output Arguments
varList — Distribution of global variables
table

Table showing all global variables from a single Code Prover analysis along with read and write
operations on them.

• For each global variable, the table has information such as data type, number of times accessed,
and so on.

• For each read or write operation, the table has information such as file and function name, line
number, and so on.

If a particular information is not available for a result, the entry in the table states <undefined>.

For more information on:

• The columns of the table, see “Export Global Variable List”.
• MATLAB tables, see “Tables”.

See Also
polyspace.CodeProverResults

Topics
“Export Global Variable List”

Introduced in R2017a

 variableAccess

5-171

pslinkoptions Properties
Properties for the pslinkoptions object

Description
You can create a pslinkoptions object to customize your analysis at the command-line. Use these
properties to specify configuration options, where and how to store results, additional files to include,
and data range modes.

Properties
Configuration Options

VerificationSettings — Coding rule and configuration settings for C code
'PrjConfig' (default) | 'PrjConfigAndMisraAGC' | 'PrjConfigAndMisra' |
'PrjConfigAndMisraC2012' | 'MisraAGC' | 'Misra' | 'MisraC2012'

Coding rule and configuration settings for C code specified as:

• 'PrjConfig' – Inherit options from the project configuration.
• 'PrjConfigAndMisraAGC' – Inherit options from the project configuration and enable MISRA

AC AGC rule checking.
• 'PrjConfigAndMisra' – Inherit options from the project configuration and enable MISRA

C:2004 rule checking.
• 'PrjConfigAndMisraC2012' – Inherit options from the project configuration and enable MISRA

C:2012 guideline checking.
• 'MisraAGC' – Enable MISRA AC AGC rule checking. This option runs only compilation and rule

checking.
• 'Misra' – Enable MISRA C:2004 rule checking. This option runs only compilation and rule

checking.
• 'MisraC2012' – Enable MISRA C:2012 rule checking. This option runs only compilation and

guideline checking.

Example: opt.VerificationSettings = 'PrjConfigAndMisraC2012'

VerificationMode — Polyspace mode
'CodeProver' (default) | 'BugFinder'

Polyspace mode specified as 'BugFinder', for a Bug Finder analysis, or 'CodeProver', for a Code
Prover verification.
Example: opt.VerificationMode = 'BugFinder';

EnablePrjConfigFile — Allow a custom configuration file
false (default) | true

Allows a custom configuration file instead of the default configuration specified as true or false. Use
the PrjConfigFile option to specify the configuration file.

5 Functions, Classes, Methods, Properties, and Apps

5-172

Example: opt.EnablePrjConfigFile = true;

PrjConfigFile — Custom configuration file
'' (default) | full path to a .psprj file

Custom configuration file to use instead of the default configuration specified by the full path to
a .psprj file. Use the EnablePrjConfigFile option to use this configuration file during your
analysis.
Example: opt.PrjConfigFile = 'C:\Polyspace\config.psprj';

CheckConfigBeforeAnalysis — Configuration check before analysis
'OnWarn' (default) | 'OnHalt' | 'Off'

This property sets the level of configuration checking done before the analysis starts. The
configuration check before analysis is specified as:

• 'Off' — Checks only for errors. Stops if errors are found.
• 'OnWarn' — Stops for errors. Displays a message for warnings.
• 'OnHalt' — Stops for errors and warnings.

Example: opt.CheckConfigBeforeAnalysis = 'OnHalt';

Results

ResultDir — Results folder name and location
'C:\Polyspace_Results\results_$ModelName$' (default) | folder name | folder path

Results folder name and location specified as the local folder name or the folder path. This folder is
where Polyspace writes the analysis results. This folder name can be either an absolute path or a path
relative to the current folder. The text $ModelName$ is replaced with the name of the original model.
Example: opt.ResultDir = '\results_v1_$ModelName$';

AddSuffixToResultDir — Add unique number to the results folder name
false (default) | true

Add unique number to the results folder name specified as true or false. If true, a unique number is
added to the end of every new result. Using this option helps you avoid overwriting the previous
results folders.
Example: opt.AddSuffixToResultDir = true;

OpenProjectManager — Open the Polyspace environment
false (default) | true

Open the Polyspace environment to monitor the progress of the analysis, specified as true or false.
Afterward, you can review the results.
Example: opt.OpenProjectManager = true;

AddToSimulinkProject — Add results to the open Simulink project
false (default) | true

Add your results to the currently open Simulink project, if any, specified as true or false. This option
allows you to keep your Polyspace results organized with the rest of your project files. If a Simulink
project is not open, the results are not added to a Simulink project.

 pslinkoptions Properties

5-173

Example: opt.AddToSimulinkProject = true;

Additional Files

EnableAdditionalFileList — Allow an additional file list
false (default) | true

Allow an additional file list to be analyzed, specified as true or false. Use with the
AdditionalFileList option.
Example: opt.EnableAdditionalFileList = true;

AdditionalFileList — List of additional files to be analyzed
{0x1 cell} (default) | cell array of files

List of additional files to be analyzed specified as a cell array of files. Use with the
EnableAdditionalFileList option to add these files to the analysis.
Example: opt.AdditionalFileList = {'sources\file1.c', 'sources\file2.c'};
Data Types: cell

Data Ranges

InputRangeMode — Enable design range information
'DesignMinMax' (default) | 'FullRange'

Enable design range information specified as 'DesignMinMax', to use data ranges defined in blocks
and workspaces, or 'FullRange', to treat inputs as full-range values.
Example: opt.InputRangeMode = 'FullRange';

ParamRangeMode — Enable constant parameter values
'None' (default) | 'DesignMinMax'

Enable constant parameter values, specified as 'None', to use constant parameters values specified
in the code, or 'DesignMinMax' to use a range defined in blocks and workspaces.
Example: opt.ParamRangeMode = 'DesignMinMax';

OutputRangeMode — Enable output assertions
'None' (default) | 'DesignMinMax'

Enable output assertions specified by 'None', to not apply assertions, or 'DesignMinMax' to apply
assertions to outputs using a range defined in blocks and workspace.
Example: opt.ParamRangeMode = 'DesignMinMax';

Embedded Coder Only

ModelRefVerifDepth — Depth of verification
'Current model only' (default) | '1' | '2' | '3' | 'All'

Specify the depth for analyzing the models that are referenced by the current model.

• 'Current Model Only': Analyze only the top model without analyzing the referenced models.
For instance, you might use this option when the referenced models are library models.

• '1', '2', or '3': Analyze referenced models up to the specified depth in the reference hierarchy.
For instance, to analyze the models that are referenced by the top model, specify the property

5 Functions, Classes, Methods, Properties, and Apps

5-174

ModelRefVerifDepth as '1'. To analyze models that are referenced by the first level of
references, specify this property as '2'.

• 'All': Analyze all referenced models with the current model.

For Embedded Coder only
Example: opt.ModelRefVerifDepth = '3';

ModelRefByModelRefVerif — Model reference analysis mode
false (default) | true

Specify whether you want to analyze all referenced models together, or analyze the models
individually.

• false: Analyze the top model and the referenced models together. For instance, you might want
to use this option to check for integration or scaling issues.

• true: Analyze the top model and the referenced models individually.

For Embedded Coder only
Example: opt.ModelRefByModelRefVerif = true;

CxxVerificationSettings — Coding rule and configuration settings for C++ code
'PrjConfig' (default) | 'PrjConfigAndMisraCxx' | 'PrjConfigAndJSF' | 'MisraCxx' |
'JSF'

Coding rule and configuration settings for C++ code specified as:

• 'PrjConfig' – Inherit options from project configuration and run complete analysis.
• 'PrjConfigAndMisraCxx' – Inherit options from project configuration, enable MISRA C++ rule

checking, and run complete analysis.
• 'PrjConfigAndJSF' – Inherit options from project configuration, enable JSF rule checking, and

run complete analysis.
• 'MisraCxx' – Enable MISRA C++ rule checking, and run compilation phase only.
• 'JSF' – Enable JSF rule checking, and run compilation phase only.

Only for Embedded Coder
Example: opt.CxxVerificationSettings = 'MisraCxx';

TargetLink Only

AutoStubLUT — Lookup Table code usage
false (default) | true

Lookup Table code usage, specified as true or false.

• true — use Lookup Table code during the analysis.
• false — stub Lookup Table code.

Only for TargetLink
Example: opts.AutoStubLUT = true;

 pslinkoptions Properties

5-175

See Also
pslinkoptions | pslinkrun

5 Functions, Classes, Methods, Properties, and Apps

5-176

polyspace.Project.Configuration Properties
Customize Polyspace analysis of handwritten code with options object properties

Note The Automatic Orange Tester properties will be removed in a future release. See “Compatibility
Considerations”.

Description
To customize your Polyspace analysis, use these polyspace.Options or
polyspace.Project.Configuration properties. Each property corresponds to an analysis option
on the Configuration pane in the Polyspace user interface.

The properties are grouped using the same categories as the Configuration pane. This page only
shows what values each property can take. For details about:

• The different options, see the analysis option reference pages.
• How to create and use the object, see polyspace.Options or polyspace.Project.

The same properties are also available with the deprecated classes
polyspace.BugFinderOptions and polyspace.CodeProverOptions.

Each property description below also highlights if the option affects only one of Bug Finder or Code
Prover.

Note Some options might not be available depending on the language setting of the object. You can
set the source code language (Language) to 'C', 'CPP' or 'C-CPP' during object creation, but
cannot change it later.

Properties
Advanced

Additional — Additional flags for analysis
character vector

Additional flags for analysis specified as a character vector.

For more information, see Other.
Example: opts.Advanced.Additional = '-extra-flags -option -extra-flags value'

PostAnalysisCommand — Command or script software should execute after analysis
finishes
character vector

Command or script software should execute after analysis finishes, specified as a character vector.

For more information, see Command/script to apply after the end of the code
verification (-post-analysis-command).

 polyspace.Project.Configuration Properties

5-177

Example: opts.Advanced.PostAnalysisCommand = '"C:\Program Files\perl\win32\bin
\perl.exe" "C:\My_Scripts\send_email"'

AutomaticOrangeTester — (To be removed) Run the Automatic Orange Tester
false (default) | true

This property affects Code Prover analysis only.

This property will be removed in a future release.

Run the Automatic Orange Tester after verification, specified as true or false.

For more information, see Automatic Orange Tester (-automatic-orange-tester).
Example: opts.Advanced.AutomaticOrangeTester = true

AutomaticOrangeTesterLoopMaxIteration — (To be removed) Number of loop iterations
after which Automatic Orange Tester considers infinite loop
1000 (default) | positive integer

This property affects Code Prover analysis only.

This property will be removed in a future release.

Number of loop iterations after which Automatic Orange Tester considers the test an infinite loop,
specified as a positive integer, maximum of 1000.

For more information, see Maximum loop iterations (-automatic-orange-tester-loop-
max-iteration).
Example: opts.Advanced.AutomaticOrangeTesterLoopMaxIteration = 500

AutomaticOrangeTesterTestsNumber — (To be removed) Number of tests that Automatic
Orange Tester must run
500 (default) | positive integer

This property affects Code Prover analysis only.

This property will be removed in a future release.

Number of tests that Automatic Orange Tester must run, specified as a positive integer, maximum of
100,000.

For more information, see Number of automatic tests (-automatic-orange-tester-
tests-number).
Example: opts.Advanced.AutomaticOrangeTesterTestsNumber = 1000

AutomaticOrangeTesterTimeout — (To be removed) Time in seconds allowed for a single
test in Automatic Orange Tester
5 (default) | positive integer

This property affects Code Prover analysis only.

This property will be removed in a future release.

5 Functions, Classes, Methods, Properties, and Apps

5-178

Time in seconds allowed for a single test in Automatic Orange Tester, specified as a positive integer,
maximum of 60.

For more information, see Maximum test time (-automatic-orange-tester-timeout).
Example: opts.Advanced.AutomaticOrangeTesterTimeout = 10

BugFinderAnalysis (Affects Bug Finder Only)

CheckersList — List of custom checkers to activate
polyspace.DefectsOptions object | cell array of defect acronyms

This property affects Bug Finder analysis only.

List of custom checkers to activate specified by using the name of a polyspace.DefectsOptions
object or a cell array of defect acronyms. To use this custom list in your analysis, set
CheckersPreset to custom.

For more information, see polyspace.DefectsOptions.
Example: defects = polyspace.DefectsOptions;
opts.BugFinderAnalysis.CheckersList = defects

Example: opts.BugFinderAnalysis.CheckersList =
{'INT_ZERO_DIV','FLOAT_ZERO_DIV'}

CheckersPreset — Subset of Bug Finder defects
'default' (default) | 'all' | 'CWE' | 'custom'

This property affects Bug Finder analysis only.

Preset checker list, specified as a character vector of one of the preset options: 'default', 'all',
'CWE',or 'custom'. To use 'custom', specify a value for the property
BugFinderAnalysis.CheckersList.

For more information, see Find defects (-checkers).
Example: opts.BugFinderAnalysis.CheckersPreset = 'all'

ChecksUsingSystemInputValues — Activate stricter checks for system inputs
false (default) | true

This property affects Bug Finder analysis only.

Activate stricter checks that consider all possible value for:

• Global variables.
• Reads of volatile variables.
• Returns of stubbed functions.
• Inputs to functions specified with SystemInputsFrom.

The analysis considers all possible values for a subset of Numerical and Static memory defects.

This property is equivalent to the Run stricter checks considering all values of system inputs
check box in the Polyspace interface.

 polyspace.Project.Configuration Properties

5-179

For more information, see Run stricter checks considering all values of system
inputs (-checks-using-system-input-values)

Example: opts.BugFinderAnalysis.ChecksUsingSystemInputValues = true

EnableCheckers — Activate defect checking
true (default) | false

This property affects Bug Finder analysis only.

Activate defect checking, specified as true or false. Setting this property to false disables all defects.
If you want to disable defect checking but still get results, turn on coding rules checking or code
metric checking.

This property is equivalent to the Find defects check box in the Polyspace interface.
Example: opts.BugFinderAnalysis.EnableCheckers = false

SystemInputsFrom — List of functions for which you run stricter checks
'auto' (default) | 'uncalled' | 'all' | 'custom'

This property affects Bug Finder analysis only.

Functions for which you want to run stricter checks that consider all possible values of the function
inputs. Specify the list of functions as 'auto', 'uncalled', 'all', or as a character array
beginning with custom= followed by a comma-separated list of function names.

To enable this option, set BugFinderAnalysis.ChecksUsingSystemInputValues = true.

For more information, see Consider inputs to these functions (-system-inputs-from)
Example: opts.BugFinderAnalysis.SystemInputsFrom = 'custom=foo,bar'

ChecksAssumption (Affects Code Prover Only)

AllowNegativeOperandInShift — Allow left shift operations on a negative number
false (default) | true

This property affects Code Prover analysis only.

Allow left shift operations on a negative number, specified as true or false.

For more information, see Allow negative operand for left shifts (-allow-negative-
operand-in-shift).
Example: opts.ChecksAssumption.AllowNegativeOperandInShift = true

AllowNonFiniteFloats — Incorporate infinities and/or NaNs
false (default) | true

This property affects Code Prover analysis only.

Incorporate infinities and/or NaNs, specified as true or false.

For more information, see Consider non finite floats (-allow-non-finite-floats).
Example: opts.ChecksAssumption.AllowNonFiniteFloats = true

5 Functions, Classes, Methods, Properties, and Apps

5-180

AllowPtrArithOnStruct — Allow arithmetic on pointer to a structure field so that it points
to another field
false (default) | true

This property affects Code Prover analysis only.

Allow arithmetic on pointer to a structure field so that it points to another field, specified as true or
false.

For more information, see Enable pointer arithmetic across fields (-allow-ptr-
arith-on-struct).
Example: opts.ChecksAssumption.AllowPtrArithOnStruct = true

CheckInfinite — Detect floating-point operations that result in infinities
'allow' (default) | 'warn-first' | 'forbid'

This property affects Code Prover analysis only.

Detect floating-point operations that result in infinities.

To activate this option, specify ChecksAssumption.AllowNonFiniteFloats.

For more information, see Infinities (-check-infinite).
Example: opts.ChecksAssumption.CheckInfinite = 'forbid'

CheckNan — Detect floating-point operations that result in NaN-s
'allow' (default) | 'warn-first' | 'forbid'

This property affects Code Prover analysis only.

Detect floating-point operations that result in NaN-s.

To activate this option, specify ChecksAssumption.AllowNonFiniteFloats.

For more information, see NaNs (-check-nan).
Example: opts.ChecksAssumption.CheckNan = 'forbid'

CheckSubnormal — Detect operations that result in subnormal floating point values
'allow' (default) | 'warn-first' | 'warn-all' | 'forbid'

This property affects Code Prover analysis only.

Detect operations that result in subnormal floating point values.

For more information, see Subnormal detection mode (-check-subnormal).
Example: opts.ChecksAssumption.CheckSubnormal = 'forbid'

DetectPointerEscape — Find cases where a function returns a pointer to one of its local
variables
false (default) | true

This property affects Code Prover analysis only.

Find cases where a function returns a pointer to one of its local variables, specified as true or false.

 polyspace.Project.Configuration Properties

5-181

For more information, see Detect stack pointer dereference outside scope (-detect-
pointer-escape).
Example: opts.ChecksAssumption.DetectPointerEscape = true

DisableInitializationChecks — Disable checks for noninitialized variables and pointers
false (default) | true

This property affects Code Prover analysis only.

Disable checks for noninitialized variables and pointers, specified as true or false.

For more information, see Disable checks for non-initialization (-disable-
initialization-checks).
Example: opts.ChecksAssumption.DisableInitializationChecks = true

PermissiveFunctionPointer — Allow type mismatch between function pointers and the
functions they point to
false (default) | true

This property affects Code Prover analysis only.

Allow type mismatch between function pointers and the functions they point to, specified as true or
false.

For more information, see Permissive function pointer calls (-permissive-function-
pointer).
Example: opts.ChecksAssumption.PermissiveFunctionPointer = true

SignedIntegerOverflows — Behavior of signed integer overflows
'forbid' (default) | 'allow' | 'warn-with-wrap-around'

This property affects Code Prover analysis only.

Enable the check for signed integer overflows and the assumptions to make following an overflow
specified as 'forbid', 'allow', or 'warn-with-wrap-around'.

For more information, see Overflow mode for signed integer (-signed-integer-
overflows).
Example: opts.ChecksAssumption.SignedIntegerOverflows = 'warn-with-wrap-around'

SizeInBytes — Allow a pointer with insufficient memory buffer to point to a structure
false (default) | true

This property affects Code Prover analysis only.

Allow a pointer with insufficient memory buffer to point to a structure, specified as true or false.

For more information, see Allow incomplete or partial allocation of structures (-
size-in-bytes).
Example: opts.ChecksAssumption.SizeInBytes = true

5 Functions, Classes, Methods, Properties, and Apps

5-182

UncalledFunctionCheck — Detect functions that are not called directly or indirectly from
main or another entry-point function
'none' (default) | 'never-called' | 'called-from-unreachable' | 'all'

This property affects Code Prover analysis only.

Detect functions that are not called directly or indirectly from main or another entry-point function,
specified as none, never-called, called-from-unreachable, or all.

For more information, see Detect uncalled functions (-uncalled-function-checks).
Example: opts.ChecksAssumption.UncalledFunctionCheck = 'all'

UnsignedIntegerOverflows — Behavior of unsigned integer overflows
'allow' (default) | 'forbid' | 'warn-with-wrap-around'

This property affects Code Prover analysis only.

Enable the check for unsigned integer overflows and the assumptions to make following an overflow,
specified as 'forbid', 'allow', or 'warn-with-wrap-around'.

For more information, see Overflow mode for unsigned integer (-unsigned-integer-
overflows).
Example: opts.ChecksAssumption.UnsignedIntegerOverflows = 'allow'

CodeProverVerification (Affects Code Prover only)

ClassAnalyzer — Classes that you want to verify
'all' (default) | 'none' | 'custom=class1[,class2,...]'

This property affects Code Prover analysis only.

Classes that you want to verify, specified as 'all', 'none', or as a character array beginning with
custom= followed by a comma-separated list of class names.

For more information, see Class (-class-analyzer).
Example: opts.CodeProverVerification.ClassAnalyzer = 'custom=myClass1,myClass2'

ClassAnalyzerCalls — Class methods that you want to verify
'unused' (default) | 'all' | 'all-public' | 'inherited-all' | 'inherited-all-public' |
'unused-public' | 'inherited-unused' | 'inherited-unused-public' |
'custom=method1[,method2,...]'

This property affects Code Prover analysis only.

Class methods that you want to verify, specified as one of the predefined sets or as a character array
beginning with custom= followed by a comma-separated list of method names.

For more information, see Functions to call within the specified classes (-class-
analyzer-calls).
Example: opts.CodeProverVerification.ClassAnalyzerCalls = 'unused-public'

ClassOnly — Analyze only class methods
false (default) | true

 polyspace.Project.Configuration Properties

5-183

This property affects Code Prover analysis only.

Analyze only class methods, specified as true or false.

For more information, see Analyze class contents only (-class-only).
Example: opts.CodeProverVerification.ClassOnly = true

EnableMain — Use main function provided in application
false (default) | true

This property affects Code Prover analysis only.

Use main function provided in application, specified as true or false. If you set this property to false,
the analysis generates a main function, if it is not present in the source files.

For more information, see Verify whole application.
Example: opts.CodeProverVerification.EnableMain = true

FunctionsCalledBeforeMain — Functions that you want the generated main to call ahead
of other functions
cell array of function names

This property affects Code Prover analysis only.

Functions that you want the generated main to call ahead of other functions, specified as a cell array
of function names.

For more information, see Initialization functions (-functions-called-before-main).
Example: opts.CodeProverVerification.FunctionsCalledBeforeMain =
{'func1','func2'}

Main — Use a Microsoft Visual C++ extensions of main
'_tmain' (default) | 'wmain' | '_tWinMain' | 'wWinMain' | 'WinMain' | 'DllMain'

This property applies to a Code Prover analysis only .

Use a Microsoft Visual C++ extension of main, specified as one of the predefined main extensions.

For more information, see Main entry point (-main).
Example: opts.CodeProverVerification.Main = 'wmain'

MainGenerator — Generate a main function if it is not present in source files
true (default) | false

This property applies to a Code Prover analysis only .

Generate a main function if it is not present in source files, specified as true or false.

For more information, see Verify module or library (-main-generator).
Example: opts.CodeProverVerification.MainGenerator = false

5 Functions, Classes, Methods, Properties, and Apps

5-184

MainGeneratorCalls — Functions that you want the generated main to call after the
initialization functions
'unused' (default) | 'none' | 'all' | 'custom=function1[,function2,...]'

This property applies to a Code Prover analysis only .

Functions that you want the generated main to call after the initialization functions, specified as
'unused', 'all', 'none', or as a character array beginning with custom= followed by a comma-
separated list of function names.

For more information, see Functions to call (-main-generator-calls).
Example: opts.CodeProverVerification.MainGeneratorCalls = 'all'

MainGeneratorWriteVariables — Global variables that you want the generated main to
initialize
'uninit' (C++ default) | 'public' (C default) | 'none' | 'all' |
'custom=variable1[,variable2,...]'

This property applies to a Code Prover analysis only .

Global variables that you want the generated main to initialize, specified as one of the predefined
sets, or as a character array beginning with custom= followed by a comma-separated list of variable
names.

For more information, see Variables to initialize (-main-generator-writes-
variables).
Example: opts.CodeProverVerification.MainGeneratorWriteVariables = 'all'

NoConstructorsInitCheck — Do not check if class constructor initializes class members
false (default) | true

This property applies to a Code Prover analysis only .

Do not check if class constructor initializes class members, specified as true or false.

For more information, see Skip member initialization check (-no-constructors-init-
check).
Example: opts.CodeProverVerification.NoConstructorsInitCheck = true

UnitByUnit — Verify each source file independently of other source files
false (default) | true

This property affects Code Prover analysis only.

Verify each source file independently of other source files, specified as true or false.

For more information, see Verify files independently (-unit-by-unit).
Example: opts.CodeProverVerification.UnitByUnit = true

UnitByUnitCommonSource — Files that you want to include with each source file during a
file-by-file verification
cell array of file paths

 polyspace.Project.Configuration Properties

5-185

This property affects Code Prover analysis only.

Files that you want to include with each source file during a file-by-file verification, specified as a cell
array of file paths.

For more information, see Common source files (-unit-by-unit-common-source).
Example: opts.CodeProverVerification.UnitByUnitCommonSource = {'/inc/
file1.h','/inc/file2.h'}

CodingRulesCodeMetrics

AcAgcSubset — Subset of MISRA AC AGC rules to check
'OBL-rules' (default) | 'OBL-REC-rules' | 'single-unit-rules' | 'system-decidable-
rules' | 'all-rules' | 'SQO-subset1' | 'SQO-subset2' | polyspace.CodingRulesOptions
object | 'from-file'

Subset of MISRA AC AGC rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check MISRA AC AGC (-misra-ac-agc).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check MISRA AC AGC rules, also set EnableAcAgc to true.
Example: opts.CodingRulesCodeMetrics.AcAgcSubset = 'all-rules'
Data Types: char

AllowedPragmas — Pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++
16-6-1 must not be applied
cell array of character vectors

Pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++ 16-6-1 must not be applied,
specified as a cell array of character vectors. This property affects only MISRA C:2004 or MISRA AC
AGC rule checking.

For more information, see Allowed pragmas (-allowed-pragmas).
Example: opts.CodingRulesCodeMetrics.AllowedPragmas = {'pragma_01','pragma_02'}
Data Types: cell

AutosarCpp14 — Set of AUTOSAR C++ 14 rules to check
'all' (default) | 'required' | 'automated' | polyspace.CodingRulesOptions object |
'from-file'

This property affects Bug Finder only.

5 Functions, Classes, Methods, Properties, and Apps

5-186

Set of AUTOSAR C++ 14 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check AUTOSAR C++ 14 security checks (-autosar-cpp14).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check AUTOSAR C++ 14 rules, also set EnableAutosarCpp14 to true.
Example: opts.CodingRulesCodeMetrics.AutosarCpp14 = 'all'
Data Types: char

BooleanTypes — Data types the coding rule checker must treat as effectively Boolean
cell array of character vectors

Data types that the coding rule checker must treat as effectively Boolean, specified as a cell array of
character vectors.

For more information, see Effective boolean types (-boolean-types).
Example: opts.CodingRulesCodeMetrics.BooleanTypes = {'boolean1_t','boolean2_t'}
Data Types: cell

CertC — Set of CERT C rules and recommendations to check
'all' (default) | 'publish-2016' | 'all-rules' | polyspace.CodingRulesOptions object |
'from-file'

This property affects Bug Finder only.

Set of CERT C rules and recommendations to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check CERT-C security checks (-cert-c).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use from-file for this property and then use
the EnableCheckersSelectionByFile and CheckersSelectionByFile property to specify
the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check CERT C rules and recommendations, also set EnableCertC to true.

 polyspace.Project.Configuration Properties

5-187

Example: opts.CodingRulesCodeMetrics.CertC = 'all'
Data Types: char

CertCpp — Set of CERT C++ rules to check
'all' (default) | polyspace.CodingRulesOptions object | 'from-file'

This property affects Bug Finder only.

Set of CERT C++ rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check CERT-C++ security checks (-cert-cpp).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check CERT C++ rules, also set EnableCertCpp to true.
Example: opts.CodingRulesCodeMetrics.CertCpp = 'all'
Data Types: char

CheckersSelectionByFile — File that defines custom set of coding standard checkers
full file path of .xml file

File where you define a custom set of coding standards checkers to check, specified as a .xml file.
You can, in the same file, define a custom set of checkers for each of the coding standards that
Polyspace supports. To create a file that defines a custom selection of coding standard checkers, in
the Polyspace interface, select a coding standard on the Coding Standards & Code Metrics node of
the Configuration pane and click Edit.

For more information, see Set checkers by file (-checkers-selection-file).
Example: opts.CodingRulesCodeMetrics.CheckersSelectionByFile = 'C:\ps_settings
\coding_rules\custom_rules.xml'

Data Types: char

CodeMetrics — Activate code metric calculations
false (default) | true

Activate code metric calculations, specified as true or false. If this property is turned off, Polyspace
does not calculate code metrics even if you upload your results to Polyspace Metrics.

For more information about the code metrics, see Calculate code metrics (-code-metrics).

If you assign a coding rules options object to this property, an XML file gets created automatically
with the rules specified.

5 Functions, Classes, Methods, Properties, and Apps

5-188

Example: opts.CodingRulesCodeMetrics.CodeMetrics = true

EnableAcAgc — Check MISRA AC AGC rules
false (default) | true

Check MISRA AC AGC rules, specified as true or false. To customize which rules are checked, use
AcAgcSubset.

For more information about the MISRA AC AGC checker, see Check MISRA AC AGC (-misra-ac-
agc).
Example: opts.CodingRulesCodeMetrics.EnableAcAgc = true;

EnableAutosarCpp14 — Check AUTOSAR C++ 14 rules
false (default) | true

This property affects Bug Finder only.

Check AUTOSAR C++ 14 rules, specified as true or false. To customize which rules are checked, use
AutosarCpp14.

For more information about the AUTOSAR C++ 14 checker, see Check AUTOSAR C++ 14
security checks (-autosar-cpp14).
Example: opts.CodingRulesCodeMetrics.EnableAutosarCpp14 = true;

EnableCertC — check CERT C rules and recommendations
false (default) | true

This property affects Bug Finder only.

Check CERT C rules and recommendations, specified as true or false. To customize which rules are
checked, use CertC.

For more information about the CERT C checker, see Check CERT-C security checks (-cert-
c).
Example: opts.CodingRulesCodeMetrics.EnableCertC = true;

EnableCertCpp — check CERT C++ rules
false (default) | true

This property affects Bug Finder only.

Check CERT C++ rules, specified as true or false. To customize which rules are checked, use
CertCpp.

For more information about the CERT C++ checker, see Check CERT-C++ security checks (-
cert-cpp).
Example: opts.CodingRulesCodeMetrics.EnableCertCpp = true;

EnableCheckersSelectionByFile — Check custom set of coding standard checkers
false (default) | true

Check custom set of coding standard checkers, specified as true or false. Use with
CheckersSelectionByFile and these coding standards:

 polyspace.Project.Configuration Properties

5-189

• opts.CodingRulesCodeMetrics.AutosarCpp14='from-file'
• opts.CodingRulesCodeMetrics.CertC='from-file'
• opts.CodingRulesCodeMetrics.CertCpp='from-file'
• opts.CodingRulesCodeMetrics.Iso17961='from-file'
• opts.CodingRulesCodeMetrics.JsfSubset='from-file'
• opts.CodingRulesCodeMetrics.MisraC3Subset='from-file'
• opts.CodingRulesCodeMetrics.MisraCSubset='from-file'
• opts.CodingRulesCodeMetrics.MisraCppSubset='from-file'

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.EnableCheckersSelectionByFile = true;

EnableCustomRules — Check custom coding rules
false (default) | true

Check custom coding rules, specified as true or false. The file you specify with
CheckersSelectionByFile defines the custom coding rules.

Use with EnableCheckersSelectionByFile.

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.EnableCustomRules = true;

EnableIso17961 — check ISO-17961 rules
false (default) | true

This property affects Bug Finder only.

Check ISO/IEC TS 17961 rules, specified as true or false. To customize which rules are checked, use
Iso17961.

For more information about the ISO-17961 checker, see Check ISO-17961 security checks (-
iso-17961).
Example: opts.CodingRulesCodeMetrics.EnableIso17961 = true;

EnableJsf — Check JSF C++ rules
false (default) | true

Check JSF C++ rules, specified as true or false. To customize which rules are checked, use
JsfSubset.

For more information, see Check JSF C++ rules (-jsf-coding-rules).
Example: opts.CodingRulesCodeMetrics.EnableJsf = true;

EnableMisraC — Check MISRA C:2004 rules
false (default) | true

Check MISRA C:2004 rules, specified as true or false. To customize which rules are checked, use
MisraCSubset.

For more information, see Check MISRA C:2004 (-misra2).

5 Functions, Classes, Methods, Properties, and Apps

5-190

Example: opts.CodingRulesCodeMetrics.EnableMisraC = true;

EnableMisraC3 — Check MISRA C:2012 rules
false (default) | true

Check MISRA C:2012 rules, specified as true or false. To customize which rules are checked, use
MisraC3Subset.

For more information about the MISRA C:2012 checker, see Check MISRA C:2012 (-misra3).
Example: opts.CodingRulesCodeMetrics.EnableMisraC3 = true;

EnableMisraCpp — Check MISRA C++:2008 rules
false (default) | true

Check MISRA C++:2008 rules, specified as true or false. To customize which rules are checked, use
MisraCppSubset.

For more information about the MISRA C++:2008 checker, see Check MISRA C++ rules (-
misra-cpp).
Example: opts.CodingRulesCodeMetrics.EnableMisraCpp = true;

Iso17961 — Set of ISO-17961 rules to check
'all' (default) | 'decidable' | polyspace.CodingRulesOptions object | 'from-file'

This property affects Bug Finder only.

Set of ISO/IEC TS 17961 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check ISO-17961 security checks (-iso-17961).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check ISO/IEC TS 17961 rules, also set EnableIso17961 to true.
Example: opts.CodingRulesCodeMetrics.Iso17961 = 'all'
Data Types: char

JsfSubset — Subset of JSF C++ rules to check
'shall-rules' (default) | 'shall-will-rules' | 'all-rules' |
polyspace.CodingRulesOptions object | 'from-file'

Subset of JSF C++ rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check JSF C++ rules (-jsf-coding-rules).

 polyspace.Project.Configuration Properties

5-191

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check JSF C++ rules, set EnableJsf to true.
Example: opts.CodingRulesCodeMetrics.JsfSubset = 'all-rules'
Data Types: char

Misra3AgcMode — Use the MISRA C:2012 categories for automatically generated code
false (default) | true

Use the MISRA C:2012 categories for automatically generated code, specified as true or false.

For more information, see Use generated code requirements (-misra3-agc-mode).
Example: opts.CodingRulesCodeMetrics.Misra3AgcMode = true;

MisraC3Subset — Subset of MISRA C:2012 rules to check
'mandatory-required' (default) | 'mandatory' | 'single-unit-rules' | 'system-
decidable-rules' | 'all' | 'SQO-subset1' | 'SQO-subset2' |
polyspace.CodingRulesOptions object | 'from-file'

Subset of MISRA C:2012 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check MISRA C:2012 (-misra3).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check MISRA C:2012 rules, also set EnableMisraC3 to true.
Example: opts.CodingRulesCodeMetrics.MisraC3Subset = 'all'
Data Types: char

MisraCSubset — Subset of MISRA C:2004 rules to check
'required-rules' (default) | 'single-unit-rules' | 'system-decidable-rules' | 'all-
rules' | 'SQO-subset1' | 'SQO-subset2' | polyspace.CodingRulesOptions object | 'from-
file'

5 Functions, Classes, Methods, Properties, and Apps

5-192

Subset of MISRA C:2004 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check MISRA C:2004 (-misra2).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check MISRA C:2004 rules, also set EnableMisraC to true.
Example: opts.CodingRulesCodeMetrics.MisraCSubset = 'all-rules'
Data Types: char

MisraCppSubset — Subset of MISRA C++ rules
'required-rules' (default) | 'all-rules' | 'SQO-subset1' | 'SQO-subset2' |
polyspace.CodingRulesOptions object | 'from-file'

Subset of MISRA C++:2008 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check MISRA C++ rules (-misra-cpp).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check MISRA C++ rules, set EnableMisraCpp to true.
Example: opts.CodingRulesCodeMetrics.MisraCppSubset = 'all-rules'
Data Types: char

EnvironmentSettings

Dos — Consider that file paths are in MS-DOS style
true (default) | false

Consider that file paths are in MS-DOS style, specified as true or false.

For more information, see Code from DOS or Windows file system (-dos).
Example: opts.EnvironmentSettings.Dos = true;

 polyspace.Project.Configuration Properties

5-193

IncludeFolders — Include folders needed for compilation
cell array of include folder paths

Include folders needed for compilation, specified as a cell array of the include folder paths.

To specify all subfolders of a folder, use folder path followed by **, for instance, 'C:\includes
**'. The notation follows the syntax of the dir function. See also “Specify Multiple Source Files”.

For more information, see -I.
Example: opts.EnvironmentSettings.IncludeFolders = {'/includes','/com1/inc'};
Example: opts.EnvironmentSettings.IncludeFolders = {'C:\project1\common
\includes'};

Data Types: cell

Includes — Files to be #include-ed by each C file
cell array of files

Files to be #include-ed by each C source file in the analysis, specified by a cell array of files.

For more information, see Include (-include).
Example: opts.EnvironmentSettings.Includes = {'/inc/inc_file.h','/inc/
inc_math.h'}

NoExternC — Ignore linking errors inside extern blocks
false (default) | true

Ignore linking errors inside extern blocks, specified as true or false.

For more information, see Ignore link errors (-no-extern-c).
Example: opts.EnvironmentSettings.NoExternC = false;

PostPreProcessingCommand — Command or script to run on source files after
preprocessing
character vector

Command or script to run on source files after preprocessing, specified as a character vector of the
command to run.

For more information, see Command/script to apply to preprocessed files (-post-
preprocessing-command).
Example: Linux — opts.EnvironmentSettings.PostPreProcessingCommand = [pwd,'/
replace_keyword.pl']

Example: Windows — opts.EnvironmentSettings.PostPreProcessingCommand =
'"C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin\perl.exe" "C:\My_Scripts
\replace_keyword.pl"'

StopWithCompileError — Stop analysis if a file does not compile
false (default) | true

Stop analysis if a file does not compile, specified as true or false.

5 Functions, Classes, Methods, Properties, and Apps

5-194

For more information, see Stop analysis if a file does not compile (-stop-if-
compile-error).
Example: opts.EnvironmentSettings.StopWithCompileError = true;

InputsStubbing

DataRangeSpecifications — Constrain global variables, function inputs, and return values
of stubbed functions
file path

Constrain global variables, function inputs, and return values of stubbed functions specified by the
path to an XML constraint file. For more information about the constraint file, see “Specify External
Constraints”.

For more information about this option, see Constraint setup (-data-range-
specifications).
Example: opts.InputsStubbing.DataRangeSpecifications = 'C:\project
\constraint_file.xml'

DoNotGenerateResultsFor — Files on which you do not want analysis results
'include-folders' (default) | 'all-headers' | 'custom=folder1[,folder2,...]'

Files on which you do not want analysis results, specified by 'include-folders', 'all-headers',
or a character array beginning with custom= followed by a comma-separated list of file or folder
names.

Use this option with InputsStubbing.GenerateResultsFor. For more information, see Do not
generate results for (-do-not-generate-results-for).
Example: opts.InputsStubbing.DoNotGenerateResultsFor = 'custom=C:\project
\file1.c,C:\project\file2.c'

GenerateResultsFor — Files on which you want analysis results
'source-headers' (default) | 'all-headers' | 'custom=folder1[,folder2,...]'

Files on which you want analysis results, specified by 'source-headers', 'all-headers', or a
character array beginning with custom= followed by a comma-separated list of file or folder names.

Use this option with InputsStubbing.DoNotGenerateResultsFor. For more information, see
Generate results for sources and (-generate-results-for).
Example: opts.InputsStubbing.GenerateResultsFor = 'custom=C:\project
\includes_common_1,C:\project\includes_common_2'

FunctionsToStub — Functions to stub during analysis
cell array of function names

This property affects Code Prover analysis only.

Functions to stub during analysis, specified as a cell array of function names.

For more information, see Functions to stub (-functions-to-stub).
Example: opts.InputsStubbing.FunctionsToStub = {'func1', 'func2'}

 polyspace.Project.Configuration Properties

5-195

NoDefInitGlob — Consider global variables as uninitialized
false (default) | true

This property affects Code Prover analysis only.

Consider global variables as uninitialized, specified as true or false.

For more information, see Ignore default initialization of global variables (-no-
def-init-glob).
Example: opts.InputsStubbing.NoDefInitGlob = true

NoStlStubs — Do not use Polyspace implementations of functions in the Standard
Template Library
false (default) | true

This property applies only to a Code Prover analysis of C++ code.

Do not use Polyspace implementations of functions in the Standard Template Library, specified as
true or false.

For more information, see No STL stubs (-no-stl-stubs).
Example: opts.InputsStubbing.NoStlStubs = true

StubECoderLookupTables — Specify that the analysis must stub functions in the generated
code that use lookup tables
true (default) | false

This property applies only to a Code Prover analysis of code generated from models.

Specify that the analysis must stub functions in the generated code that use lookup tables. By
replacing the functions with stubs, the analysis assumes more precise return values for the functions.

For more information, see Generate stubs for Embedded Coder lookup tables (-stub-
embedded-coder-lookup-table-functions).
Example: opts.InputsStubbing.StubECoderLookupTables = true

Macros

DefinedMacros — Macros to be replaced
cell array of macros

In preprocessed code, macros are replaced by the definition, specified in a cell array of macros and
definitions. Specify the macro as Macro=Value. If you want Polyspace to ignore the macro, leave the
Value blank. A macro with no equal sign replaces all instances of that macro by 1.

For more information, see Preprocessor definitions (-D).
Example: opts.Macros.DefinedMacros = {'uint32=int','name3=','var'}

UndefinedMacros — Macros to undefine
cell array of macros

In preprocessed code, macros are undefined, specified by a cell array of macros to undefine.

For more information, see Disabled preprocessor definitions (-U).

5 Functions, Classes, Methods, Properties, and Apps

5-196

Example: opts.Macros.DefinedMacros = {'name1','name2'}

MergedComputingSettings

AddToResultsRepositoryBugFinder — Upload Bug Finder results to Polyspace Metrics web
dashboard
false (default) | true

This property affects Bug Finder analysis only.

Upload Bug Finder analysis results to Polyspace Metrics web dashboard, specified as true or false. To
use this option, in your Polyspace preferences, you must specify a metrics server.

For more information, see Upload results to Polyspace Metrics (-add-to-results-
repository).
Example: opts.MergedComputingSettings.AddToResultsRepositoryBugFinder = true;

AddToResultsRepositoryCodeProver — Upload Code Prover results to Polyspace Metrics
web dashboard
false (default) | true

This property affects Code Prover analysis only.

Upload Code Prover analysis results to Polyspace Metrics web dashboard, specified as true or false.
To use this option, in your Polyspace preferences, you must specify a metrics server.

For more information, see Upload results to Polyspace Metrics (-add-to-results-
repository).
Example: opts.MergedComputingSettings.AddToResultsRepositoryCodeProver = true;

BatchBugFinder — Send Bug Finder analysis to remote server
false (default) | true

This property affects Bug Finder analysis only.

Send Bug Finder analysis to remote server, specified as true or false. To use this option, in your
Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a remote
cluster (-batch).
Example: opts.MergedComputingSettings.BatchBugFinder = true;

BatchCodeProver — Send Code Prover analysis to remote server
false (default) | true

This property affects Code Prover analysis only.

Send Code Prover analysis to remote server, specified as true or false. To use this option, in your
Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a remote
cluster (-batch).
Example: opts.MergedComputingSettings.BatchCodeProver = true;

 polyspace.Project.Configuration Properties

5-197

FastAnalysis — Run Bug Finder analysis using faster local mode
false (default) | true

This property affects Bug Finder analysis only.

Use fast analysis mode for Bug Finder analysis, specified as true or false.

For more information, see Use fast analysis mode for Bug Finder (-fast-analysis).
Example: opts.MergedComputingSettings.FastAnalysis = true;

MergedReporting

EnableReportGeneration — Generate a report after the analysis
false (default) | true

After the analysis, generate a report, specified as true or false.

For more information, see Generate report.
Example: opts.MergedReporting.EnableReportGeneration = true

ReportOutputFormat — Output format of generated report
'Word' (default) | 'HTML' | 'PDF'

Output format of generated report, specified as one of the report formats. To activate this option,
specify Reporting.EnableReportGeneration.

For more information about the different values, see Output format (-report-output-format).
Example: opts.MergedReporting.ReportOutputFormat = 'PDF'

BugFinderReportTemplate — Template for generating Bug Finder analysis report
'BugFinderSummary' (default) | 'BugFinder' | 'SecurityCWE' | 'CodeMetrics' |
'CodingStandards'

This property affects a Bug Finder analysis only.

Template for generating analysis report, specified as one of the report formats. To activate this
option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover report (-
report-template).
Example: opts.MergedReporting.BugFinderReportTemplate = 'CodeMetrics'

CodeProverReportTemplate — Template for generating Code Prover analysis report
'Developer' (default) | 'CallHierarchy' | 'CodeMetrics' | 'CodingStandards' |
'DeveloperReview' | 'Developer_withGreenChecks' | 'Quality' | 'VariableAccess'

This property affects a Code Prover analysis only.

Template for generating analysis report, specified as one of the predefined report formats. To activate
this option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover report (-
report-template).

5 Functions, Classes, Methods, Properties, and Apps

5-198

Example: opts.MergedReporting.CodeProverReportTemplate = 'CodeMetrics'

Multitasking

ArxmlMultitasking — Specify path of ARXML files to parse for multitasking configuration
cell array of file paths

Specify the path to the ARXML files the software parses to set up your multitasking configuration.

To activate this option, specify Multitasking.EnableExternalMultitasking and set
Multitasking.ExternalMultitaskingType to autosar.

For more information, see ARXML files selection (-autosar-multitasking)
Example: opts.Multitasking.ArxmlMultitasking={'C:\Polyspace_Workspace\AUTOSAR
\myFile.arxml'}

CriticalSectionBegin — Functions that begin critical sections
cell array of critical section function names

Functions that begin critical sections specified as a cell array of critical section function names. To
activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionEnd.

For more information, see Critical section details (-critical-section-begin -
critical-section-end).
Example: opts.Multitasking.CriticalSectionBegin =
{'function1:cs1','function2:cs2'}

CriticalSectionEnd — Functions that end critical sections
cell array of critical section function names

Functions that end critical sections specified as a cell array of critical section function names. To
activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionBegin.

For more information, see Critical section details (-critical-section-begin -
critical-section-end).
Example: opts.Multitasking.CriticalSectionEnd =
{'function1:cs1','function2:cs2'}

CyclicTasks — Specify functions that represent cyclic tasks
cell array of function names

Specify functions that represent cyclic tasks.

To activate this option, also specify Multitasking.EnableMultitasking.

For more information, see Cyclic tasks (-cyclic-tasks).
Example: opts.Multitasking.CyclicTasks = {'function1','function2'}

EnableConcurrencyDetection — Enable automatic detection of certain families of
threading functions
false (default) | true

 polyspace.Project.Configuration Properties

5-199

This property affects Code Prover analysis only.

Enable automatic detection of certain families of threading functions, specified as true or false.

For more information, see Enable automatic concurrency detection for Code Prover (-
enable-concurrency-detection).
Example: opts.Multitasking.EnableConcurrencyDetection = true

EnableExternalMultitasking — Enable automatic multitasking configuration from
external file definitions
false (default) | true

Enable multitasking configuration of your projects from external files you provide. Configure
multitasking from ARXML files for an AUTOSAR project, or from OIL files for an OSEK project.

Activate this option to enable Multitasking.ArxmlMultitasking or
Multitasking.OsekMultitasking.

For more information, see OIL files selection (-osek-multitasking) and ARXML files
selection (-autosar-multitasking).
Example: opts.Multitasking.EnableExternalMultitasking = 1

EnableMultitasking — Configure multitasking manually
false (default) | true

Configure multitasking manually by specifying true. This property activates the other manual,
multitasking properties.

For more information, see Configure multitasking manually.
Example: opts.Multitasking.EnableMultitasking = 1

EntryPoints — Functions that serve as entry-points to your multitasking application
cell array of entry-point function names

Functions that serve as entry-points to your multitasking application specified as a cell array of entry-
point function names. To activate this option, also specify Multitasking.EnableMultitasking.

For more information, see Tasks (-entry-points).
Example: opts.Multitasking.EntryPoints = {'function1','function2'}

ExternalMultitaskingType — Specify type of file to parse for multitasking configuration
'osek' (default) | 'autosar'

Specify the type of file the software parses to set up your multitasking configuration:

• For osek type, the analysis looks for OIL files in the file or folder paths that you specify.
• For autosar type, the analysis looks for ARXML files in the file paths that you specify.

To activate this option, specify Multitasking.EnableExternalMultitasking.

For more information, see OIL files selection (-osek-multitasking) and ARXML files
selection (-autosar-multitasking).
Example: opts.Multitasking.ExternalMultitaskingType = 'autosar'

5 Functions, Classes, Methods, Properties, and Apps

5-200

Interrupts — Specify functions that represent nonpreemptable interrupts
cell array of function names

Specify functions that represent nonpreemptable interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Interrupts (-interrupts).
Example: opts.Multitasking.Interrupts = {'function1','function2'}

InterruptsDisableAll — Specify routine that disable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that disables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Disabling all interrupts (-routine-disable-interrupts -
routine-enable-interrupts).
Example: opts.Multitasking.InterruptsDisableAll = {'function'}

InterruptsEnableAll — Specify routine that reenable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that reenables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Disabling all interrupts (-routine-disable-interrupts -
routine-enable-interrupts).
Example: opts.Multitasking.InterruptsEnableAll = {'function'}

OsekMultitasking — Specify path of OIL files to parse for multitasking configuration
'auto' (default) | 'custom=folder1[,folder2,...]'

Specify the path to the OIL files the software parses to set up your multitasking configuration:

• In the mode specified with 'auto', the analysis uses OIL files in your project source and include
folders, but not their subfolders.

• In the mode specified with 'custom=folder1[,folder2,...]', the analysis uses the OIL files
at the specified path, and the path subfolders.

To activate this option, specify Multitasking.EnableExternalMultitasking and set
Multitasking.ExternalMultitaskingType to osek.

For more information, see OIL files selection (-osek-multitasking)
Example: opts.Multitasking.OsekMultitasking = 'custom=file_path, dir_path'

TemporalExclusion — Entry-point functions that cannot execute concurrently
cell array of entry-point function names

 polyspace.Project.Configuration Properties

5-201

Entry-point functions that cannot execute concurrently specified as a cell array of entry-point
function names. Each set of exclusive tasks is one cell array entry with functions separated by spaces.
To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Temporally exclusive tasks (-temporal-exclusions-file).
Example: opts.Multitasking.TemporalExclusion = {'function1 function2',
'function3 function4 function5'} where function1 and function2 are temporally exclusive,
and function3, function4, and function 5 are temporally exclusive.

Precision (Affects Code Prover Only)

ContextSensitivity — Store call context information to identify function call that caused
errors
'none' (default) | 'auto' | 'custom=function1[,function2,...]'

This property affects Code Prover analysis only.

Store call context information to identify a function call that caused errors, specified as none, auto,
or as a character array beginning with custom= followed by a list of comma-separated function
names.

For more information, see Sensitivity context (-context-sensitivity).
Example: opts.Precision.ContextSensitivity = 'auto'
Example: opts.Precision.ContextSensitivity = 'custom=func1'

ModulesPrecision — Source files you want to verify at higher precision
cell array of file names and precision levels

This property affects Code Prover analysis only.

Source files that you want to verify at higher precision, specified as a cell array of file names without
the extension and precision levels using this syntax: filename:Olevel

For more information, see Specific precision (-modules-precision).
Example: opts.Precision.ModulesPrecision = {'file1:O0', 'file2:O3'}

OLevel — Precision level for the verification
2 (default) | 0 | 1 | 3

This property affects Code Prover analysis only.

Precision level for the verification, specified as 0, 1, 2, or 3.

For more information, see Precision level (-O).
Example: opts.Precision.OLevel = 3

PathSensitivityDelta — Avoid certain verification approximations for code with fewer
lines
positive integer

This property affects Code Prover analysis only.

5 Functions, Classes, Methods, Properties, and Apps

5-202

Avoid certain verification approximations for code with fewer lines, specified as a positive integer
representing how sensitive the analysis is. Higher values can increase verification time exponentially.

For more information, see Improve precision of interprocedural analysis (-path-
sensitivity-delta).
Example: opts.Precision.PathSensitivityDelta = 2

Timeout — Time limit on your verification
character vector

This property affects Code Prover analysis only.

Time limit on your verification, specified as a character vector of time in hours.

For more information, see Verification time limit (-timeout).
Example: opts.Precision.Timeout = '5.75'

To — Number of times the verification process runs
'Software Safety Analysis level 2' (default) | 'Software Safety Analysis level 0' |
'Software Safety Analysis level 1' | 'Software Safety Analysis level 3' |
'Software Safety Analysis level 4' | 'Source Compliance Checking' | 'other'

This property affects Code Prover analysis only.

Number of times the verification process runs, specified as one of the preset analysis levels.

For more information, see Verification level (-to).
Example: opts.Precision.To = 'Software Safety Analysis level 3'

Scaling (Affects Code Prover Only)

Inline — Functions on which separate results must be generated for each function call
cell array of function names

This property affects Code Prover analysis only.

Functions on which separate results must be generated for each function call, specified as a cell
array of function names.

For more information, see Inline (-inline).
Example: opts.Scaling.Inline = {'func1','func2'}

KLimiting — Limit depth of analysis for nested structures
positive integer

This property affects Code Prover analysis only.

Limit depth of analysis for nested structures, specified as a positive integer indicating how many
levels into a nested structure to verify.

For more information, see Depth of verification inside structures (-k-limiting).
Example: opts.Scaling.KLimiting = 3

 polyspace.Project.Configuration Properties

5-203

TargetCompiler

Compiler — Compiler that builds your source code
'generic' (default) | 'gnu3.4' | 'gnu4.6' | 'gnu4.7' | 'gnu4.8' | 'gnu4.9' | 'gnu5.x' |
'gnu6.x' | 'gnu7.x' | 'clang3.x' | 'clang4.x' | 'clang5.x' | 'visual9.0' | 'visual10' |
'visual11.0' | 'visual12.0' | 'visual14.0' | 'visual15.x' | 'keil' | 'iar' | 'armcc' |
'armclang' | 'codewarrior' | 'diab' | 'greenhills' | 'iar-ew' | 'renesas' | 'tasking' |
'ti'

Compiler that builds your source code.

For more information, see Compiler (-compiler).
Example: opts.TargetCompiler.Compiler = 'Visual11.0'

CppVersion — Specify C++ standard version followed in code
'defined-by-compiler' (default) | 'cpp03' | 'cpp11' | 'cpp14' | 'cpp17'

Specify C++ standard version followed in code, specified as a character vector.

For more information, see C++ standard version (-cpp-version).
Example: opts.TargetCompiler.CppVersion = 'cpp11';

CVersion — Specify C standard version followed in code
'defined-by-compiler' (default) | 'c90' | 'c99' | 'c11'

Specify C standard version followed in code, specified as a character vector.

For more information, see C standard version (-c-version).
Example: opts.TargetCompiler.CVersion = 'c90';

DivRoundDown — Round down quotients from division or modulus of negative numbers
false (default) | true

Round down quotients from division or modulus of negative numbers, specified as true or false.

For more information, see Division round down (-div-round-down).
Example: opts.TargetCompiler.DivRoundDown = true

EnumTypeDefinition — Base type representation of enum
'defined-by-compiler' (default) | 'auto-signed-first' | 'auto-unsigned-first'

Base type representation of enum, specified by an allowed base-type set. For more information about
the different values, see Enum type definition (-enum-type-definition).
Example: opts.TargetCompiler.EnumTypeDefinition = 'auto-unsigned-first'

IgnorePragmaPack — Ignore #pragma pack directives
false (default) | true

Ignore #pragma pack directives, specified as true or false.

For more information, see Ignore pragma pack directives (-ignore-pragma-pack).
Example: opts.TargetCompiler.IgnorePragmaPack = true

5 Functions, Classes, Methods, Properties, and Apps

5-204

Language — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

This property is read-only.

Language of the analysis, specified during the object construction. This value changes which
properties appear.

For more information, see Source code language (-lang).

LogicalSignedRightShift — Treatment of signed bit on signed variables
'Arithmetical' (default) | 'Logical'

Treatment of signed bit on signed variables, specified as Arithmetical or Logical. For more
information, see Signed right shift (-logical-signed-right-shift).
Example: opts.TargetCompiler.LogicalSignedRightShift = 'Logical'

NoUliterals — Do not use predefined typedefs for char16_t or char32_t
false (default) | true

Do not use predefined typedefs for char16_t or char32_t, specified as true or false. For more
information, see Block char16/32_t types (-no-uliterals).
Example: opts.TargetCompiler.NoUliterals = true

PackAlignmentValue — Default structure packing alignment
'defined-by-compiler' (default) | '1' | '2' | '4' | '8' | '16'

Default structure packing alignment, specified as 'defined-by-compiler', '1', '2', '4', '8', or
'16'. This property is available only for Visual C++ code.

For more information, see Pack alignment value (-pack-alignment-value).
Example: opts.TargetCompiler.PackAlignmentValue = '4'

SfrTypes — sfr types
cell array of sfr keywords

sfr types, specified as a cell array of sfr keywords using the syntax sfr_name=size_in_bits. For
more information, see Sfr type support (-sfr-types).

This option only applies when you set TargetCompiler.Compiler to keil or iar.
Example: opts.TargetCompiler.SfrTypes = {'sfr32=32'}

SizeTTypeIs — Underlying type of size_t
'defined-by-compiler' (default) | 'unsigned-int' | 'unsigned-long' | 'unsigned-long-
long'

Underlying type of size_t, specified as 'defined-by-compiler', 'unsigned-int',
'unsigned-long', or 'unsigned-long-long'. See Management of size_t (-size-t-type-
is).
Example: opts.TargetCompiler.SizeTTypeIs = 'unsigned-long'

Target — Target processor
'i386' (default) | 'arm' | 'arm64' | 'avr' | 'c-167' | 'c166' | 'c18' | 'c28x' | 'c6000' |
'coldfire' | 'hc08' | 'hc12' | 'm68k' | 'mcore' | 'mips' | 'mpc5xx' | 'msp430' | 'necv850'

 polyspace.Project.Configuration Properties

5-205

| 'powerpc' | 'powerpc64' | 'rh850' | 'rl78' | 'rx' | 's12z' | 'sharc21x61' | 'sparc' |
'superh' | 'tms320c3x' | 'tricore' | 'x86_64' | generic target object

Set size of data types and endianness of processor, specified as one of the predefined target
processors or a generic target object.

For more information about the predefined processors, see Target processor type (-target).

For more information about creating a generic target, see polyspace.GenericTargetOptions.
Example: opts.TargetCompiler.Target = 'hc12'

WcharTTypeIs — Underlying type of wchar_t
'defined-by-compiler' (default) | 'signed-short' | 'unsigned-short' | 'signed-int' |
'unsigned-int' | 'signed-long' | 'unsigned-long'

Underlying type of wchar_t, specified as 'defined-by-compiler', 'signed-short',
'unsigned-short', 'signed-int', 'unsigned-int', 'signed-long', or 'unsigned-long'.
See Management of wchar_t (-wchar-t-type-is).
Example: opts.TargetCompiler.WcharTTypeIs = 'unsigned-int'

VerificationAssumption (Affects Code Prover Only)

ConsiderVolatileQualifierOnFields — Assume that volatile qualified structure fields can
have all possible values at any point in code
false (default) | true

This property affects Code Prover analysis only.

Assume that volatile qualified structure fields can have all possible values at any point in code.

For more information, see Consider volatile qualifier on fields (-consider-
volatile-qualifier-on-fields).
Example: opts.VerificationAssumption.ConsiderVolatileQualifierOnFields = true

ConstraintPointersMayBeNull — Specify that environment pointers can be NULL unless
constrained otherwise
false (default) | true

This property affects Code Prover analysis only.

Specify that environment pointers can be NULL unless constrained otherwise.

For more information, see Consider environment pointers as unsafe (-stubbed-
pointers-are-unsafe).
Example: opts.VerificationAssumption.ConstraintPointersMayBeNull = true

FloatRoundingMode — Rounding modes to consider when determining the results of
floating-point arithmetic
to-nearest (default) | all

This property affects Code Prover analysis only.

Rounding modes to consider when determining the results of floating-point arithmetic, specified as
to-nearest or all.

5 Functions, Classes, Methods, Properties, and Apps

5-206

For more information, see Float rounding mode (-float-rounding-mode).
Example: opts.VerificationAssumption.FloatRoundingMode = 'all'

RespectTypesInFields — Do not cast nonpointer fields of a structure to pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer fields of a structure to pointers, specified as true or false.

For more information, see Respect types in fields (-respect-types-in-fields).
Example: opts.VerificationAssumption.RespectTypesInFields = true

RespectTypesInGlobals — Do not cast nonpointer global variables to pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer global variables to pointers, specified as true or false.

For more information, see Respect types in global variables (-respect-types-in-
globals).
Example: opts.VerificationAssumption.RespectTypesInGlobals = true

Other Properties

Author — Project author
username of current user (default) | character vector

Name of project author, specified as a character vector.

For more information, see -author.
Example: opts.Author = 'JaneDoe'

ImportComments — Import comments and justifications from previous analysis
character vector

To import comments and justifications from a previous analysis, specify the path to the results folder
of the previous analysis.

You can also point to a previous results folder to see only new results compared to the previous run.
See “Compare Results from Different Polyspace Runs by Using MATLAB Scripts”.

For more information, see -import-comments
Example: opts.ImportComments =
fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example','Mod
ule_1','BF_Result')

Prog — Project name
PolyspaceProject (default) | character vector

Project name, specified as a character vector.

 polyspace.Project.Configuration Properties

5-207

For more information, see -prog.
Example: opts.Prog = 'myProject'

ResultsDir — Location to store results
folder path

Location to store results, specified as a folder path. By default, the results are stored in the current
folder.

For more information, see -results-dir.

You can also create a separate results folder for each new run. See “Compare Results from Different
Polyspace Runs by Using MATLAB Scripts”.
Example: opts.ResultsDir = 'C:\project\myproject\results\'

Sources — Source files
cell array of files

Source files to analyze, specified as a cell array of files.

To specify all files in a folder, use folder path followed by *, for instance, 'C:\src*'. To specify all
files in a folder and its subfolders, use folder path followed by **, for instance, 'C:\src**'. The
notation follows the syntax of the dir function. See also “Specify Multiple Source Files”.

For more information, see -sources.
Example: opts.Sources = {'file1.c', 'file2.c', 'file3.c'}
Example: opts.Sources = {'project/src1/file1.c', 'project/src2/file2.c',
'project/src3/file3.c'}

Version — Project version number
'1.0' (default) | character array of a number

Version number of project, specified as a character array of a number. This option is useful if you
upload your results to Polyspace Metrics. If you increment version numbers each time that you
reanalyze your object, you can compare the results from two versions in Polyspace Metrics.

For more information, see -v[ersion].
Example: opts.Version = '2.3'

Compatibility Considerations
Automatic Orange Tester will be removed
Not recommended starting in R2020b

The Automatic Orange Tester will be removed in a future release. If you use these properties in your
scripts, remove them (opts=polyspace.Options('C')):

• opts.Advanced.AutomaticOrangeTester
• opts.Advanced.AutomaticOrangeTesterLoopMaxIteration
• opts.Advanced.AutomaticOrangeTesterTestsNumber

5 Functions, Classes, Methods, Properties, and Apps

5-208

• opts.Advanced.AutomaticOrangeTesterTimeout

See Also
Topics
“Analysis Options in Polyspace Code Prover”

Introduced in R2017a

 polyspace.Project.Configuration Properties

5-209

polyspace.ModelLinkOptions Properties
Customize Polyspace analysis of generated code with options object properties

Description
To customize your Polyspace analysis of generated code, modify the
polyspace.ModelLinkOptions object properties. Each property corresponds to an analysis option
on the Configuration pane in the Polyspace user interface.

The properties are grouped using the same categories as the Configuration pane. This page only
shows what values each property can take. For details about:

• The different options, see the analysis options reference pages.
• How to create and use the object, see polyspace.ModelLinkOptions.

The same properties are also available with the deprecated classes
polyspace.ModelLinkBugFinderOptions and polyspace.ModelLinkCodeProverOptions.

Each property description below also highlights if the option affects only one of Bug Finder or Code
Prover.

Note Some options might not be available depending on the language setting of the object. You can
set the source code language (Language) to 'C', 'CPP' or 'C-CPP' during object creation, but
cannot change it later.

Properties
Advanced

Additional — Additional flags for analysis
character vector

Additional flags for analysis specified as a character vector.

For more information, see Other.
Example: opts.Advanced.Additional = '-extra-flags -option -extra-flags value'

PostAnalysisCommand — Command or script software should execute after analysis
finishes
character vector

Command or script software should execute after analysis finishes, specified as a character vector.

For more information, see Command/script to apply after the end of the code
verification (-post-analysis-command).
Example: opts.Advanced.PostAnalysisCommand = '"C:\Program Files\perl\win32\bin
\perl.exe" "C:\My_Scripts\send_email"'

5 Functions, Classes, Methods, Properties, and Apps

5-210

AutomaticOrangeTester — (To be removed) Run the Automatic Orange Tester
false (default) | true

This property affects Code Prover analysis only.

This property will be removed in a future release.

Run the Automatic Orange Tester after verification, specified as true or false.

For more information, see Automatic Orange Tester (-automatic-orange-tester).
Example: opts.Advanced.AutomaticOrangeTester = true

AutomaticOrangeTesterLoopMaxIteration — (To be removed) Number of loop iterations
after which Automatic Orange Tester considers infinite loop
1000 (default) | positive integer

This property affects Code Prover analysis only.

This property will be removed in a future release.

Number of loop iterations after which Automatic Orange Tester considers the test an infinite loop,
specified as a positive integer, maximum of 1000.

For more information, see Maximum loop iterations (-automatic-orange-tester-loop-
max-iteration).
Example: opts.Advanced.AutomaticOrangeTesterLoopMaxIteration = 500

AutomaticOrangeTesterTestsNumber — (To be removed) Number of tests that Automatic
Orange Tester must run
500 (default) | positive integer

This property affects Code Prover analysis only.

This property will be removed in a future release.

Number of tests that Automatic Orange Tester must run, specified as a positive integer, maximum of
100,000.

For more information, see Number of automatic tests (-automatic-orange-tester-
tests-number).
Example: opts.Advanced.AutomaticOrangeTesterTestsNumber = 1000

AutomaticOrangeTesterTimeout — (To be removed) Time in seconds allowed for a single
test in Automatic Orange Tester
5 (default) | positive integer

This property affects Code Prover analysis only.

This property will be removed in a future release.

Time in seconds allowed for a single test in Automatic Orange Tester, specified as a positive integer,
maximum of 60.

For more information, see Maximum test time (-automatic-orange-tester-timeout).

 polyspace.ModelLinkOptions Properties

5-211

Example: opts.Advanced.AutomaticOrangeTesterTimeout = 10

BugFinderAnalysis (Affects Bug Finder Only)

CheckersList — List of custom checkers to activate
polyspace.DefectsOptions object | cell array of defect acronyms

This property affects Bug Finder analysis only.

List of custom checkers to activate specified by using the name of a polyspace.DefectsOptions
object or a cell array of defect acronyms. To use this custom list in your analysis, set
CheckersPreset to custom.

For more information, see polyspace.DefectsOptions.
Example: defects = polyspace.DefectsOptions;
opts.BugFinderAnalysis.CheckersList = defects

Example: opts.BugFinderAnalysis.CheckersList =
{'INT_ZERO_DIV','FLOAT_ZERO_DIV'}

CheckersPreset — Subset of Bug Finder defects
'default' (default) | 'all' | 'CWE' | 'custom'

This property affects Bug Finder analysis only.

Preset checker list, specified as a character vector of one of the preset options: 'default', 'all',
'CWE',or 'custom'. To use 'custom', specify a value for the property
BugFinderAnalysis.CheckersList.

For more information, see Find defects (-checkers).
Example: opts.BugFinderAnalysis.CheckersPreset = 'all'

ChecksUsingSystemInputValues — Activate stricter checks for system inputs
false (default) | true

This property affects Bug Finder analysis only.

Activate stricter checks that consider all possible value for:

• Global variables.
• Reads of volatile variables.
• Returns of stubbed functions.
• Inputs to functions specified with SystemInputsFrom.

The analysis considers all possible values for a subset of Numerical and Static memory defects.

This property is equivalent to the Run stricter checks considering all values of system inputs
check box in the Polyspace interface.

For more information, see Run stricter checks considering all values of system
inputs (-checks-using-system-input-values)

Example: opts.BugFinderAnalysis.ChecksUsingSystemInputValues = true

5 Functions, Classes, Methods, Properties, and Apps

5-212

EnableCheckers — Activate defect checking
true (default) | false

This property affects Bug Finder analysis only.

Activate defect checking, specified as true or false. Setting this property to false disables all defects.
If you want to disable defect checking but still get results, turn on coding rules checking or code
metric checking.

This property is equivalent to the Find defects check box in the Polyspace interface.
Example: opts.BugFinderAnalysis.EnableCheckers = false

SystemInputsFrom — List of functions for which you run stricter checks
'auto' (default) | 'uncalled' | 'all' | 'custom'

This property affects Bug Finder analysis only.

Functions for which you want to run stricter checks that consider all possible values of the function
inputs. Specify the list of functions as 'auto', 'uncalled', 'all', or as a character array
beginning with custom= followed by a comma-separated list of function names.

To enable this option, set BugFinderAnalysis.ChecksUsingSystemInputValues = true.

For more information, see Consider inputs to these functions (-system-inputs-from)
Example: opts.BugFinderAnalysis.SystemInputsFrom = 'custom=foo,bar'

ChecksAssumption (Affects Code Prover Only)

AllowNegativeOperandInShift — Allow left shift operations on a negative number
true (default) | false

This property affects Code Prover analysis only.

Allow left shift operations on a negative number, specified as true or false.

For more information, see Allow negative operand for left shifts (-allow-negative-
operand-in-shift).
Example: opts.ChecksAssumption.AllowNegativeOperandInShift = true

AllowNonFiniteFloats — Incorporate infinities and/or NaNs
false (default) | true

This property affects Code Prover analysis only.

Incorporate infinities and/or NaNs, specified as true or false.

For more information, see Consider non finite floats (-allow-non-finite-floats).
Example: opts.ChecksAssumption.AllowNonFiniteFloats = true

AllowPtrArithOnStruct — Allow arithmetic on pointer to a structure field so that it points
to another field
false (default) | true

This property affects Code Prover analysis only.

 polyspace.ModelLinkOptions Properties

5-213

Allow arithmetic on pointer to a structure field so that it points to another field, specified as true or
false.

For more information, see Enable pointer arithmetic across fields (-allow-ptr-
arith-on-struct).
Example: opts.ChecksAssumption.AllowPtrArithOnStruct = true

CheckInfinite — Detect floating-point operations that result in infinities
'allow' (default) | 'warn-first' | 'forbid'

This property affects Code Prover analysis only.

Detect floating-point operations that result in infinities.

To activate this option, specify ChecksAssumption.AllowNonFiniteFloats.

For more information, see Infinities (-check-infinite).
Example: opts.ChecksAssumption.CheckInfinite = 'forbid'

CheckNan — Detect floating-point operations that result in NaN-s
'allow' (default) | 'warn-first' | 'forbid'

This property affects Code Prover analysis only.

Detect floating-point operations that result in NaN-s.

To activate this option, specify ChecksAssumption.AllowNonFiniteFloats.

For more information, see NaNs (-check-nan).
Example: opts.ChecksAssumption.CheckNan = 'forbid'

CheckSubnormal — Detect operations that result in subnormal floating point values
'allow' (default) | 'warn-first' | 'warn-all' | 'forbid'

This property affects Code Prover analysis only.

Detect operations that result in subnormal floating point values.

For more information, see Subnormal detection mode (-check-subnormal).
Example: opts.ChecksAssumption.CheckSubnormal = 'forbid'

DetectPointerEscape — Find cases where a function returns a pointer to one of its local
variables
false (default) | true

This property affects Code Prover analysis only.

Find cases where a function returns a pointer to one of its local variables, specified as true or false.

For more information, see Detect stack pointer dereference outside scope (-detect-
pointer-escape).
Example: opts.ChecksAssumption.DetectPointerEscape = true

5 Functions, Classes, Methods, Properties, and Apps

5-214

DisableInitializationChecks — Disable checks for noninitialized variables and pointers
false (default) | true

This property affects Code Prover analysis only.

Disable checks for noninitialized variables and pointers, specified as true or false.

For more information, see Disable checks for non-initialization (-disable-
initialization-checks).
Example: opts.ChecksAssumption.DisableInitializationChecks = true

PermissiveFunctionPointer — Allow type mismatch between function pointers and the
functions they point to
false (default) | true

This property affects Code Prover analysis only.

Allow type mismatch between function pointers and the functions they point to, specified as true or
false.

For more information, see Permissive function pointer calls (-permissive-function-
pointer).
Example: opts.ChecksAssumption.PermissiveFunctionPointer = true

SignedIntegerOverflows — Behavior of signed integer overflows
'warn-with-wrap-around' (default) | 'forbid' | 'allow'

This property affects Code Prover analysis only.

Enable the check for signed integer overflows and the assumptions to make following an overflow
specified as 'forbid', 'allow', or 'warn-with-wrap-around'.

For more information, see Overflow mode for signed integer (-signed-integer-
overflows).
Example: opts.ChecksAssumption.SignedIntegerOverflows = 'warn-with-wrap-around'

SizeInBytes — Allow a pointer with insufficient memory buffer to point to a structure
false (default) | true

This property affects Code Prover analysis only.

Allow a pointer with insufficient memory buffer to point to a structure, specified as true or false.

For more information, see Allow incomplete or partial allocation of structures (-
size-in-bytes).
Example: opts.ChecksAssumption.SizeInBytes = true

UncalledFunctionCheck — Detect functions that are not called directly or indirectly from
main or another entry-point function
'none' (default) | 'never-called' | 'called-from-unreachable' | 'all'

This property affects Code Prover analysis only.

 polyspace.ModelLinkOptions Properties

5-215

Detect functions that are not called directly or indirectly from main or another entry-point function,
specified as 'none', 'never-called', 'called-from-unreachable', or 'all'.

For more information, see Detect uncalled functions (-uncalled-function-checks).
Example: opts.ChecksAssumption.UncalledFunctionCheck = 'all'

UnsignedIntegerOverflows — Behavior of unsigned integer overflows
'allow' (default) | 'forbid' | 'warn-with-wrap-around'

This property affects Code Prover analysis only.

Enable the check for unsigned integer overflows and the assumptions to make following an overflow,
specified as 'forbid', 'allow', or 'warn-with-wrap-around'.

For more information, see Overflow mode for unsigned integer (-unsigned-integer-
overflows).
Example: opts.ChecksAssumption.UnsignedIntegerOverflows = 'allow'

CodeProverVerification (Affects Code Prover only)

ClassAnalyzer — Classes that you want to verify
'none' (default) | 'all' | 'custom=class1[,class2,...]'

This property affects Code Prover analysis only.

Classes that you want to verify, specified as 'all', 'none', or as a character array beginning with
custom= followed by a comma-separated list of class names.

For more information, see Class (-class-analyzer).
Example: opts.CodeProverVerification.ClassAnalyzer = 'none'

FunctionsCalledAfterLoop — Functions that the generated main must call after the cyclic
code loop
cell array of function names

This property affects Code Prover analysis only.

Functions that the generated main must call after the cyclic code loop, specified as a cell array of
function names.

For more information, see Termination functions (-functions-called-after-loop).
Example: opts.CodeProverVerification.FunctionsCalledAfterLoop =
{'func1','func2'}

FunctionsCalledBeforeLoop — Functions that the generated main must call before the
cyclic code loop
cell array of function names

This property affects Code Prover analysis only.

Model Link only. Functions that the generated main must call before the cyclic code loop, specified as
a cell array of function names.

For more information, see Initialization functions (-functions-called-before-loop).

5 Functions, Classes, Methods, Properties, and Apps

5-216

Example: opts.CodeProverVerification.FunctionsCalledBeforeLoop =
{'func1','func2'}

FunctionsCalledInLoop — Functions that the generated main must call in the cyclic code
loop
'none' (default) | 'all' | 'custom=function1[,function2,...]'

This property affects Code Prover analysis only.

Functions that the generated main must call in the cyclic code loop, specified as 'none', 'all', or
as a character array beginning with custom= followed by a comma-separated list of function names..

For more information, see Step functions (-functions-called-in-loop).
Example: opts.CodeProverVerification.FunctionsCalledInLoop = 'all'

MainGenerator — Generate a main function if it is not present in source files
true (default) | false

This property affects Code Prover analysis only.

Generate a main function if it is not present in source files, specified as true or false.

For more information, see Verify module or library (-main-generator).
Example: opts.CodeProverVerification.MainGenerator = false

VariablesWrittenBeforeLoop — Variables that the generated main must initialize before
the cyclic code loop
'none' (default) | 'all' | 'custom=variable1[,variable2,...]'

This property affects Code Prover analysis only.

Variables that the generated main must initialize before the cyclic code loop, specified as 'none',
'all', or as a character array beginning with custom= followed by a comma-separated list of
variable names.

For more information, see Parameters (-variables-written-before-loop).
Example: opts.CodeProverVerification.VariablesWrittenBeforeLoop = 'all'

VariablesWrittenInLoop — Variables that the generated main must initialize in the cyclic
code loop
'none' (default) | 'all' | 'custom=variable1[,variable2,...]'

This property affects Code Prover analysis only.

Variables that the generated main must initialize in the cyclic code loop, specified as 'none', 'all',
or as a character array beginning with custom= followed by a comma-separated list of variable
names.

For more information, see Inputs (-variables-written-in-loop).
Example: opts.CodeProverVerification.VariablesWrittenInLoop = 'all'

 polyspace.ModelLinkOptions Properties

5-217

CodingRulesCodeMetrics

AcAgcSubset — Subset of MISRA AC AGC rules to check
'OBL-rules' (default) | 'OBL-REC-rules' | 'single-unit-rules' | 'system-decidable-
rules' | 'all-rules' | 'SQO-subset1' | 'SQO-subset2' | polyspace.CodingRulesOptions
object | 'from-file'

Subset of MISRA AC AGC rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check MISRA AC AGC (-misra-ac-agc).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check MISRA AC AGC rules, also set EnableAcAgc to true.
Example: opts.CodingRulesCodeMetrics.AcAgcSubset = 'all-rules'
Data Types: char

AllowedPragmas — Pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++
16-6-1 must not be applied
cell array of character vectors

Pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++ 16-6-1 must not be applied,
specified as a cell array of character vectors. This property affects only MISRA C:2004 or MISRA AC
AGC rule checking.

For more information, see Allowed pragmas (-allowed-pragmas).
Example: opts.CodingRulesCodeMetrics.AllowedPragmas = {'pragma_01','pragma_02'}
Data Types: cell

AutosarCpp14 — Set of AUTOSAR C++ 14 rules to check
'all' (default) | 'required' | 'automated' | polyspace.CodingRulesOptions object |
'from-file'

This property affects Bug Finder only.

Set of AUTOSAR C++ 14 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check AUTOSAR C++ 14 security checks (-autosar-cpp14).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

5 Functions, Classes, Methods, Properties, and Apps

5-218

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check AUTOSAR C++ 14 rules, also set EnableAutosarCpp14 to true.
Example: opts.CodingRulesCodeMetrics.AutosarCpp14 = 'all'
Data Types: char

BooleanTypes — Data types the coding rule checker must treat as effectively Boolean
cell array of character vectors

Data types that the coding rule checker must treat as effectively Boolean, specified as a cell array of
character vectors.

For more information, see Effective boolean types (-boolean-types).
Example: opts.CodingRulesCodeMetrics.BooleanTypes = {'boolean1_t','boolean2_t'}
Data Types: cell

CertC — Set of CERT C rules and recommendations to check
'all' (default) | 'publish-2016' | 'all-rules' | polyspace.CodingRulesOptions object |
'from-file'

This property affects Bug Finder only.

Set of CERT C rules and recommendations to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check CERT-C security checks (-cert-c).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use from-file for this property and then use
the EnableCheckersSelectionByFile and CheckersSelectionByFile property to specify
the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check CERT C rules and recommendations, also set EnableCertC to true.
Example: opts.CodingRulesCodeMetrics.CertC = 'all'
Data Types: char

CertCpp — Set of CERT C++ rules to check
'all' (default) | polyspace.CodingRulesOptions object | 'from-file'

 polyspace.ModelLinkOptions Properties

5-219

This property affects Bug Finder only.

Set of CERT C++ rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check CERT-C++ security checks (-cert-cpp).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check CERT C++ rules, also set EnableCertCpp to true.
Example: opts.CodingRulesCodeMetrics.CertCpp = 'all'
Data Types: char

CheckersSelectionByFile — File that defines custom set of coding standard checkers
full file path of .xml file

File where you define a custom set of coding standards checkers to check, specified as a .xml file.
You can, in the same file, define a custom set of checkers for each of the coding standards that
Polyspace supports. To create a file that defines a custom selection of coding standard checkers, in
the Polyspace interface, select a coding standard on the Coding Standards & Code Metrics node of
the Configuration pane and click Edit.

For more information, see Set checkers by file (-checkers-selection-file).
Example: opts.CodingRulesCodeMetrics.CheckersSelectionByFile = 'C:\ps_settings
\coding_rules\custom_rules.xml'

Data Types: char

CodeMetrics — Activate code metric calculations
false (default) | true

Activate code metric calculations, specified as true or false. If this property is turned off, Polyspace
does not calculate code metrics even if you upload your results to Polyspace Metrics.

For more information about the code metrics, see Calculate code metrics (-code-metrics).

If you assign a coding rules options object to this property, an XML file gets created automatically
with the rules specified.
Example: opts.CodingRulesCodeMetrics.CodeMetrics = true

EnableAcAgc — Check MISRA AC AGC rules
false (default) | true

Check MISRA AC AGC rules, specified as true or false. To customize which rules are checked, use
AcAgcSubset.

5 Functions, Classes, Methods, Properties, and Apps

5-220

For more information about the MISRA AC AGC checker, see Check MISRA AC AGC (-misra-ac-
agc).
Example: opts.CodingRulesCodeMetrics.EnableAcAgc = true;

EnableAutosarCpp14 — Check AUTOSAR C++ 14 rules
false (default) | true

This property affects Bug Finder only.

Check AUTOSAR C++ 14 rules, specified as true or false. To customize which rules are checked, use
AutosarCpp14.

For more information about the AUTOSAR C++ 14 checker, see Check AUTOSAR C++ 14
security checks (-autosar-cpp14).
Example: opts.CodingRulesCodeMetrics.EnableAutosarCpp14 = true;

EnableCertC — check CERT C rules and recommendations
false (default) | true

This property affects Bug Finder only.

Check CERT C rules and recommendations, specified as true or false. To customize which rules are
checked, use CertC.

For more information about the CERT C checker, see Check CERT-C security checks (-cert-
c).
Example: opts.CodingRulesCodeMetrics.EnableCertC = true;

EnableCertCpp — check CERT C++ rules
false (default) | true

This property affects Bug Finder only.

Check CERT C++ rules, specified as true or false. To customize which rules are checked, use
CertCpp.

For more information about the CERT C++ checker, see Check CERT-C++ security checks (-
cert-cpp).
Example: opts.CodingRulesCodeMetrics.EnableCertCpp = true;

EnableCheckersSelectionByFile — Check custom set of coding standard checkers
false (default) | true

Check custom set of coding standard checkers, specified as true or false. Use with
CheckersSelectionByFile and these coding standards:

• opts.CodingRulesCodeMetrics.AutosarCpp14='from-file'
• opts.CodingRulesCodeMetrics.CertC='from-file'
• opts.CodingRulesCodeMetrics.CertCpp='from-file'
• opts.CodingRulesCodeMetrics.Iso17961='from-file'
• opts.CodingRulesCodeMetrics.JsfSubset='from-file'

 polyspace.ModelLinkOptions Properties

5-221

• opts.CodingRulesCodeMetrics.MisraC3Subset='from-file'
• opts.CodingRulesCodeMetrics.MisraCSubset='from-file'
• opts.CodingRulesCodeMetrics.MisraCppSubset='from-file'

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.EnableCheckersSelectionByFile = true;

EnableCustomRules — Check custom coding rules
false (default) | true

Check custom coding rules, specified as true or false. The file you specify with
CheckersSelectionByFile defines the custom coding rules.

Use with EnableCheckersSelectionByFile.

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.EnableCustomRules = true;

EnableIso17961 — check ISO-17961 rules
false (default) | true

This property affects Bug Finder only.

Check ISO/IEC TS 17961 rules, specified as true or false. To customize which rules are checked, use
Iso17961.

For more information about the ISO-17961 checker, see Check ISO-17961 security checks (-
iso-17961).
Example: opts.CodingRulesCodeMetrics.EnableIso17961 = true;

EnableJsf — Check JSF C++ rules
false (default) | true

Check JSF C++ rules, specified as true or false. To customize which rules are checked, use
JsfSubset.

For more information, see Check JSF C++ rules (-jsf-coding-rules).
Example: opts.CodingRulesCodeMetrics.EnableJsf = true;

EnableMisraC — Check MISRA C:2004 rules
false (default) | true

Check MISRA C:2004 rules, specified as true or false. To customize which rules are checked, use
MisraCSubset.

For more information, see Check MISRA C:2004 (-misra2).
Example: opts.CodingRulesCodeMetrics.EnableMisraC = true;

EnableMisraC3 — Check MISRA C:2012 rules
false (default) | true

5 Functions, Classes, Methods, Properties, and Apps

5-222

Check MISRA C:2012 rules, specified as true or false. To customize which rules are checked, use
MisraC3Subset.

For more information about the MISRA C:2012 checker, see Check MISRA C:2012 (-misra3).
Example: opts.CodingRulesCodeMetrics.EnableMisraC3 = true;

EnableMisraCpp — Check MISRA C++:2008 rules
false (default) | true

Check MISRA C++:2008 rules, specified as true or false. To customize which rules are checked, use
MisraCppSubset.

For more information about the MISRA C++:2008 checker, see Check MISRA C++ rules (-
misra-cpp).
Example: opts.CodingRulesCodeMetrics.EnableMisraCpp = true;

Iso17961 — Set of ISO-17961 rules to check
'all' (default) | 'decidable' | polyspace.CodingRulesOptions object | 'from-file'

This property affects Bug Finder only.

Set of ISO/IEC TS 17961 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check ISO-17961 security checks (-iso-17961).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check ISO/IEC TS 17961 rules, also set EnableIso17961 to true.
Example: opts.CodingRulesCodeMetrics.Iso17961 = 'all'
Data Types: char

JsfSubset — Subset of JSF C++ rules to check
'shall-rules' (default) | 'shall-will-rules' | 'all-rules' |
polyspace.CodingRulesOptions object | 'from-file'

Subset of JSF C++ rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check JSF C++ rules (-jsf-coding-rules).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

 polyspace.ModelLinkOptions Properties

5-223

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check JSF C++ rules, set EnableJsf to true.
Example: opts.CodingRulesCodeMetrics.JsfSubset = 'all-rules'
Data Types: char

Misra3AgcMode — Use the MISRA C:2012 categories for automatically generated code
false (default) | true

Use the MISRA C:2012 categories for automatically generated code, specified as true or false.

For more information, see Use generated code requirements (-misra3-agc-mode).
Example: opts.CodingRulesCodeMetrics.Misra3AgcMode = true;

MisraC3Subset — Subset of MISRA C:2012 rules to check
'mandatory-required' (default) | 'mandatory' | 'single-unit-rules' | 'system-
decidable-rules' | 'all' | 'SQO-subset1' | 'SQO-subset2' |
polyspace.CodingRulesOptions object | 'from-file'

Subset of MISRA C:2012 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check MISRA C:2012 (-misra3).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check MISRA C:2012 rules, also set EnableMisraC3 to true.
Example: opts.CodingRulesCodeMetrics.MisraC3Subset = 'all'
Data Types: char

MisraCSubset — Subset of MISRA C:2004 rules to check
'required-rules' (default) | 'single-unit-rules' | 'system-decidable-rules' | 'all-
rules' | 'SQO-subset1' | 'SQO-subset2' | polyspace.CodingRulesOptions object | 'from-
file'

Subset of MISRA C:2004 rules to check, specified by:

5 Functions, Classes, Methods, Properties, and Apps

5-224

• Character vector of one of the subset names. For more information about the different subsets,
see Check MISRA C:2004 (-misra2).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check MISRA C:2004 rules, also set EnableMisraC to true.
Example: opts.CodingRulesCodeMetrics.MisraCSubset = 'all-rules'
Data Types: char

MisraCppSubset — Subset of MISRA C++ rules
'required-rules' (default) | 'all-rules' | 'SQO-subset1' | 'SQO-subset2' |
polyspace.CodingRulesOptions object | 'from-file'

Subset of MISRA C++:2008 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check MISRA C++ rules (-misra-cpp).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check MISRA C++ rules, set EnableMisraCpp to true.
Example: opts.CodingRulesCodeMetrics.MisraCppSubset = 'all-rules'
Data Types: char

EnvironmentSettings

Dos — Consider that file paths are in MS-DOS style
true (default) | false

Consider that file paths are in MS-DOS style, specified as true or false.

For more information, see Code from DOS or Windows file system (-dos).
Example: opts.EnvironmentSettings.Dos = true;

 polyspace.ModelLinkOptions Properties

5-225

IncludeFolders — Include folders needed for compilation
cell array of include folder paths

Include folders needed for compilation, specified as a cell array of the include folder paths.

To specify all subfolders of a folder, use folder path followed by **, for instance, 'C:\includes
**'. The notation follows the syntax of the dir function. See also “Specify Multiple Source Files”.

For more information, see -I.
Example: opts.EnvironmentSettings.IncludeFolders = {'/includes','/com1/inc'};
Example: opts.EnvironmentSettings.IncludeFolders = {'C:\project1\common
\includes'};

Data Types: cell

Includes — Files to be #include-ed by each C file
cell array of files

Files to be #include-ed by each C source file in the analysis, specified by a cell array of files.

For more information, see Include (-include).
Example: opts.EnvironmentSettings.Includes = {'/inc/inc_file.h','/inc/
inc_math.h'}

NoExternC — Ignore linking errors inside extern blocks
false (default) | true

Ignore linking errors inside extern blocks, specified as true or false.

For more information, see Ignore link errors (-no-extern-c).
Example: opts.EnvironmentSettings.NoExternC = false;

PostPreProcessingCommand — Command or script to run on source files after
preprocessing
character vector

Command or script to run on source files after preprocessing, specified as a character vector of the
command to run.

For more information, see Command/script to apply to preprocessed files (-post-
preprocessing-command).
Example: Linux — opts.EnvironmentSettings.PostPreProcessingCommand = [pwd,'/
replace_keyword.pl']

Example: Windows — opts.EnvironmentSettings.PostPreProcessingCommand =
'"C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin\perl.exe" "C:\My_Scripts
\replace_keyword.pl"'

StopWithCompileError — Stop analysis if a file does not compile
false (default) | true

Stop analysis if a file does not compile, specified as true or false.

5 Functions, Classes, Methods, Properties, and Apps

5-226

For more information, see Stop analysis if a file does not compile (-stop-if-
compile-error).
Example: opts.EnvironmentSettings.StopWithCompileError = true;

InputsStubbing

DataRangeSpecifications — Constrain global variables, function inputs, and return values
of stubbed functions
file path

Constrain global variables, function inputs, and return values of stubbed functions specified by the
path to an XML constraint file. For more information about the constraint file, see “Specify External
Constraints”.

For more information about this option, see Constraint setup (-data-range-
specifications).
Example: opts.InputsStubbing.DataRangeSpecifications = 'C:\project
\constraint_file.xml'

DoNotGenerateResultsFor — Files on which you do not want analysis results
'include-folders' (default) | 'all-headers' | 'custom=folder1[,folder2,...]'

Files on which you do not want analysis results, specified by 'include-folders', 'all-headers',
or a character array beginning with custom= followed by a comma-separated list of file or folder
names.

Use this option with InputsStubbing.GenerateResultsFor. For more information, see Do not
generate results for (-do-not-generate-results-for).
Example: opts.InputsStubbing.DoNotGenerateResultsFor = 'custom=C:\project
\file1.c,C:\project\file2.c'

GenerateResultsFor — Files on which you want analysis results
'source-headers' (default) | 'all-headers' | 'custom=folder1[,folder2,...]'

Files on which you want analysis results, specified by 'source-headers', 'all-headers', or a
character array beginning with custom= followed by a comma-separated list of file or folder names.

Use this option with InputsStubbing.DoNotGenerateResultsFor. For more information, see
Generate results for sources and (-generate-results-for).
Example: opts.InputsStubbing.GenerateResultsFor = 'custom=C:\project
\includes_common_1,C:\project\includes_common_2'

FunctionsToStub — Functions to stub during analysis
cell array of function names

This property affects Code Prover analysis only.

Functions to stub during analysis, specified as a cell array of function names.

For more information, see Functions to stub (-functions-to-stub).
Example: opts.InputsStubbing.FunctionsToStub = {'func1', 'func2'}

 polyspace.ModelLinkOptions Properties

5-227

NoDefInitGlob — Consider global variables as uninitialized
false (default) | true

This property affects Code Prover analysis only.

Consider global variables as uninitialized, specified as true or false.

For more information, see Ignore default initialization of global variables (-no-
def-init-glob).
Example: opts.InputsStubbing.NoDefInitGlob = true

NoStlStubs — Do not use Polyspace implementations of functions in the Standard
Template Library
false (default) | true

This property applies only to a Code Prover analysis of C++ code.

Do not use Polyspace implementations of functions in the Standard Template Library, specified as
true or false.

For more information, see No STL stubs (-no-stl-stubs).
Example: opts.InputsStubbing.NoStlStubs = true

StubECoderLookupTables — Specify that the analysis must stub functions in the generated
code that use lookup tables
true (default) | false

This property applies only to a Code Prover analysis of code generated from models.

Specify that the analysis must stub functions in the generated code that use lookup tables. By
replacing the functions with stubs, the analysis assumes more precise return values for the functions.

For more information, see Generate stubs for Embedded Coder lookup tables (-stub-
embedded-coder-lookup-table-functions).
Example: opts.InputsStubbing.StubECoderLookupTables = true

Macros

DefinedMacros — Macros to be replaced
cell array of macros

In preprocessed code, macros are replaced by the definition, specified in a cell array of macros and
definitions. Specify the macro as Macro=Value. If you want Polyspace to ignore the macro, leave the
Value blank. A macro with no equal sign replaces all instances of that macro by 1.

For more information, see Preprocessor definitions (-D).
Example: opts.Macros.DefinedMacros = {'uint32=int','name3=','var'}

UndefinedMacros — Macros to undefine
cell array of macros

In preprocessed code, macros are undefined, specified by a cell array of macros to undefine.

For more information, see Disabled preprocessor definitions (-U).

5 Functions, Classes, Methods, Properties, and Apps

5-228

Example: opts.Macros.DefinedMacros = {'name1','name2'}

MergedComputingSettings

AddToResultsRepositoryBugFinder — Upload Bug Finder results to Polyspace Metrics web
dashboard
false (default) | true

This property affects Bug Finder analysis only.

Upload Bug Finder analysis results to Polyspace Metrics web dashboard, specified as true or false. To
use this option, in your Polyspace preferences, you must specify a metrics server.

For more information, see Upload results to Polyspace Metrics (-add-to-results-
repository).
Example: opts.MergedComputingSettings.AddToResultsRepositoryBugFinder = true;

AddToResultsRepositoryCodeProver — Upload Code Prover results to Polyspace Metrics
web dashboard
false (default) | true

This property affects Code Prover analysis only.

Upload Code Prover analysis results to Polyspace Metrics web dashboard, specified as true or false.
To use this option, in your Polyspace preferences, you must specify a metrics server.

For more information, see Upload results to Polyspace Metrics (-add-to-results-
repository).
Example: opts.MergedComputingSettings.AddToResultsRepositoryCodeProver = true;

BatchBugFinder — Send Bug Finder analysis to remote server
false (default) | true

This property affects Bug Finder analysis only.

Send Bug Finder analysis to remote server, specified as true or false. To use this option, in your
Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a remote
cluster (-batch).
Example: opts.MergedComputingSettings.BatchBugFinder = true;

BatchCodeProver — Send Code Prover analysis to remote server
false (default) | true

This property affects Code Prover analysis only.

Send Code Prover analysis to remote server, specified as true or false. To use this option, in your
Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a remote
cluster (-batch).
Example: opts.MergedComputingSettings.BatchCodeProver = true;

 polyspace.ModelLinkOptions Properties

5-229

FastAnalysis — Run Bug Finder analysis using faster local mode
false (default) | true

This property affects Bug Finder analysis only.

Use fast analysis mode for Bug Finder analysis, specified as true or false.

For more information, see Use fast analysis mode for Bug Finder (-fast-analysis).
Example: opts.MergedComputingSettings.FastAnalysis = true;

MergedReporting

EnableReportGeneration — Generate a report after the analysis
false (default) | true

After the analysis, generate a report, specified as true or false.

For more information, see Generate report.
Example: opts.MergedReporting.EnableReportGeneration = true

ReportOutputFormat — Output format of generated report
'Word' (default) | 'HTML' | 'PDF'

Output format of generated report, specified as one of the report formats. To activate this option,
specify Reporting.EnableReportGeneration.

For more information about the different values, see Output format (-report-output-format).
Example: opts.MergedReporting.ReportOutputFormat = 'PDF'

BugFinderReportTemplate — Template for generating Bug Finder analysis report
'BugFinderSummary' (default) | 'BugFinder' | 'SecurityCWE' | 'CodeMetrics' |
'CodingStandards'

This property affects a Bug Finder analysis only.

Template for generating analysis report, specified as one of the report formats. To activate this
option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover report (-
report-template).
Example: opts.MergedReporting.BugFinderReportTemplate = 'CodeMetrics'

CodeProverReportTemplate — Template for generating Code Prover analysis report
'Developer' (default) | 'CallHierarchy' | 'CodeMetrics' | 'CodingStandards' |
'DeveloperReview' | 'Developer_withGreenChecks' | 'Quality' | 'VariableAccess'

This property affects a Code Prover analysis only.

Template for generating analysis report, specified as one of the predefined report formats. To activate
this option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover report (-
report-template).

5 Functions, Classes, Methods, Properties, and Apps

5-230

Example: opts.MergedReporting.CodeProverReportTemplate = 'CodeMetrics'

Multitasking

ArxmlMultitasking — Specify path of ARXML files to parse for multitasking configuration
cell array of file paths

Specify the path to the ARXML files the software parses to set up your multitasking configuration.

To activate this option, specify Multitasking.EnableExternalMultitasking and set
Multitasking.ExternalMultitaskingType to autosar.

For more information, see ARXML files selection (-autosar-multitasking)
Example: opts.Multitasking.ArxmlMultitasking={'C:\Polyspace_Workspace\AUTOSAR
\myFile.arxml'}

CriticalSectionBegin — Functions that begin critical sections
cell array of critical section function names

Functions that begin critical sections specified as a cell array of critical section function names. To
activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionEnd.

For more information, see Critical section details (-critical-section-begin -
critical-section-end).
Example: opts.Multitasking.CriticalSectionBegin =
{'function1:cs1','function2:cs2'}

CriticalSectionEnd — Functions that end critical sections
cell array of critical section function names

Functions that end critical sections specified as a cell array of critical section function names. To
activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionBegin.

For more information, see Critical section details (-critical-section-begin -
critical-section-end).
Example: opts.Multitasking.CriticalSectionEnd =
{'function1:cs1','function2:cs2'}

CyclicTasks — Specify functions that represent cyclic tasks
cell array of function names

Specify functions that represent cyclic tasks.

To activate this option, also specify Multitasking.EnableMultitasking.

For more information, see Cyclic tasks (-cyclic-tasks).
Example: opts.Multitasking.CyclicTasks = {'function1','function2'}

EnableConcurrencyDetection — Enable automatic detection of certain families of
threading functions
false (default) | true

 polyspace.ModelLinkOptions Properties

5-231

This property affects Code Prover analysis only.

Enable automatic detection of certain families of threading functions, specified as true or false.

For more information, see Enable automatic concurrency detection for Code Prover (-
enable-concurrency-detection).
Example: opts.Multitasking.EnableConcurrencyDetection = true

EnableExternalMultitasking — Enable automatic multitasking configuration from
external file definitions
false (default) | true

Enable multitasking configuration of your projects from external files you provide. Configure
multitasking from ARXML files for an AUTOSAR project, or from OIL files for an OSEK project.

Activate this option to enable Multitasking.ArxmlMultitasking or
Multitasking.OsekMultitasking.

For more information, see OIL files selection (-osek-multitasking) and ARXML files
selection (-autosar-multitasking).
Example: opts.Multitasking.EnableExternalMultitasking = 1

EnableMultitasking — Configure multitasking manually
false (default) | true

Configure multitasking manually by specifying true. This property activates the other manual,
multitasking properties.

For more information, see Configure multitasking manually.
Example: opts.Multitasking.EnableMultitasking = 1

EntryPoints — Functions that serve as entry-points to your multitasking application
cell array of entry-point function names

Functions that serve as entry-points to your multitasking application specified as a cell array of entry-
point function names. To activate this option, also specify Multitasking.EnableMultitasking.

For more information, see Tasks (-entry-points).
Example: opts.Multitasking.EntryPoints = {'function1','function2'}

ExternalMultitaskingType — Specify type of file to parse for multitasking configuration
'osek' (default) | 'autosar'

Specify the type of file the software parses to set up your multitasking configuration:

• For osek type, the analysis looks for OIL files in the file or folder paths that you specify.
• For autosar type, the analysis looks for ARXML files in the file paths that you specify.

To activate this option, specify Multitasking.EnableExternalMultitasking.

For more information, see OIL files selection (-osek-multitasking) and ARXML files
selection (-autosar-multitasking).
Example: opts.Multitasking.ExternalMultitaskingType = 'autosar'

5 Functions, Classes, Methods, Properties, and Apps

5-232

Interrupts — Specify functions that represent nonpreemptable interrupts
cell array of function names

Specify functions that represent nonpreemptable interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Interrupts (-interrupts).
Example: opts.Multitasking.Interrupts = {'function1','function2'}

InterruptsDisableAll — Specify routine that disable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that disables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Disabling all interrupts (-routine-disable-interrupts -
routine-enable-interrupts).
Example: opts.Multitasking.InterruptsDisableAll = {'function'}

InterruptsEnableAll — Specify routine that reenable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that reenables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Disabling all interrupts (-routine-disable-interrupts -
routine-enable-interrupts).
Example: opts.Multitasking.InterruptsEnableAll = {'function'}

OsekMultitasking — Specify path of OIL files to parse for multitasking configuration
'auto' (default) | 'custom=folder1[,folder2,...]'

Specify the path to the OIL files the software parses to set up your multitasking configuration:

• In the mode specified with 'auto', the analysis uses OIL files in your project source and include
folders, but not their subfolders.

• In the mode specified with 'custom=folder1[,folder2,...]', the analysis uses the OIL files
at the specified path, and the path subfolders.

To activate this option, specify Multitasking.EnableExternalMultitasking and set
Multitasking.ExternalMultitaskingType to osek.

For more information, see OIL files selection (-osek-multitasking)
Example: opts.Multitasking.OsekMultitasking = 'custom=file_path, dir_path'

TemporalExclusion — Entry-point functions that cannot execute concurrently
cell array of entry-point function names

 polyspace.ModelLinkOptions Properties

5-233

Entry-point functions that cannot execute concurrently specified as a cell array of entry-point
function names. Each set of exclusive tasks is one cell array entry with functions separated by spaces.
To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Temporally exclusive tasks (-temporal-exclusions-file).
Example: opts.Multitasking.TemporalExclusion = {'function1 function2',
'function3 function4 function5'} where function1 and function2 are temporally exclusive,
and function3, function4, and function 5 are temporally exclusive.

Precision (Affects Code Prover Only)

ContextSensitivity — Store call context information to identify function call that caused
errors
'none' (default) | 'auto' | 'custom=function1[,function2,...]'

This property affects Code Prover analysis only.

Store call context information to identify a function call that caused errors, specified as none, auto,
or as a character array beginning with custom= followed by a list of comma-separated function
names.

For more information, see Sensitivity context (-context-sensitivity).
Example: opts.Precision.ContextSensitivity = 'auto'
Example: opts.Precision.ContextSensitivity = 'custom=func1'

ModulesPrecision — Source files you want to verify at higher precision
cell array of file names and precision levels

This property affects Code Prover analysis only.

Source files that you want to verify at higher precision, specified as a cell array of file names without
the extension and precision levels using this syntax: filename:Olevel

For more information, see Specific precision (-modules-precision).
Example: opts.Precision.ModulesPrecision = {'file1:O0', 'file2:O3'}

OLevel — Precision level for the verification
2 (default) | 0 | 1 | 3

This property affects Code Prover analysis only.

Precision level for the verification, specified as 0, 1, 2, or 3.

For more information, see Precision level (-O).
Example: opts.Precision.OLevel = 3

PathSensitivityDelta — Avoid certain verification approximations for code with fewer
lines
positive integer

This property affects Code Prover analysis only.

5 Functions, Classes, Methods, Properties, and Apps

5-234

Avoid certain verification approximations for code with fewer lines, specified as a positive integer
representing how sensitive the analysis is. Higher values can increase verification time exponentially.

For more information, see Improve precision of interprocedural analysis (-path-
sensitivity-delta).
Example: opts.Precision.PathSensitivityDelta = 2

Timeout — Time limit on your verification
character vector

This property affects Code Prover analysis only.

Time limit on your verification, specified as a character vector of time in hours.

For more information, see Verification time limit (-timeout).
Example: opts.Precision.Timeout = '5.75'

To — Number of times the verification process runs
'Software Safety Analysis level 2' (default) | 'Software Safety Analysis level 0' |
'Software Safety Analysis level 1' | 'Software Safety Analysis level 3' |
'Software Safety Analysis level 4' | 'Source Compliance Checking' | 'other'

This property affects Code Prover analysis only.

Number of times the verification process runs, specified as one of the preset analysis levels.

For more information, see Verification level (-to).
Example: opts.Precision.To = 'Software Safety Analysis level 3'

Scaling (Affects Code Prover Only)

Inline — Functions on which separate results must be generated for each function call
cell array of function names

This property affects Code Prover analysis only.

Functions on which separate results must be generated for each function call, specified as a cell
array of function names.

For more information, see Inline (-inline).
Example: opts.Scaling.Inline = {'func1','func2'}

KLimiting — Limit depth of analysis for nested structures
positive integer

This property affects Code Prover analysis only.

Limit depth of analysis for nested structures, specified as a positive integer indicating how many
levels into a nested structure to verify.

For more information, see Depth of verification inside structures (-k-limiting).
Example: opts.Scaling.KLimiting = 3

 polyspace.ModelLinkOptions Properties

5-235

TargetCompiler

Compiler — Compiler that builds your source code
'generic' (default) | 'gnu3.4' | 'gnu4.6' | 'gnu4.7' | 'gnu4.8' | 'gnu4.9' | 'gnu5.x' |
'gnu6.x' | 'gnu7.x' | 'clang3.x' | 'clang4.x' | 'clang5.x' | 'visual9.0' | 'visual10' |
'visual11.0' | 'visual12.0' | 'visual14.0' | 'visual15.x' | 'keil' | 'iar' | 'armcc' |
'armclang' | 'codewarrior' | 'diab' | 'greenhills' | 'iar-ew' | 'renesas' | 'tasking' |
'ti'

Compiler that builds your source code.

For more information, see Compiler (-compiler).
Example: opts.TargetCompiler.Compiler = 'Visual11.0'

CppVersion — Specify C++ standard version followed in code
'defined-by-compiler' (default) | 'cpp03' | 'cpp11' | 'cpp14' | 'cpp17'

Specify C++ standard version followed in code, specified as a character vector.

For more information, see C++ standard version (-cpp-version).
Example: opts.TargetCompiler.CppVersion = 'cpp11';

CVersion — Specify C standard version followed in code
'defined-by-compiler' (default) | 'c90' | 'c99' | 'c11'

Specify C standard version followed in code, specified as a character vector.

For more information, see C standard version (-c-version).
Example: opts.TargetCompiler.CVersion = 'c90';

DivRoundDown — Round down quotients from division or modulus of negative numbers
false (default) | true

Round down quotients from division or modulus of negative numbers, specified as true or false.

For more information, see Division round down (-div-round-down).
Example: opts.TargetCompiler.DivRoundDown = true

EnumTypeDefinition — Base type representation of enum
'defined-by-compiler' (default) | 'auto-signed-first' | 'auto-unsigned-first'

Base type representation of enum, specified by an allowed base-type set. For more information about
the different values, see Enum type definition (-enum-type-definition).
Example: opts.TargetCompiler.EnumTypeDefinition = 'auto-unsigned-first'

IgnorePragmaPack — Ignore #pragma pack directives
false (default) | true

Ignore #pragma pack directives, specified as true or false.

For more information, see Ignore pragma pack directives (-ignore-pragma-pack).
Example: opts.TargetCompiler.IgnorePragmaPack = true

5 Functions, Classes, Methods, Properties, and Apps

5-236

Language — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

This property is read-only.

Language of the analysis, specified during the object construction. This value changes which
properties appear.

For more information, see Source code language (-lang).

LogicalSignedRightShift — Treatment of signed bit on signed variables
'Arithmetical' (default) | 'Logical'

Treatment of signed bit on signed variables, specified as Arithmetical or Logical. For more
information, see Signed right shift (-logical-signed-right-shift).
Example: opts.TargetCompiler.LogicalSignedRightShift = 'Logical'

NoUliterals — Do not use predefined typedefs for char16_t or char32_t
false (default) | true

Do not use predefined typedefs for char16_t or char32_t, specified as true or false. For more
information, see Block char16/32_t types (-no-uliterals).
Example: opts.TargetCompiler.NoUliterals = true

PackAlignmentValue — Default structure packing alignment
'defined-by-compiler' (default) | '1' | '2' | '4' | '8' | '16'

Default structure packing alignment, specified as 'defined-by-compiler', '1', '2', '4', '8', or
'16'. This property is available only for Visual C++ code.

For more information, see Pack alignment value (-pack-alignment-value).
Example: opts.TargetCompiler.PackAlignmentValue = '4'

SfrTypes — sfr types
cell array of sfr keywords

sfr types, specified as a cell array of sfr keywords using the syntax sfr_name=size_in_bits. For
more information, see Sfr type support (-sfr-types).

This option only applies when you set TargetCompiler.Compiler to keil or iar.
Example: opts.TargetCompiler.SfrTypes = {'sfr32=32'}

SizeTTypeIs — Underlying type of size_t
'defined-by-compiler' (default) | 'unsigned-int' | 'unsigned-long' | 'unsigned-long-
long'

Underlying type of size_t, specified as 'defined-by-compiler', 'unsigned-int',
'unsigned-long', or 'unsigned-long-long'. See Management of size_t (-size-t-type-
is).
Example: opts.TargetCompiler.SizeTTypeIs = 'unsigned-long'

Target — Target processor
'i386' (default) | 'arm' | 'arm64' | 'avr' | 'c-167' | 'c166' | 'c18' | 'c28x' | 'c6000' |
'coldfire' | 'hc08' | 'hc12' | 'm68k' | 'mcore' | 'mips' | 'mpc5xx' | 'msp430' | 'necv850'

 polyspace.ModelLinkOptions Properties

5-237

| 'powerpc' | 'powerpc64' | 'rh850' | 'rl78' | 'rx' | 's12z' | 'sharc21x61' | 'sparc' |
'superh' | 'tms320c3x' | 'tricore' | 'x86_64' | generic target object

Set size of data types and endianness of processor, specified as one of the predefined target
processors or a generic target object.

For more information about the predefined processors, see Target processor type (-target).

For more information about creating a generic target, see polyspace.GenericTargetOptions.
Example: opts.TargetCompiler.Target = 'hc12'

WcharTTypeIs — Underlying type of wchar_t
'defined-by-compiler' (default) | 'signed-short' | 'unsigned-short' | 'signed-int' |
'unsigned-int' | 'signed-long' | 'unsigned-long'

Underlying type of wchar_t, specified as 'defined-by-compiler', 'signed-short',
'unsigned-short', 'signed-int', 'unsigned-int', 'signed-long', or 'unsigned-long'.
See Management of wchar_t (-wchar-t-type-is).
Example: opts.TargetCompiler.WcharTTypeIs = 'unsigned-int'

VerificationAssumption (Affects Code Prover Only)

ConsiderVolatileQualifierOnFields — Assume that volatile qualified structure fields can
have all possible values at any point in code
false (default) | true

This property affects Code Prover analysis only.

Assume that volatile qualified structure fields can have all possible values at any point in code.

For more information, see Consider volatile qualifier on fields (-consider-
volatile-qualifier-on-fields).
Example: opts.VerificationAssumption.ConsiderVolatileQualifierOnFields = true

ConstraintPointersMayBeNull — Specify that environment pointers can be NULL unless
constrained otherwise
false (default) | true

This property affects Code Prover analysis only.

Specify that environment pointers can be NULL unless constrained otherwise.

For more information, see Consider environment pointers as unsafe (-stubbed-
pointers-are-unsafe).
Example: opts.VerificationAssumption.ConstraintPointersMayBeNull = true

FloatRoundingMode — Rounding modes to consider when determining the results of
floating-point arithmetic
to-nearest (default) | all

This property affects Code Prover analysis only.

Rounding modes to consider when determining the results of floating-point arithmetic, specified as
to-nearest or all.

5 Functions, Classes, Methods, Properties, and Apps

5-238

For more information, see Float rounding mode (-float-rounding-mode).
Example: opts.VerificationAssumption.FloatRoundingMode = 'all'

RespectTypesInFields — Do not cast nonpointer fields of a structure to pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer fields of a structure to pointers, specified as true or false.

For more information, see Respect types in fields (-respect-types-in-fields).
Example: opts.VerificationAssumption.RespectTypesInFields = true

RespectTypesInGlobals — Do not cast nonpointer global variables to pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer global variables to pointers, specified as true or false.

For more information, see Respect types in global variables (-respect-types-in-
globals).
Example: opts.VerificationAssumption.RespectTypesInGlobals = true

Other Properties

Author — Project author
username of current user (default) | character vector

Name of project author, specified as a character vector.

For more information, see -author.
Example: opts.Author = 'JaneDoe'

ImportComments — Import comments and justifications from previous analysis
character vector

To import comments and justifications from a previous analysis, specify the path to the results folder
of the previous analysis.

You can also point to a previous results folder to see only new results compared to the previous run.
See “Compare Results from Different Polyspace Runs by Using MATLAB Scripts”.

For more information, see -import-comments
Example: opts.ImportComments =
fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example','Mod
ule_1','BF_Result')

Prog — Project name
PolyspaceProject (default) | character vector

Project name, specified as a character vector.

 polyspace.ModelLinkOptions Properties

5-239

For more information, see -prog.
Example: opts.Prog = 'myProject'

ResultsDir — Location to store results
folder path

Location to store results, specified as a folder path. By default, the results are stored in the current
folder.

For more information, see -results-dir.

You can also create a separate results folder for each new run. See “Compare Results from Different
Polyspace Runs by Using MATLAB Scripts”.
Example: opts.ResultsDir = 'C:\project\myproject\results\'

Sources — Source files
cell array of files

Source files to analyze, specified as a cell array of files.

To specify all files in a folder, use folder path followed by *, for instance, 'C:\src*'. To specify all
files in a folder and its subfolders, use folder path followed by **, for instance, 'C:\src**'. The
notation follows the syntax of the dir function. See also “Specify Multiple Source Files”.

For more information, see -sources.
Example: opts.Sources = {'file1.c', 'file2.c', 'file3.c'}
Example: opts.Sources = {'project/src1/file1.c', 'project/src2/file2.c',
'project/src3/file3.c'}

Version — Project version number
'1.0' (default) | character array of a number

Version number of project, specified as a character array of a number. This option is useful if you
upload your results to Polyspace Metrics. If you increment version numbers each time that you
reanalyze your object, you can compare the results from two versions in Polyspace Metrics.

For more information, see -v[ersion].
Example: opts.Version = '2.3'

See Also
Topics
“Analysis Options in Polyspace Code Prover”

Introduced in R2017a

5 Functions, Classes, Methods, Properties, and Apps

5-240

MISRA C 2012

6

MISRA C:2012 Dir 1.1
Any implementation-defined behavior on which the output of the program depends shall be
documented and understood

Description
Directive Definition

Any implementation-defined behavior on which the output of the program depends shall be
documented and understood.

Rationale

A code construct has implementation-defined behavior if the C standard allows compilers to choose
their own specifications for the construct. The full list of implementation-defined behavior is available
in Annex J.3 of the standard ISO/IEC 9899:1999 (C99) and in Annex G.3 of the standard ISO/IEC
9899:1990 (C90).

If you understand and document all implementation-defined behavior, you can be assured that all
output of your program is intentional and not produced by chance.

Polyspace Implementation

The analysis detects the following possibilities of implementation-defined behavior in C99 and their
counterparts in C90. If you know the behavior of your compiler implementation, justify the analysis
result with appropriate comments. To justify a result, assign one of these statuses: Justified, No
action planned, or Not a defect.

Tip To mass-justify all results that indicate the same implementation-defined behavior, use the Detail
column on the Results List pane. Click the column header so that all results with the same entry are
grouped together. Select the first result and then select the last result while holding the Shift key.
Assign a status to one of the results. If you do not see the Detail column, right-click any other column
header and enable this column.

C99 Standard
Annex Ref

Behavior to Be
Documented

How Polyspace Helps

J.3.2: Environment An alternative
manner in which
main function may
be defined.

The analysis flags main with arguments and return types
other than:

int main(void) { ... }

or

int main(int argc, char *argv[]) { ... }

See section 5.1.2.2.1 of the C99 Standard.

6 MISRA C 2012

6-2

C99 Standard
Annex Ref

Behavior to Be
Documented

How Polyspace Helps

J.3.2: Environment The set of
environment names
and the method for
altering the
environment list
used by the getenv
function.

The analysis flags uses of the getenv function. For this
function, you need to know the list of environment
variables and how the list is modified.

See section 7.20.4.5 of the C99 Standard.

J.3.6: Floating
Point

The rounding
behaviors
characterized by
non-standard values
of FLT_ROUNDS.

The analysis flags the include of float.h if values of
FLT_ROUNDS are outside the set, {-1, 0, 1, 2, 3}. Only the
values in this set lead to well-defined rounding behavior.

See section 5.2.4.2.2 of the C99 Standard.
J.3.6: Floating
Point

The evaluation
methods
characterized by
non-standard
negative values of
FLT_EVAL_METHOD.

The analysis flags the include of float.h if values of
FLT_EVAL_METHOD are outside the set, {-1, 0, 1, 2}. Only
the values in this set lead to well-defined behavior for
floating-point operations.

See section 5.2.4.2.2 of the C99 Standard.
J.3.6: Floating
Point

The direction of
rounding when an
integer is converted
to a floating-point
number that cannot
exactly represent
the original value.

The analysis flags conversions from integer to floating-
point data types of smaller size (for example, 64-bit int to
32-bit float).

See section 6.3.1.4 of the C99 Standard.

J.3.6: Floating
Point

The direction of
rounding when a
floating-point
number is
converted to a
narrower floating-
point number.

The analysis flags these conversions:

• double to float
• long double to double or float

See section 6.3.1.5 of the C99 Standard.

J.3.6: Floating
Point

The default state for
the FENV_ACCESS
pragma.

The analysis flags use of the pragma other than:

#pragma STDC FENV_ACCESS ON

or

#pragma STDC FENV_ACCESS OFF

See section 7.6.1 of the C99 Standard.

 MISRA C:2012 Dir 1.1

6-3

C99 Standard
Annex Ref

Behavior to Be
Documented

How Polyspace Helps

J.3.6: Floating
Point

The default state for
the FP_CONTRACT
pragma.

The analysis flags use of the pragma other than:

#pragma STDC FP_CONTRACT ON

or

#pragma STDC FP_CONTRACT OFF

See section 7.12.2 of the C99 Standard.
J.3.11:
Preprocessing
Directives

The behavior on
each recognized
non-STDC #pragma
directive.

The analysis flags the pragma usage:

#pragma pp-tokens

where the processing token STDC does not immediately
followpragma. For instance:

#pragma FENV_ACCESS ON

See section 6.10.6 of the C99 Standard.
J.3.12: Library
Functions

Whether the
feraiseexcept
function raises the
‘‘inexact’’ floating-
point exception in
addition to the
‘‘overflow’’ or
‘‘underflow’’
floating-point
exception.

The analysis flags calls to the feraiseexcept function.

See section 7.6.2.3 of the C99 Standard.

J.3.12: Library
Functions

Strings other than
"C" and "" that
may be passed as
the second
argument to the
setlocale
function.

The analysis flags calls to the setlocale function when
its second argument is not "C" or "".

See section 7.11.1.1 of the C99 Standard.

J.3.12: Library
Functions

The types defined
for float_t and
double_t when the
value of the
FLT_EVAL_METHOD
macro is less than 0
or greater than 2.

The analysis flags the include of math.h if
FLT_EVAL_METHOD has values outside the set {0,1,2}.

See section 7.12 of the C99 Standard.

6 MISRA C 2012

6-4

C99 Standard
Annex Ref

Behavior to Be
Documented

How Polyspace Helps

J.3.12: Library
Functions

The base-2
logarithm of the
modulus used by
the remquo
functions in
reducing the
quotient.

The analysis flags calls to the remquo, remquof and
remquol function.

See section 7.12.10.3 of the C99 Standard.

J.3.12: Library
Functions

The termination
status returned to
the host
environment by the
abort, exit, or
_Exit function.

The analysis flags calls to the abort, exit, or _Exit
function.

See sections 7.20.4.1, 7.20.4.3 or 7.20.4.4 of the C99
Standard.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: The implementation
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017b

 MISRA C:2012 Dir 1.1

6-5

MISRA C:2012 Dir 2.1
All source files shall compile without any compilation errors

Description
Directive Definition

All source files shall compile without any compilation errors.

Rationale

A conforming compiler is permitted to produce an object module despite the presence of compilation
errors. However, execution of the resulting program can produce unexpected behavior.

Polyspace Implementation

The software raises a violation of this directive if it finds a compilation error. Because Code Prover is
more strict about compilation errors compared to Bug Finder, the coding rules checking in the two
products can produce different results for this directive.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Compilation and build
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3) | MISRA C:2012 Rule 1.1

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

6 MISRA C 2012

6-6

MISRA C:2012 Dir 4.1
Run-time failures shall be minimized

Description
Directive Definition

Run-time failures shall be minimized.

Rationale

Some areas to concentrate on are:

• Arithmetic errors
• Pointer arithmetic
• Array bound errors
• Function parameters
• Pointer dereferencing
• Dynamic memory

Polyspace Implementation

This directive is checked through the Polyspace analysis. For more information, see:

• “Defects”.
• “Run-Time Checks”.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The analyses can
produce different results.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Code design
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Dir 4.11 | MISRA C:2012 Rule 1.3 | MISRA C:2012 Rule 18.1 | MISRA
C:2012 Rule 18.2 | MISRA C:2012 Rule 18.3 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Dir 4.1

6-7

Introduced in R2014b

6 MISRA C 2012

6-8

MISRA C:2012 Dir 4.3
Assembly language shall be encapsulated and isolated

Description
Directive Definition

Assembly language shall be encapsulated and isolated.

Rationale

Encapsulating assembly language is beneficial because:

• It improves readability.
• The name, and documentation, of the encapsulating macro or function makes the intent of the

assembly language clear.
• All uses of assembly language for a given purpose can share encapsulation, which improves

maintainability.
• You can easily substitute the assembly language for a different target or for purposes of static

analysis.

Polyspace Implementation

Polyspace does not raise a warning on assembly language code encapsulated in the following:

• asm functions or asm pragmas
• Macros

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Assembly Language Code in C Function

enum boolVal {TRUE, FALSE};
enum boolVal isTaskActive;
void taskHandler(void);

void taskHandler(void) {
 isTaskActive = FALSE;
 // Software interrupt for task switching
 asm volatile /* Non-compliant */
 (
 "SWI &02" /* Service #1: calculate run-time */
);
 return;
}

 MISRA C:2012 Dir 4.3

6-9

In this example, the rule violation occurs because the assembly language code is embedded directly
in a C function taskHandler that contains other C language statements.

Correction: Encapsulate Assembly Code in Macro

One possible correction is to encapsulate the assembly language code in a macro and invoke the
macro in the function taskHandler.

#define RUN_TIME_CALC \
asm volatile \
 (\
 "SWI &02" /* Service #1: calculate run-Time */ \
)\

enum boolVal {TRUE, FALSE};
enum boolVal isTaskActive;
void taskHandler(void);

void taskHandler(void) {
 isTaskActive = FALSE;
 RUN_TIME_CALC;
 return;
}

Check Information
Group: Code design
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 1.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-10

MISRA C:2012 Dir 4.4
Sections of code should not be "commented out"

Description
Directive Definition

Sections of code should not be "commented out".

Rationale

C comments enclosed in /* */ do not support nesting. A comment beginning with /* ends at the
first */ even when the */ is intended as the end of a later nested comment. If a section of code that is
commented out already contains comments, you can encounter compilation errors (or at least
comment out less code than you intend).

Commenting out code is not a good practice. The commented out code can remain out of sync with
the surrounding code without causing compilation errors. Later, if you uncomment the code, you can
encounter unexpected issues.

Use comments only to explain aspects of the code that are not apparent from the code itself.

Polyspace Implementation

The checker uses internal heuristics to detect commented out code. For instance, characters such as
#, ;, { or } indicate comments that might potentially contain code. These comments are then
evaluated against other metrics to determine the likelihood of code masquerading as comment. For
instance, several successive words without a symbol in between reduces this likelihood.

The checker does not flag the following comments even if they contain code:

• Doxygen comments beginning with /**, /*!, /// or //!.
• Comments that repeat the same symbol several times, for instance, the symbol = here:

/* =====================================
 * A comment
 * =====================================*/

• Comments on the first line of a file.
• Comments that mix the C style (/* */) and C++ style (//).

The checker considers that these comments are meant for documentation purposes or entered
deliberately with some forethought.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

 MISRA C:2012 Dir 4.4

6-11

Examples
Code Commented Out

#include <stdlib.h>

int32_t getRandInt();
void print32_t(int32_t);

/* Function to print32_t random int32_tegers*/
void print32_tInteger() {
 /* int32_t val = getRandInt();
 * val++;
 * print32_t(val); */
 print32_t(getRandInt());
}

This example contains a block of commented out code that violates the rule.

Check Information
Group: Code design
Category: Advisory
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2020b

6 MISRA C 2012

6-12

MISRA C:2012 Dir 4.5
Identifiers in the same name space with overlapping visibility should be typographically unambiguous

Description
Directive Definition

Identifiers in the same name space with overlapping visibility should be typographically
unambiguous.

Rationale

What “unambiguous” means depends on the alphabet and language in which source code is written.
When you use identifiers that are typographically close, you can confuse between them.

For the Latin alphabet as used in English words, at a minimum, the identifiers should not differ by:

• The interchange of a lowercase letter with its uppercase equivalent.
• The presence or absence of the underscore character.
• The interchange of the letter O and the digit 0.
• The interchange of the letter I and the digit 1.
• The interchange of the letter I and the letter l.
• The interchange of the letter S and the digit 5.
• The interchange of the letter Z and the digit 2.
• The interchange of the letter n and the letter h.
• The interchange of the letter B and the digit 8.
• The interchange of the letters rn and the letter m.

Polyspace Implementation

The checker flags identifiers in the same scope that differ from each other only in the above
characters.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Typographically Ambiguous Identifiers

void func(void) {
 int id1_numval;
 int id1_num_val; /* Non-compliant */

 int id2_numval;
 int id2_numVal; /* Non-compliant */

 MISRA C:2012 Dir 4.5

6-13

 int id3_lvalue;
 int id3_Ivalue; /* Non-compliant */

 int id4_xyZ;
 int id4_xy2; /* Non-compliant */

 int id5_zerO;
 int id5_zer0; /* Non-compliant */

 int id6_rn;
 int id6_m; /* Non-compliant */
}

In this example, the rule is violated when identifiers that can be confused for each other are used.

Check Information
Group: Code design
Category: Advisory
AGC Category: Readability

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

6 MISRA C 2012

6-14

MISRA C:2012 Dir 4.6
typedefs that indicate size and signedness should be used in place of the basic numerical types

Description
Directive Definition

typedefs that indicate size and signedness should be used in place of the basic numerical types.

Rationale

When the amount of memory being allocated is important, using specific-length types makes it clear
how much storage is being reserved for each object.

Polyspace Implementation

The rule checker flags use of basic data types in variable or function declarations and definitions. The
rule enforces use of typedefs instead.

The rule checker does not flag the use of basic types in the typedef statements themselves.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Direct Use of Basic Types in Definitions

typedef unsigned int uint32_t;

int x = 0; /* Non compliant */
uint32_t y = 0; /* Compliant */

In this example, the declaration of x is noncompliant because it uses a basic type directly.

Check Information
Group: Code design
Category: Advisory
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Dir 4.6

6-15

Introduced in R2014b

6 MISRA C 2012

6-16

MISRA C:2012 Dir 4.8
If a pointer to a structure or union is never dereferenced within a translation unit, then the
implementation of the object should be hidden

Description
Rule Definition

If a pointer to a structure or union is never dereferenced within a translation unit, then the
implementation of the object should be hidden.

Rationale

If a pointer to a structure or union is not dereferenced in a file, the implementation details of the
structure or union need not be available in the translation unit for the file. You can hide the
implementation details such as structure members and protect them from unintentional changes.

Define an opaque type that can be referenced via pointers but whose contents cannot be accessed.

Polyspace Implementation

If a structure or union is defined in a file or a header file included in the file, a pointer to this
structure or union declared but the pointer never dereferenced in the file, the checker flags a coding
rule violation. The structure or union definition should not be visible to this file.

If you see a violation of this rule on a structure definition, identify if you have defined a pointer to the
structure in the same file or in a header file included in the file. Then check if you dereference the
pointer anywhere in the file. If you do not dereference the pointer, the structure definition should be
hidden from this file and included header files.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Object Implementation Revealed

file.h: Contains structure implementation.

#ifndef TYPE_GUARD
#define TYPE_GUARD

typedef struct {
 int a;
} myStruct;

#endif

file.c: Includes file.h but does not dereference structure.

 MISRA C:2012 Dir 4.8

6-17

#include "file.h"

myStruct* getObj(void);
void useObj(myStruct*);

void func() {
 myStruct *sPtr = getObj();
 useObj(sPtr);
}

In this example, the pointer to the type myStruct is not dereferenced. The pointer is simply obtained
from the getObj function and passed to the useObj function.

The implementation of myStruct is visible in the translation unit consisting of file.c and file.h.
Correction — Define Opaque Type

One possible correction is to define an opaque data type in the header file file.h. The opaque data
type ptrMyStruct points to the myStruct structure without revealing what the structure contains.
The structure myStruct itself can be defined in a separate translation unit, in this case, consisting of
the file file2.c. The common header file file.h must be included in both file.c and file2.c for
linking the structure definition to the opaque type definition.

file.h: Does not contain structure implementation.

#ifndef TYPE_GUARD
#define TYPE_GUARD

typedef struct myStruct *ptrMyStruct;

ptrMyStruct getObj(void);
void useObj(ptrMyStruct);

#endif

file.c: Includes file.h but does not dereference structure.

#include "file.h"

void func() {
 ptrMyStruct sPtr = getObj();
 useObj(sPtr);
}

file2.c: Includes file.h and dereferences structure.

#include "file.h"

struct myStruct {
 int a;
};

void useObj(ptrMyStruct ptr) {
 (ptr->a)++;
}

6 MISRA C 2012

6-18

Check Information
Group: Code design
Category: Advisory
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2018a

 MISRA C:2012 Dir 4.8

6-19

MISRA C:2012 Dir 4.9
A function should be used in preference to a function-like macro where they are interchangeable

Description
Directive Definition

A function should be used in preference to a function-like macro where they are interchangeable.

Rationale

In most circumstances, use functions instead of macros. Functions perform argument type-checking
and evaluate their arguments once, avoiding problems with potential multiple side effects.

Polyspace Implementation

Polyspace considers all function-like macro definitions.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Code design
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 13.2 | MISRA C:2012 Rule 20.7 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-20

MISRA C:2012 Dir 4.12
Dynamic memory allocation shall not be used

Description
Rule Definition

Dynamic memory allocation shall not be used.

Rationale

Using dynamic memory allocation and deallocation routines provided by the Standard Library or
third-party libraries can cause undefined behavior. For instance:

• You use free to deallocate memory that you did not allocate with malloc, calloc, or realloc.
• You use a pointer that points to a freed memory location.
• You access allocated memory that has no value stored into it.

Dynamic memory allocation and deallocation routines from third-party libraries are likely to exhibit
similar undefined behavior.

If you choose to use dynamic memory allocation and deallocation routines, ensure that your program
behavior is predictable. For example, ensure that you safely handle allocation failure due to
insufficient memory.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Use of malloc, calloc, realloc and free

#include <stdlib.h>

static int foo(void);

typedef struct struct_1 {
 int a;
 char c;
} S_1;

static int foo(void) {

 S_1 * ad_1;
 int * ad_2;
 int * ad_3;

 ad_1 = (S_1*)calloc(100U, sizeof(S_1)); /* Non-compliant */
 ad_2 = malloc(100U * sizeof(int)); /* Non-compliant */
 ad_3 = realloc(ad_3, 60U * sizeof(long)); /* Non-compliant */

 MISRA C:2012 Dir 4.12

6-21

 free(ad_1); /* Non-compliant */
 free(ad_2); /* Non-compliant */
 free(ad_3); /* Non-compliant */

 return 1;
}

In this example, the rule is violated when the functions malloc, calloc, realloc and free are
used.

Check Information
Group: Code Design
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2019b

6 MISRA C 2012

6-22

MISRA C:2012 Dir 4.10
Precautions shall be taken in order to prevent the contents of a header file being included more than
once

Description
Directive Definition

Precautions shall be taken in order to prevent the contents of a header file being included more than
once.

Rationale

When a translation unit contains a complex hierarchy of nested header files, it is possible for a
particular header file to be included more than once, leading to confusion. If this multiple inclusion
produces multiple or conflicting definitions, then your program can have undefined or erroneous
behavior.

For instance, suppose that a header file contains:

#ifdef _WIN64
 int env_var;
#elseif
 long int env_var;
#endif

If the header file is contained in two inclusion paths, one that defines the macro _WIN64 and another
that undefines it, you can have conflicting definitions of env_var.

Polyspace Implementation

If you include a header file whose contents are not guarded from multiple inclusion, the analysis
raises a violation of this directive. The violation is shown at the beginning of the header file.

You can guard the contents of a header file from multiple inclusion by using one of the following
methods:

<start-of-file>
#ifndef <control macro>
#define <control macro>
 /* Contents of file */
#endif
<end-of-file>

or

<start-of-file>
#ifdef <control macro>
#error ...
#else
#define <control macro>

 MISRA C:2012 Dir 4.10

6-23

 /* Contents of file */
#endif
<end-of-file>

Unless you use one of these methods, Polyspace flags the header file inclusion as noncompliant.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Code After Macro Guard

#ifndef __MY_MACRO__
#define __MY_MACRO__
 void func(void);
#endif
void func2(void);

If a header file contains this code, it is noncompliant because the macro guard does not cover the
entire content of the header file. The line void func2(void) is outside the guard.

Note You can have comments outside the macro guard.

Code Before Macro Guard

void func(void);
#ifndef __MY_MACRO__
#define __MY_MACRO__
 void func2(void);
#endif

If a header file contains this code, it is noncompliant because the macro guard does not cover the
entire content of the header file. The line void func(void) is outside the guard.

Note You can have comments outside the macro guard.

Mismatch in Macro Guard

#ifndef __MY_MACRO__
#define __MY_MARCO__
 void func(void);
 void func2(void);
#endif

If a header file contains this code, it is noncompliant because the macro name in the #ifndef
statement is different from the name in the following #define statement.

Check Information
Group: Code Design

6 MISRA C 2012

6-24

Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Dir 4.10

6-25

MISRA C:2012 Dir 4.11
The validity of values passed to library functions shall be checked

Description
Directive Definition

The validity of values passed to library functions shall be checked.

Rationale

Many Standard C functions do not check the validity of parameters passed to them. Even if checks
are performed by a compiler, there is no guarantee that the checks are adequate. For example, you
should not pass negative numbers to sqrt or log.

Polyspace Implementation

Polyspace raises a violation result for library function arguments if the following are all true:

• Argument is a local variable.
• Local variable is not tested between last assignment and call to the library function.
• Corresponding parameter of the library function has a restricted input domain.
• Library function is one of the following common mathematical functions:

• sqrt
• tan
• pow
• log
• log10
• fmod
• acos
• asin
• acosh
• atanh
• or atan2

Bug Finder and Code Prover check this rule differently. The analysis can produce different results.

Tip To mass-justify all results related to the same library function, use the Detail column on the
Results List pane. Click the column header so that all results with the same entry are grouped
together. Select the first result and then select the last result while holding the Shift key. Assign a
status to one of the results. If you do not see the Detail column, right-click any other column header
and enable this column.

6 MISRA C 2012

6-26

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Code design
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Dir 4.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Dir 4.11

6-27

MISRA C:2012 Rule 1.1
The program shall contain no violations of the standard C syntax and constraints, and shall not
exceed the implementation’s translation limits

Description
Rule Definition

The program shall contain no violations of the standard C syntax and constraints, and shall not
exceed the implementation’s translation limits.

Polyspace Implementation

The rule checker checks for the issues below. Note that:

• The specifications can depend on the version of the C standard used in the analysis. See C
standard version (-c-version).

• You can change some of the limits used by the checker using the option -code-behavior-
specifications. See -code-behavior-specifications.

Issue C Standard Dependence Additional Information
An integer constant falls outside
the range of long int (if the
constant is signed) or unsigned
long int (if the constant is
unsigned).

Checked for C90 only. The rule checker uses your
specifications for the size of a
long int variable (typically 32
bits). See also Target
processor type (-target).

An array of size zero is used. Checked for C90 only.
The number of macros defined
in a translation unit exceeds the
limit specified in the standard.

Number of macro definitions
allowed:

• C90: 1024
• C99 and later: 4095

The rule checker considers a
translation unit as a source file
and header files included
directly or indirectly in the
source file.

The depth of nesting in control
flow statements (like if, while,
etc.) exceeds the limit specified
in the standard.

Maximum nesting depth
allowed:

• C90: 15
• C99 and later: 127

The number of levels of
inclusion using include files
exceeds the limit specified in
the standard.

Maximum number of levels of
inclusion allowed:

• C90: 8
• C99 and later: 15

6 MISRA C 2012

6-28

Issue C Standard Dependence Additional Information
The number of members of a
structure or union exceeds the
limit specified in the standard.

Maximum number of members
in a structure or union:

• C90: 127
• C99 and later: 1023

The number of levels of nesting
in a structure exceeds the limit
specified in the standard.

Maximum depth of nesting:

• C90: 15
• C99 and later: 63

The number of constants in a
single enumeration exceeds the
limit specified in the standard.

Maximum number of
enumeration constants allowed:

• C90: 127
• C99 and later: 1023

An assembly language
statement is used.

Checked for all C standards.

A nonstandard preprocessor
directive is used.

Checked for all C standards. The rule checker flags uses of
preprocessor directives that are
not found in the C standard, for
instance, #ident, #alias and
#assert.

Unrecognized text follows a
preprocessor directive.

Checked for all C standards. The rule checker flags
extraneous text following a
preprocessor directive (line
beginning with #). For instance:

#include <header> code

Standard compilation error messages do not lead to a violation of this MISRA rule.

Tip To mass-justify all results that come from the same cause, use the Detail column on the Results
List pane. Click the column header so that all results with the same entry are grouped together.
Select the first result and then select the last result while holding the Shift key. Assign a status to
one of the results. If you do not see the Detail column, right-click any other column header and
enable this column.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Standard C Environment
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 1.2 | Check MISRA C:2012 (-misra3)

 MISRA C:2012 Rule 1.1

6-29

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-30

MISRA C:2012 Rule 1.2
Language extensions should not be used

Description
Rule Definition

Language extensions should not be used.

Rationale

If a program uses language extensions, its portability is reduced. Even if you document the language
extensions, the documentation might not describe the behavior in all circumstances.

Polyspace Implementation

The rule checker flags these language extensions, depending on the version of the C standard used in
the analysis. See C standard version (-c-version).

• C90:

• long long int type including constants
• long double type
• inline keyword
• _Bool keyword
• short long int type
• Hexadecimal floating-point constants
• Universal character names
• Designated initializers
• Local label declarations
• typeof operator
• Casts to union
• Compound literals
• Statements and declarations in expressions
• __func__ predefined identifier
• _Pragma preprocessing operator
• Macros with variable arguments list

• C99:

• short long int type
• Local label declarations
• typeof operator
• Casts to union
• Statements and declarations in expressions

 MISRA C:2012 Rule 1.2

6-31

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Standard C Environment
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 1.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-32

MISRA C:2012 Rule 1.3
There shall be no occurrence of undefined or critical unspecified behaviour

Description
Rule Definition

There shall be no occurrence of undefined or critical unspecified behaviour.

Additional Message in Report

There shall be no occurrence of undefined or critical unspecified behavior

• 'defined' without an identifier.
• macro 'XX' used with too few arguments.
• macro 'XX used with too many arguments.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Standard C Environment
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Dir 4.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 1.3

6-33

MISRA C:2012 Rule 1.4
Emergent language features shall not be used

Description
Rule Definition

Emergent language features shall not be used.

Rationale

Some new language features in the C11 Standard have undefined, unspecified or implementation-
defined behavior. These features might also exhibit well-defined behavior that defies developer
expectations. Though rule 1.3 and directive 1.1 prohibits undefined and implementation-defined
behavior, to avoid well-defined behavior that defies expectations, some language features are
summarily discouraged using rule 1.4.

Polyspace Implementation

The rule forbids use of the following language features:

• The _Generic operator.
• The _Noreturn function specifier and the <stdnoreturn.h> header file
• The _Atomic type specifier and the facilities provided by <stdatomic.h> (for instance, the

macros beginning with ATOMIC_ and functions beginning with atomic_ implemented as macros
in <stdatomic.h>).

• The _Thread_local storage class specifier and the facilities provided by <threads.h> (for
instance, types such as thrd_t and functions such as thrd_create).

• The _Alignas alignment specifier, the _Alignof operator and the <stdalign.h> header file,
and facilities therein (such as the alignas and alignof macros).

• All facilities in Annex K of the C11 Standard about 'Bound-checking interfaces', other than
defining __STDC_WANT_LIB_EXT1__ to '0'

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Use of Facilities in Annex K of C11 Standard

#define __STDC_WANT_LIB_EXT1__ 1 //Noncompliant
#include <string.h>

void Copying_functions(void) {
 char buf1[10];
 char buf2[10];
 errno_t e; //Noncompliant
 e = memcpy_s(buf1,sizeof(buf1),buf2,5); //Noncompliant
 e = memmove_s(buf1,sizeof(buf1),buf2,5); //Noncompliant

6 MISRA C 2012

6-34

 e = strcpy_s(buf1,sizeof(buf1),buf2); //Noncompliant
 e = strncpy_s(buf1,sizeof(buf1),buf2,5); //Noncompliant
}

In this example, the macro __STDC_WANT_LIB_EXT1__ is set to 1 so that the type errno_t as
defined in the header stdlib.h can be used (in accordance with Annex K of the C11 Standard).

The checker flags both the setting of the macro to 1 and the definition of the errno_t variable, along
with other functions from Annex K.

Check Information
Group: Standard C Environment
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Dir 4.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 1.4

6-35

MISRA C:2012 Rule 2.1
A project shall not contain unreachable code

Description
Rule Definition

A project shall not contain unreachable code.

Rationale

Unless a program exhibits any undefined behavior, unreachable code cannot execute. The
unreachable code cannot affect the program output. The presence of unreachable code can indicate
an error in the program logic. Unreachable code that the compiler does not remove wastes resources,
for example:

• It occupies space in the target machine memory.
• Its presence can cause a compiler to select longer, slower jump instructions when transferring

control around the unreachable code.
• Within a loop, it can prevent the entire loop from residing in an instruction cache.

Polyspace Implementation

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The analyses can
produce different results.

The Code Prover run-time check for unreachable code shows more cases than the MISRA checker for
rule 2.1. See also Unreachable code. The run-time check performs a more exhaustive analysis. In
the process, the check can show some instances that are not strictly unreachable code but
unreachable only in the context of the analysis. For instance, in the following code, the run-time
check shows a potential division by zero in the first line and then removes the zero value of flag for
the rest of the analysis. Therefore, it considers the if block unreachable.

val=1.0/flag;
if(!flag) {}

The MISRA checker is designed to prevent these kinds of results.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Code Following return Statement

enum light { red, amber, red_amber, green };

enum light next_light (enum light color)
{
 enum light res;

6 MISRA C 2012

6-36

 switch (color)
 {
 case red:
 res = red_amber;
 break;
 case red_amber:
 res = green;
 break;
 case green:
 res = amber;
 break;
 case amber:
 res = red;
 break;
 default:
 {
 error_handler ();
 break;
 }
 }

 res = color;
 return res;
 res = color; /* Non-compliant */
}

In this example, the rule is violated because there is an unreachable operation following the return
statement.

Check Information
Group: Unused Code
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 14.3 | MISRA C:2012 Rule 16.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 2.1

6-37

MISRA C:2012 Rule 2.2
There shall be no dead code

Description
Rule Definition

There shall be no dead code.

Rationale

If an operation is reachable but removing the operation does not affect program behavior, the
operation constitutes dead code.

The presence of dead code can indicate an error in the program logic. Because a compiler can
remove dead code, its presence can cause confusion for code reviewers.

Operations involving language extensions such as __asm ("NOP"); are not considered dead
code.

Polyspace Implementation

Polyspace Bug Finder detects useless write operations during analysis.

Polyspace Code Prover does not detect useless write operations. For instance, if you assign a value to
a local variable but do not read it later, Polyspace Code Prover does not detect this useless
assignment. Use Polyspace Bug Finder to detect such useless write operations.

In Code Prover, you can also see a difference in results based on your choice for the option
Verification level (-to). See “Check for Coding Standard Violations”.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Redundant Operations

extern volatile unsigned int v;
extern char *p;

void f (void) {
 unsigned int x;

 (void) v; /* Compliant - Exception*/
 (int) v; /* Non-compliant */
 v >> 3; /* Non-compliant */

 x = 3; /* Non-compliant - Detected in Bug Finder only */

6 MISRA C 2012

6-38

 p++; / Non-compliant */
 (*p)++; /* Compliant */
}

In this example, the rule is violated when an operation is performed on a variable, but the result of
that operation is not used. For instance,

• The operations (int) and >> on the variable v are redundant because the results are not used.
• The operation = is redundant because the local variable x is not read after the operation.
• The operation * on p++ is redundant because the result is not used.

The rule is not violated when:

• A variable is cast to void. The cast indicates that you are intentionally not using the value.
• The result of an operation is used. For instance, the operation * on p is not redundant, because *p

is incremented.

Redundant Function Call

void g (void) {
 /* Compliant */
}

void h (void) {
 g(); /* Non-compliant */
}

In this example, g is an empty function. Though the function itself does not violate the rule, a call to
the function violates the rule.

Check Information
Group: Unused Code
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 17.7 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 2.2

6-39

MISRA C:2012 Rule 2.3
A project should not contain unused type declarations

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis” (Polyspace Bug Finder Access).

Rule Definition

A project should not contain unused type declarations.

Rationale

If a type is declared but not used, a reviewer does not know if the type is redundant or if it is unused
by mistake.

Additional Message in Report

A project should not contain unused type declarations: type XX is not used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Unused Local Type

signed short unusedType (void){

 typedef signed short myType; /* Non-compliant */
 return 67;

}

signed short usedType (void){

 typedef signed short myType; /* Compliant */
 myType tempVar = 67;
 return tempVar;

}

In this example, in function unusedType, the typedef statement defines a new local type myType.
However, this type is never used in the function. Therefore, the rule is violated.

The rule is not violated in the function usedType because the new type myType is used.

Check Information
Group: Unused Code

6 MISRA C 2012

6-40

Category: Advisory
AGC Category: Readability

See Also
MISRA C:2012 Rule 2.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 2.3

6-41

MISRA C:2012 Rule 2.4
A project should not contain unused tag declarations

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis” (Polyspace Bug Finder Access).

Rule Definition

A project should not contain unused tag declarations.

Rationale

If a tag is declared but not used, a reviewer does not know if the tag is redundant or if it is unused by
mistake.

Additional Message in Report

A project should not contain unused tag declarations: tag tag_name is not used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Tag Defined in Function but Not Used

void unusedTag (void)
{
 enum state1 { S_init, S_run, S_sleep }; /* Non-compliant */
}

void usedTag (void)
{
 enum state2 { S_init, S_run, S_sleep }; /* Compliant */
 enum state2 my_State = S_init;
}

In this example, in the function unusedTag, the tag state1 is defined but not used. Therefore, the
rule is violated.

Tag Used in typedef Only

typedef struct record_t /* Non-compliant */
{
 unsigned short key;
 unsigned short val;
} record1_t;

typedef struct /* Compliant */

6 MISRA C 2012

6-42

{
 unsigned short key;
 unsigned short val;
} record2_t;

record1_t myRecord1_t;
record2_t myRecord2_t;

In this example, the tag record_t appears only in the typedef of record1_t. In the rest of the
translation unit, the type record1_t is used. Therefore, the rule is violated.

Check Information
Group: Unused Code
Category: Advisory
AGC Category: Readability

See Also
MISRA C:2012 Rule 2.3 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 2.4

6-43

MISRA C:2012 Rule 2.5
A project should not contain unused macro declarations

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis” (Polyspace Bug Finder Access).

Rule Definition

A project should not contain unused macro declarations.

Rationale

If a macro is declared but not used, a reviewer does not know if the macro is redundant or if it is
unused by mistake.

Additional Message in Report

A project should not contain unused macro declarations: macro macro_name is not used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Unused Macro Definition

void use_macro (void)
{
 #define SIZE 4
 #define DATA 3

 use_int16(SIZE);
}

In this example, the macro DATA is never used in the use_macro function.

Check Information
Group: Unused Code
Category: Advisory
AGC Category: Readability

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”

6 MISRA C 2012

6-44

“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 2.5

6-45

MISRA C:2012 Rule 2.6
A function should not contain unused label declarations

Description
Rule Definition

A function should not contain unused label declarations.

Rationale

If you declare a label but do not use it, it is not clear to a reviewer of your code if the label is
redundant or unused by mistake.

Additional Message in Report

A function should not contain unused label declarations.

Label label_name is not used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Unused Label Declarations

void use_var(signed short);

void unused_label (void)
{
 signed short x = 6;

label1: /* Non-compliant - label1 not used */
 use_var (x);
}

void used_label (void)
{
 signed short x = 6;

 for (int i=0; i < 5; i++) {
 if (i==2) goto label1;
 }

label1: /* Compliant - label1 used */
 use_var (x);
}

In this example, the rule is violated when the label label1 in function unused_label is not used.

6 MISRA C 2012

6-46

Check Information
Group: Unused code
Category: Advisory
AGC Category: Readability

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Rule 2.6

6-47

MISRA C:2012 Rule 2.7
There should be no unused parameters in functions

Description
Rule Definition

There should be no unused parameters in functions.

Rationale

If a parameter is unused, it is possible that the implementation of the function does not match its
specifications. This rule can highlight such mismatches.

Additional Message in Report

There should be no unused parameters in functions.

Parameter parameter_name is not used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Unused Function Parameters

double func(int param1, int* param2) { /* Non-compliant */
 return (param1/2.0);
}

In this example, the rule is violated because the parameter param2 is not used.

Check Information
Group: Unused code
Category: Advisory
AGC Category: Readability

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

6 MISRA C 2012

6-48

MISRA C:2012 Rule 3.1
The character sequences /* and // shall not be used within a comment

Description
Rule Definition

The character sequences /* and // shall not be used within a comment.

Rationale

These character sequences are not allowed in code comments because:

• If your code contains a /* or a // in a /* */ comment, it typically means that you have
inadvertently commented out code.

• If your code contains a /* in a // comment, it typically means that you have inadvertently
uncommented a /* */ comment.

Polyspace Implementation

You cannot annotate this rule in the source code.

For information on annotations, see “Annotate Code and Hide Known or Acceptable Results”.

Additional Message in Report

The character sequence /* shall not appear within a comment.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
/* Used in // Comments

int x;
int y;
int z;

void non_compliant_comments (void)
{
 x = y // /* Non-compliant
 + z
 // */
 ;
 z++; // Compliant with exception: // permitted within a // comment
}

void compliant_comments (void)
{
 x = y /* Compliant

 MISRA C:2012 Rule 3.1

6-49

 + z
 */
 ;
 z++; // Compliant with exception: // is permitted within a // comment
}

In this example, in the non_compliant_comments function, the /* character occurs in what
appears to be a // comment, violating the rule. Because of the comment structure, the operation that
takes place is x = y + z;. However, without the two //-s, an entirely different operation x=y;
takes place. It is not clear which operation is intended.

Use a comment format that makes your intention clear. For instance, in the compliant_comments
function, it is clear that the operation x=y; is intended.

Check Information
Group: Comments
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-50

MISRA C:2012 Rule 3.2
Line-splicing shall not be used in // comments

Description
Rule Definition

Line-splicing shall not be used in // comments.

Rationale

Line-splicing occurs when the \ character is immediately followed by a new-line character. Line
splicing is used for statements that span multiple lines.

If you use line-splicing in a // comment, the following line can become part of the comment. In most
cases, the \ is spurious and can cause unintentional commenting out of code.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Line Splicing in // Comment
#include <stdbool.h>

extern _Bool b;

void func (void)
{
 unsigned short x = 0; // Non-compliant - Line-splicing \
 if (b)
 {
 ++b;
 }
}

Because of line-splicing, the statement if (b) is a part of the previous // comment. Therefore,
the statement b++ always executes, making the if block redundant.

Check Information
Group: Comments
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”

 MISRA C:2012 Rule 3.2

6-51

“Software Quality Objective Subsets (C:2012)”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-52

MISRA C:2012 Rule 4.1
Octal and hexadecimal escape sequences shall be terminated

Description
Rule Definition

Octal and hexadecimal escape sequences shall be terminated.

Rationale

There is potential for confusion if an octal or hexadecimal escape sequence is followed by other
characters. For example, the character constant '\x1f' consists of a single character, whereas the
character constant '\x1g' consists of the two characters '\x1' and 'g'. The manner in which
multi-character constants are represented as integers is implementation-defined.

If every octal or hexadecimal escape sequence in a character constant or string literal is terminated,
you reduce potential confusion.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Compliant and Noncompliant Escape Sequences

const char *s1 = "\x41g"; /* Non-compliant */
const char *s2 = "\x41" "g"; /* Compliant - Terminated by end of literal */
const char *s3 = "\x41\x67"; /* Compliant - Terminated by another escape sequence*/

int c1 = '\141t'; /* Non-compliant */
int c2 = '\141\t'; /* Compliant - Terminated by another escape sequence*/

In this example, the rule is violated when an escape sequence is not terminated with the end of string
literal or another escape sequence.

Check Information
Group: Character Sets and Lexical Conventions
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 4.1

6-53

Introduced in R2014b

6 MISRA C 2012

6-54

MISRA C:2012 Rule 4.2
Trigraphs should not be used

Description
Rule Definition

Trigraphs should not be used.

Rationale

You denote trigraphs with two question marks followed by a specific third character (for
instance,'??-' represents a '~' (tilde) character and '??)' represents a ']'). These trigraphs can
cause accidental confusion with other uses of two question marks.

Note Digraphs (<: :>, <% %>, %:, %:%:) are permitted because they are tokens.

Polyspace Implementation

The Polyspace analysis converts trigraphs to the equivalent character for the run-time verification.
However, Polyspace also raises a MISRA violation.

The standard requires that trigraphs must be transformed before comments are removed during
preprocessing. Therefore, Polyspace raises a violation of this rule even if a trigraph appears in code
comments.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Character Sets and Lexical Conventions
Category: Advisory
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 4.2

6-55

MISRA C:2012 Rule 5.1
External identifiers shall be distinct

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis” (Polyspace Bug Finder Access).

Rule Definition

External identifiers shall be distinct.

Rationale

External identifiers are ones declared with global scope or storage class extern.

If the difference between two names occurs far later in the names, they can be easily mistaken for
each other. The readability of the code is reduced.

Polyspace Implementation

Polyspace considers two names as distinct if there is a difference between their first 31 characters.
For C90, the difference must occur between the first 6 characters. To use the C90 rules checking, use
the value c90 for the option C standard version (-c-version). You can change the number of
characters compared using the option -code-behavior-specifications. See -code-behavior-
specifications.

Additional Message in Report

External %s %s conflicts with the external identifier XX in file YY.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
C90: First Six Characters of Identifiers Not Unique

int engine_temperature_raw;
int engine_temperature_scaled; /* Non-compliant */
int engin2_temperature; /* Compliant */

In this example, the identifier engine_temperature_scaled has the same first six characters as a
previous identifier, engine_temperature_raw.

C99: First 31 Characters of Identifiers Not Unique

int engine_exhaust_gas_temperature_raw;
int engine_exhaust_gas_temperature_scaled; /* Non-compliant */

6 MISRA C 2012

6-56

int eng_exhaust_gas_temp_raw;
int eng_exhaust_gas_temp_scaled; /* Compliant */

In this example, the identifier engine_exhaust_gas_temperature_scaled has the same first 31
characters as a previous identifier, engine_exhaust_gas_temperature_raw.

C90: First Six Characters Identifiers in Different Translation Units Differ in Case Alone

/* file1.c */
int abc = 0;

/* file2.c */
int ABC = 0; /* Non-compliant */

In this example, the implementation supports 6 significant case-insensitive characters in external
identifiers. The identifiers in the two translation are different but are not distinct in their significant
characters.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.4 | MISRA C:2012 Rule 5.5 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.1

6-57

MISRA C:2012 Rule 5.2
Identifiers declared in the same scope and name space shall be distinct

Description
Rule Definition

Identifiers declared in the same scope and name space shall be distinct.

Rationale

If the difference between two names occurs far later in the names, they can be easily mistaken for
each other. The readability of the code is reduced.

Polyspace Implementation

Polyspace considers two names as distinct if there is a difference between their first 63 characters. In
C90, the difference must occur between the first 31 characters. To use the C90 rules checking, use
the value c90 for the option C standard version (-c-version). You can change the number of
characters compared using the option -code-behavior-specifications. See -code-behavior-
specifications.

Additional Message in Report

Identifier XX has same significant characters as identifier YY.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
C90: First 31 Characters of Identifiers Not Unique

extern int engine_exhaust_gas_temperature_raw;
static int engine_exhaust_gas_temperature_scaled; /* Non-compliant */

extern double raw_engine_exhaust_gas_temperature;
static double scaled_engine_exhaust_gas_temperature; /* Compliant */

void func (void)
{
 /* Not in the same scope */
 int engine_exhaust_gas_temperature_local; /* Compliant */
}

In this example, the identifier engine_exhaust_gas_temperature_scaled has the same 31
characters as a previous identifier, engine_exhaust_gas_temperature_raw.

6 MISRA C 2012

6-58

The rule does not apply if the two identifiers have the same 31 characters but have different scopes.
For instance, engine_exhaust_gas_temperature_local has the same 31 characters as
engine_exhaust_gas_temperature_raw but different scope.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.3 | MISRA C:2012 Rule 5.4 | MISRA
C:2012 Rule 5.5 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.2

6-59

MISRA C:2012 Rule 5.3
An identifier declared in an inner scope shall not hide an identifier declared in an outer scope

Description
Rule Definition

An identifier declared in an inner scope shall not hide an identifier declared in an outer scope.

Rationale

If two identifiers have the same name but different scope, the identifier in the inner scope hides the
identifier in the outer scope. All uses of the identifier name refers to the identifier in the inner scope.
This behavior forces the developer to keep track of the scope and reduces code readability.

Polyspace Implementation

Polyspace considers two names as distinct if there is a difference between their first 63 characters. In
C90, the difference must occur between the first 31 characters. To use the C90 rules checking, use
the value c90 for the option C standard version (-c-version). You can change the number of
characters compared using the option -code-behavior-specifications. See -code-behavior-
specifications.

If the identifier that is hidden is declared in a Standard Library header and you do not provide the
header for the analysis, the issue is not shown. To see potential conflicts with identifiers declared in a
Standard Library header, provide your compiler implementation of the headers for the Polyspace
analysis. See “Provide Standard Library Headers for Polyspace Analysis”.

Additional Message in Report

Variable XX hides variable XX (FILE line LINE column COLUMN).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Local Variable Hidden by Another Local Variable in Inner Block

typedef signed short int16_t;

void func(void)
{
 int16_t i;
 {
 int16_t i; /* Non-compliant */
 i = 3;
 }
}

6 MISRA C 2012

6-60

In this example, the identifier i defined in the inner block in func hides the identifier i with function
scope.

It is not immediately clear to a reader which i is referred to in the statement i=3.

Global Variable Hidden by Function Parameter

typedef signed short int16_t;

struct astruct
{
 int16_t m;
};

extern void g (struct astruct *p);
int16_t xyz = 0;

void func (struct astruct xyz) /* Non-compliant */
{
 g (&xyz);
}

In this example, the parameter xyz of function func hides the global variable xyz.

It is not immediately clear to a reader which xyz is referred to in the statement g (&xyz).

Check Information
Group: Identifiers
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.8 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.3

6-61

MISRA C:2012 Rule 5.4
Macro identifiers shall be distinct

Description
Rule Definition

Macro identifiers shall be distinct.

Rationale

The names of macro identifiers must be distinct from both other macro identifiers and their
parameters.

Polyspace Implementation

The checker raises a violation if two macros that have the same first 63 characters are defined with
different values. The checker does not raise a violation if:

• Two macros with the same first 63 characters are defined with the same value (even an empty
value).

• The same macro is defined with different values but the macro is undefined in between.

The cutoff of 63 characters applies to a C99-based analysis. In C90, the cutoff is 31 characters. In
other words, the checker considers two macros as effectively the same if there is no difference in
their first 31 characters. To use the C90 rules checking, use the value c90 for the option C
standard version (-c-version). You can change the number of characters compared using the
option -code-behavior-specifications. See -code-behavior-specifications.

Additional Message in Report

• Macro identifiers shall be distinct. Macro XX has same significant characters as macro YY.
• Macro identifiers shall be distinct. Macro parameter XX has same significant characters as macro

parameter YY in macro ZZ.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
C90: First 31 Characters of Macro Names Not Unique

#define engine_exhaust_gas_temperature_raw egt_r
#define engine_exhaust_gas_temperature_scaled egt_s /* Non-compliant */

#define engine_exhaust_gas_temp_raw egt_r
#define engine_exhaust_gas_temp_scaled egt_s /* Compliant */

In this example, the macro engine_exhaust_gas_temperature_scaled egt_s has the same
first 31 characters as a previous macro engine_exhaust_gas_temperature_scaled.

6 MISRA C 2012

6-62

Check Information
Group: Identifiers
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.5 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.4

6-63

MISRA C:2012 Rule 5.5
Identifiers shall be distinct from macro names

Description
Rule Definition

Identifiers shall be distinct from macro names.

Rationale

The rule requires that macro names that exist only prior to processing must be different from
identifier names that also exist after preprocessing. Keeping macro names and identifiers distinct
help avoid confusion.

Polyspace Implementation

Polyspace considers two names as distinct if there is a difference between their first 63 characters. In
C90, the difference must occur between the first 31 characters. To use the C90 rules checking, use
the value c90 for the option C standard version (-c-version). You can change the number of
characters compared using the option -code-behavior-specifications. See -code-behavior-
specifications.

Additional Message in Report

Identifier XX has same significant characters as macro YY.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Macro Names Same as Identifier Names

#define Sum_1(x, y) ((x) + (y))
short Sum_1; /* Non-compliant */

#define Sum_2(x, y) ((x) + (y))
short x = Sum_2 (1, 2); /* Compliant */

In this example, Sum_1 is both the name of an identifier and a macro. Sum_2 is used only as a macro.

C90: First 31 Characters of Macro Name Same as Identifier Name

#define low_pressure_turbine_temperature_1 lp_tb_temp_1
static int low_pressure_turbine_temperature_2; /* Non-compliant */

In this example, the identifier low_pressure_turbine_temperature_2 has the same first 31
characters as a previous macro low_pressure_turbine_temperature_1.

6 MISRA C 2012

6-64

Check Information
Group: Identifiers
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.4 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.5

6-65

MISRA C:2012 Rule 5.6
A typedef name shall be a unique identifier

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis” (Polyspace Bug Finder Access).

Rule Definition

A typedef name shall be a unique identifier.

Rationale

Reusing a typedef name as another typedef or as the name of a function, object or enum constant
can cause developer confusion.

Additional Message in Report

XX conflicts with the typedef name YY.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
typedef Names Reused

void func (void){
 {
 typedef unsigned char u8_t;
 }
 {
 typedef unsigned char u8_t; /* Non-compliant */
 }
}

typedef float mass;
void func1 (void){
 float mass = 0.0f; /* Non-compliant */
}

In this example, the typedef name u8_t is used twice. The typedef name mass is also used as an
identifier name.

typedef Name Same as Structure Name

typedef struct list{ /* Compliant - exception */
 struct list *next;
 unsigned short element;
} list;

6 MISRA C 2012

6-66

typedef struct{
 struct chain{ /* Non-compliant */
 struct chain *list2;
 unsigned short element;
 } s1;
 unsigned short length;
} chain;

In this example, the typedef name list is the same as the original name of the struct type. The
rule allows this exceptional case.

However, the typedef name chain is not the same as the original name of the struct type. The
name chain is associated with a different struct type. Therefore, it clashes with the typedef
name.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 5.7 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.6

6-67

MISRA C:2012 Rule 5.7
A tag name shall be a unique identifier

Description
Rule Definition

A tag name shall be a unique identifier.

Rationale

Reusing a tag name can cause developer confusion.

Additional Message in Report

XX conflicts with the tag name YY.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 5.6 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-68

MISRA C:2012 Rule 5.8
Identifiers that define objects or functions with external linkage shall be unique

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis” (Polyspace Bug Finder Access).

Rule Definition

Identifiers that define objects or functions with external linkage shall be unique.

Rationale

External identifiers are those declared with global scope or with storage class extern. Reusing an
external identifier name can cause developer confusion.

Identifiers defined within a function have smaller scope. Even if names of such identifiers are not
unique, they are not likely to cause confusion.

Additional Message in Report

• Object XX conflicts with the object name YY.
• Function XX conflicts with the function name YY.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 5.3 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.8

6-69

MISRA C:2012 Rule 5.9
Identifiers that define objects or functions with internal linkage should be unique

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis” (Polyspace Bug Finder Access).

Rule Definition

Identifiers that define objects or functions with internal linkage should be unique.

Polyspace Implementation

This rule checker assumes that rule 5.8 is not violated.

Additional Message in Report

• Object XX conflicts with the object name YY.
• Function XX conflicts with the function name YY.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Identifiers
Category: Advisory
AGC Category: Readability

See Also
MISRA C:2012 Rule 8.10 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-70

MISRA C:2012 Rule 6.1
Bit-fields shall only be declared with an appropriate type

Description
Rule Definition

Bit-fields shall only be declared with an appropriate type.

Rationale

Using int for a bit-field type is implementation-defined because bit-fields of type int can be either
signed or unsigned.

The use of enum, short char, or any other type of bit-field is not permitted in C90 because the
behavior is undefined.

In C99, the implementation can potentially define other integer types that are permitted in bit-field
declarations.

Polyspace Implementation

The checker flags data types for bit-fields other than these allowed types:

• C90: signed int or unsigned int (or typedef-s that resolve to these types)
• C99: signed int, unsigned int or _Bool (or typedef-s that resolve to these types)

The results depend on the version of the C standard used in the analysis. See C standard version
(-c-version).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Types
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 6.1

6-71

MISRA C:2012 Rule 6.2
Single-bit named bit fields shall not be of a signed type

Description
Rule Definition

Single-bit named bit fields shall not be of a signed type.

Rationale

According to the C99 Standard Section 6.2.6.2, a single-bit signed bit-field has one sign bit and no
value bits. In any representation of integers, zero value bits cannot specify a meaningful value.

A single-bit signed bit-field is therefore unlikely to behave in a useful way. Its presence is likely to
indicate programmer confusion.

Although the C90 Standard does not provide much detail regarding the representation of types, the
same single-bit bit-field considerations apply.

Polyspace Implementation

This rule does not apply to unnamed bit fields because their values cannot be accessed.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Types
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-72

MISRA C:2012 Rule 7.1
Octal constants shall not be used

Description
Rule Definition

Octal constants shall not be used.

Rationale

Octal constants are denoted by a leading zero. Developers can mistake an octal constant as a decimal
constant with a redundant leading zero.

Polyspace Implementation

If you use octal constants in a macro definition, the rule checker flags the issue even if the macro is
not used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Use of octal constants

#define CST 021 /* Non-Compliant - decimal 17 */
#define VALUE 010 /* Compliant - constant not used */
#if 010 == 01 /* Non-Compliant - constant used */
#define CST 021 /* Non-Compliant - constant not used */
#endif

extern short code[5];
static char* str2 = "abcd\0efg"; /* Compliant */

void main(void) {
 int value1 = 0; /* Compliant */
 int value2 = 01; /* Non-Compliant - decimal 01 */
 int value3 = 1; /* Compliant */
 int value4 = '\109'; /* Compliant */

 code[1] = 109; /* Compliant - decimal 109 */
 code[2] = 100; /* Compliant - decimal 100 */
 code[3] = 052; /* Non-Compliant - decimal 42 */
 code[4] = 071; /* Non-Compliant - decimal 57 */

 if (value1 != CST) {
 value1 = !(value1 != 0); /* Compliant */
 }
}

 MISRA C:2012 Rule 7.1

6-73

In this example, the rule is not violated when octal constants are used to define macros CST and
VALUE. The rule is violated only when the macros are used.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-74

MISRA C:2012 Rule 7.2
A “u” or “U” suffix shall be applied to all integer constants that are represented in an unsigned type

Description
Rule Definition

A “u” or “U” suffix shall be applied to all integer constants that are represented in an unsigned type.

Rationale

The signedness of a constant is determined from:

• Value of the constant.
• Base of the constant: octal, decimal or hexadecimal.
• Size of the various types.
• Any suffixes used.

Unless you use a suffix u or U, another developer looking at your code cannot determine easily
whether a constant is signed or unsigned.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Readability

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 7.2

6-75

MISRA C:2012 Rule 7.3
The lowercase character “l” shall not be used in a literal suffix

Description
Rule Definition

The lowercase character “l” shall not be used in a literal suffix.

Rationale

The lowercase character “l” can be confused with the digit “1”. Use the uppercase “L” instead.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Readability

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-76

MISRA C:2012 Rule 7.4
A string literal shall not be assigned to an object unless the object’s type is “pointer to const-qualified
char”

Description
Rule Definition

A string literal shall not be assigned to an object unless the object’s type is “pointer to const-qualified
char”.

Rationale

This rule prevents assignments that allow modification of a string literal.

An attempt to modify a string literal can result in undefined behavior. For example, some
implementations can store string literals in read-only memory. An attempt to modify the string literal
can result in an exception or crash.

Polyspace Implementation

The rule checker flags assignment of string literals to:

• Pointers with data type other than const char*.
• Arrays with data type other than const char.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Incorrect Assignment of String Literal

char *str1 = "xxxxxx"; // Non-Compliant
const char *str2 = "xxxxxx"; // Compliant

void checkSystem1(char*);
void checkSystem2(const char*);

void main() {
 checkSystem1("xxxxxx"); // Non-Compliant
 checkSystem2("xxxxxx"); // Compliant
}

In this example, the rule is not violated when string literals are assigned to const char* pointers,
either directly or through copy of function arguments. The rule is violated only when the const
qualifier is not used.

 MISRA C:2012 Rule 7.4

6-77

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 11.4 | MISRA C:2012 Rule 11.8 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-78

MISRA C:2012 Rule 8.1
Types shall be explicitly specified

Description
Rule Definition

Types shall be explicitly specified.

Rationale

In some circumstances, you can omit types from the C90 standard. In those cases, the int type is
implicitly specified. However, the omission of an explicit type can lead to confusion. For example, in
the declaration extern void foo (char c, const k);, the type of k is const int, but you
might expect const char.

You might be using an implicit type in:

• Object declarations
• Parameter declarations
• Member declarations
• typedef declarations
• Function return types

Polyspace Implementation

The rule checker flags situations where a function parameter or return type is not explicitly specified.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Implicit Types

static foo(int a); /* Non compliant */
static void bar(void); /* Compliant */

In this example, the rule is violated because the return type of foo is implicit.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 8.2 | Check MISRA C:2012 (-misra3)

 MISRA C:2012 Rule 8.1

6-79

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-80

MISRA C:2012 Rule 8.2
Function types shall be in prototype form with named parameters

Description
Rule Definition

Function types shall be in prototype form with named parameters.

Rationale

The rule requires that you specify names and data types for all the parameters in a declaration. The
parameter names provide useful information regarding the function interface. A mismatch between a
declaration and definition can indicate a programming error. For instance, you mixed up parameters
when defining the function. By insisting on parameter names, the rule allows a code reviewer to
detect this mismatch.

Polyspace Implementation

The rule checker shows a violation if the parameters in a function declaration or definition are
missing names or data types.

Additional Message in Report

• Too many arguments to function_name.
• Too few arguments to function_name.
• Function types shall be in prototype form with named parameters.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Function Prototype Without Named Parameters

extern int func(int); /* Non compliant */
extern int func2(int n); /* Compliant */

extern int func3(); /* Non compliant */
extern int func4(void); /* Compliant */

In this example, the declarations of func and func3 are noncompliant because the parameters are
missing or do not have names.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required

 MISRA C:2012 Rule 8.2

6-81

See Also
MISRA C:2012 Rule 8.1 | MISRA C:2012 Rule 8.4 | MISRA C:2012 Rule 17.3 | Check
MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-82

MISRA C:2012 Rule 8.3
All declarations of an object or function shall use the same names and type qualifiers

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis” (Polyspace Bug Finder Access).

Rule Definition

All declarations of an object or function shall use the same names and type qualifiers.

Rationale

Consistently using parameter names and types across declarations of the same object or function
encourages stronger typing. It is easier to check that the same function interface is used across all
declarations.

Polyspace Implementation

The rule checker detects situations where parameter names or data types are different between
multiple declarations or the declaration and the definition. The checker considers declarations in all
translation units and flags issues that are not likely to be detected by a compiler.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The analyses can
produce different results.

Additional Message in Report

• Definition of function function_name incompatible with its declaration.
• Global declaration of function_name function has incompatible type with its definition.
• Global declaration of variable_name variable has incompatible type with its definition.
• All declarations of an object or function shall use the same names and type qualifiers.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Mismatch in Parameter Names

extern int div (int num, int den);

int div(int den, int num) { /* Non compliant */
 return(num/den);
}

In this example, the rule is violated because the parameter names in the declaration and definition
are switched.

 MISRA C:2012 Rule 8.3

6-83

Mismatch in Parameter Data Types

typedef unsigned short width;
typedef unsigned short height;
typedef unsigned int area;

extern area calculate(width w, height h);

area calculate(width w, width h) { /* Non compliant */
 return w*h;
}

In this example, the rule is violated because the second argument of the calculate function has
data type:

• height in the declaration.
• width in the definition.

The rule is violated even though the underlying type of height and width are identical.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 8.4 | Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-84

MISRA C:2012 Rule 8.4
A compatible declaration shall be visible when an object or function with external linkage is defined

Description
Rule Definition

A compatible declaration shall be visible when an object or function with external linkage is defined.

Rationale

If a declaration is visible when an object or function is defined, it allows the compiler to check that
the declaration and the definition are compatible.

This rule with MISRA C:2012 Rule 8.5 enforces the practice of declaring an object (or function) in
a header file and including the header file in source files that define or use the object (or function).

Polyspace Implementation

The rule checker detects situations where:

• An object or function is defined without a previous declaration.
• There is a data type mismatch between the object or function declaration and definition. Such a

mismatch also causes a compilation error.

The checker now flags tentative definitions (variables declared without an extern specifier and not
explicitly defined). To avoid the rule violation, declare the variable static (defined in one file only),
or declare the variable extern and follow the declaration with a definition.

Additional Message in Report

• Global definition of variable_name variable has no previous declaration.
• Function function_name has no visible compatible prototype at definition.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Definition Without Previous Declaration

Header file:

/* file.h */
extern int var2;
void func2(void);

Source file:

 MISRA C:2012 Rule 8.4

6-85

/* file.c */
#include "file.h"

int var1 = 0; /* Non compliant */
int var2 = 0; /* Compliant */

void func1(void) { /* Non compliant */
}

void func2(void) { /* Compliant */
}

In this example, the definitions of var1 and func1 are noncompliant because they are not preceded
by declarations.

Mismatch in Parameter Data Types

void func(int param1, int param2);

void func(int param1, unsigned int param2) { /* Non compliant */
}

In this example, the definition of func has a different parameter type from its declaration. The
declaration mismatch might cause a compilation error. Polyspace flags the mismatch.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 8.2 | MISRA C:2012 Rule 8.3 | MISRA C:2012 Rule 8.5 | MISRA
C:2012 Rule 17.3 | Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-86

MISRA C:2012 Rule 8.5
An external object or function shall be declared once in one and only one file

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis” (Polyspace Bug Finder Access).

Rule Definition

An external object or function shall be declared once in one and only one file.

Rationale

If you declare an identifier in a header file, you can include the header file in any translation unit
where the identifier is defined or used. In this way, you ensure consistency between:

• The declaration and the definition.
• The declarations in different translation units.

The rule enforces the practice of declaring external objects or functions in header files.

Polyspace Implementation

The rule checker checks only explicit extern declarations (tentative definitions are ignored). The
checker flags variables or functions declared extern in a non-header file.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The analyses can
produce different results.

Additional Message in Report

• Object object_name has external declarations in multiple files.
• Function function_name has external declarations in multiple files.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Extern Declaration in Non-Header File

Header file:

/* file.h */
extern int var;
extern void func1(void); /* Compliant */

Source file:

 MISRA C:2012 Rule 8.5

6-87

/* file.c */
#include "file.h"

extern void func2(void); /* Non compliant */

/* Definitions */
int var = 0;
void func1(void) {}

In this example, the declaration of external function func2 is noncompliant because it occurs in a
non-header file. The other external object and function declarations occur in a header file and comply
with this rule.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 8.4 | Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-88

MISRA C:2012 Rule 8.6
An identifier with external linkage shall have exactly one external definition

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis” (Polyspace Bug Finder Access).

Rule Definition

An identifier with external linkage shall have exactly one external definition.

Rationale

If you use an identifier for which multiple definitions exist in different files or no definition exists, the
behavior is undefined.

Multiple definitions in different files are not permitted by this rule even if the definitions are the
same.

Polyspace Implementation

The checker flags multiple definitions only if the definitions occur in different files.

The checker does not consider tentative definitions as definitions. For instance, the following code
does not violate the rule:

int val;
int val=1;

The checker does not show a violation if a function is not defined at all but declared with external
linkage and called in the source code.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The analyses can
produce different results.

Additional Message in Report

• Forbidden multiple definitions for function function_name.
• Forbidden multiple tentative definitions for object object_name.
• Global variable variable_name multiply defined.
• Function function_name multiply defined.
• Global variable has multiple tentative definitions.
• Undefined global variable variable_name.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

 MISRA C:2012 Rule 8.6

6-89

Examples
Variable Multiply Defined

First source file:

/* file1.c */
extern int var = 1;

Second source file:

/* file2.c */
int var = 0; /* Non compliant */

In this example, the global variable var is multiply defined. Unless explicitly specified with the
static qualifier, the variables have external linkage.

Function Multiply Defined

Header file:

/* file.h */
int func(int param);

First source file:

/* file1.c */
#include "file.h"

int func(int param) {
 return param+1;
}

Second source file:

/* file2.c */
#include "file.h"

int func(int param) { /* Non compliant */
 return param-1;
}

In this example, the function func is multiply defined. Unless explicitly specified with the static
qualifier, the functions have external linkage.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required

6 MISRA C 2012

6-90

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.6

6-91

MISRA C:2012 Rule 8.7
Functions and objects should not be defined with external linkage if they are referenced in only one
translation unit

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis” (Polyspace Bug Finder Access).

Rule Definition

Functions and objects should not be defined with external linkage if they are referenced in only one
translation unit.

Rationale

Compliance with this rule avoids confusion between your identifier and an identical identifier in
another translation unit or library. If you restrict or reduce the visibility of an object by giving it
internal linkage or no linkage, you or someone else is less likely to access the object inadvertently.

Polyspace Implementation

The rule checker flags:

• Objects that are defined at file scope without the static specifier but used only in one file.
• Functions that are defined without the static specifier but called only in one file.

If you intend to use the object or function in one file only, declare it static.

If your code does not contain a main function and you use options such as Variables to
initialize (-main-generator-writes-variables) with value custom to explicitly specify a
set of variables to initialize, the checker does not flag those variables. The checker assumes that in a
real application, the file containing the main must initialize the variables in addition to any file that
currently uses them. Therefore, the variables are used in more than one translation unit.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The analyses can
produce different results.

Additional Message in Report

• Variable variable_name should have internal linkage.
• Function function_name should have internal linkage.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

6 MISRA C 2012

6-92

Examples
Variable with External Linkage Used in One File

Header file:

/* file.h */
extern int var;

First source file:

/* file1.c */
#include "file.h"

int var; /* Compliant */
int var2; /* Non compliant */
static int var3; /* Compliant */

void reset(void);

void reset(void) {
 var = 0;
 var2 = 0;
 var3 = 0;
}

Second source file:

/* file2.c */
#include "file.h"

void increment(int var2);

void increment(int var2) {
 var++;
 var2++;
}

In this example:

• The declaration of var is compliant because var is declared with external linkage and used in
multiple files.

• The declaration of var2 is noncompliant because var2 is declared with external linkage but used
in one file only.

It might appear that var2 is defined in both files. However, in the second file, var2 is a parameter
with no linkage and is not the same as the var2 in the first file.

• The declaration of var3 is compliant because var3 is declared with internal linkage (with the
static specifier) and used in one file only.

Function with External Linkage Used in One File

Header file:

 MISRA C:2012 Rule 8.7

6-93

/* file.h */
extern int var;
extern void increment1 (void);

First source file:

/* file1.c */
#include "file.h"

int var;

void increment2(void);
static void increment3(void);
void func(void);

void increment2(void) { /* Non compliant */
 var+=2;
}

static void increment3(void) { /* Compliant */
 var+=3;
}

void func(void) {
 increment1();
 increment2();
 increment3();
}

Second source file:

/* file2.c */
#include "file.h"

void increment1(void) { /* Compliant */
 var++;
}

In this example:

• The definition of increment1 is compliant because increment1 is defined with external linkage
and called in a different file.

• The declaration of increment2 is noncompliant because increment2 is defined with external
linkage but called in the same file and nowhere else.

• The declaration of increment3 is compliant because increment3 is defined with internal
linkage (with the static specifier) and called in the same file and nowhere else.

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory

6 MISRA C 2012

6-94

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.7

6-95

MISRA C:2012 Rule 8.8
The static storage class specifier shall be used in all declarations of objects and functions that have
internal linkage

Description
Rule Definition

The static storage class specifier shall be used in all declarations of objects and functions that have
internal linkage.

Rationale

If you do not use the static specifier consistently in all declarations of objects with internal linkage,
you might declare the same object with external and internal linkage.

In this situation, the linkage follows the earlier specification that is visible (C99 Standard, Section
6.2.2). For instance, if the earlier specification indicates internal linkage, the object has internal
linkage even though the latter specification indicates external linkage. If you notice the latter
specification alone, you might expect otherwise.

Polyspace Implementation

The rule checker detects situations where:

• The same object is declared multiple times with different storage specifiers.
• The same function is declared and defined with different storage specifiers.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Linkage Conflict Between Variable Declarations

static int foo = 0;
extern int foo; /* Non-compliant */

extern int hhh;
static int hhh; /* Non-compliant */

In this example, the first line defines foo with internal linkage. The first line is compliant because the
example uses the static keyword. The second line does not use static in the declaration, so the
declaration is noncompliant. By comparison, the third line declares hhh with an extern keyword
creating external linkage. The fourth line declares hhh with internal linkage, but this declaration
conflicts with the first declaration of hhh.

Correction — Consistent static and extern Use

One possible correction is to use static and extern consistently:

6 MISRA C 2012

6-96

static int foo = 0;
static int foo;

extern int hhh;
extern int hhh;

Linkage Conflict Between Function Declaration and Definition

static int fee(void); /* Compliant - declaration: internal linkage */
int fee(void){ /* Non-compliant */
 return 1;
}

static int ggg(int); /* Compliant - declaration: internal linkage */
extern int ggg(int x){ /* Non-compliant */
 return 1 + x;
}

This example shows two internal linkage violations. Because fee and ggg have internal linkage, you
must use a static class specifier in the definition to be compliant with MISRA.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.8

6-97

MISRA C:2012 Rule 8.9
An object should be defined at block scope if its identifier only appears in a single function

Description
Rule Definition

An object should be defined at block scope if its identifier only appears in a single function.

Rationale

If you define an object at block scope, you or someone else is less likely to access the object
inadvertently outside the block.

Polyspace Implementation

The rule checker flags static objects that are accessed in one function only but declared at file
scope.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Object Declared at File Scope but Used in One Function
static int ctr; /* Non compliant */

int checkStatus(void);
void incrementCount(void);

void incrementCount(void) {
 ctr=0;
 while(1) {
 if(checkStatus())
 ctr++;
 }
}

In this example, the declaration of ctr is noncompliant because it is declared at file scope but used
only in the function incrementCount. Declare ctr in the body of incrementCount to be MISRA C-
compliant.

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

6 MISRA C 2012

6-98

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.9

6-99

MISRA C:2012 Rule 8.10
An inline function shall be declared with the static storage class

Description
Rule Definition

An inline function shall be declared with the static storage class.

Rationale

If you call an inline function that is declared with external linkage but not defined in the same
translation unit, the function might not be inlined. You might not see the reduction in execution time
that you expect from inlining.

If you want to make an inline function available to several translation units, you can still define it with
the static specifier. In this case, place the definition in a header file. Include the header file in all
the files where you want the function inlined.

Polyspace Implementation

The rule checker flags definitions that contain the inline specifier without an accompanying
static specifier.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Inlining Functions with External Linkage

inline double mult(int val);
inline double mult(int val) { /* Non compliant */
 return val * 2.0;
}

static inline double div(int val);
static inline double div(int val) { /* Compliant */
 return val / 2.0;
}

In this example, the definition of mult is noncompliant because it is inlined without the static
storage specifier.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required

6 MISRA C 2012

6-100

See Also
MISRA C:2012 Rule 5.9 | Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.10

6-101

MISRA C:2012 Rule 8.11
When an array with external linkage is declared, its size should be explicitly specified

Description
Rule Definition

When an array with external linkage is declared, its size should be explicitly specified.

Rationale

Although it is possible to declare an array with an incomplete type and access its elements, it is safer
to state the size of the array explicitly. If you provide size information for each declaration, a code
reviewer can check multiple declarations for their consistency. With size information, a static analysis
tool can perform array bounds analysis without analyzing more than one unit.

Polyspace Implementation

The rule checker flags arrays declared with the extern specifier if the declaration does not explicitly
specify the array size.

Additional Message in Report

Size of array array_name should be explicitly stated. When an array with external linkage is
declared, its size should be explicitly specified.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Array Declarations

#include <stdint.h>

extern int32_t array1[10]; /* Compliant */
extern int32_t array2[]; /* Non-compliant */

In this example, two arrays are declared array1 and array2. array1 has external linkage (the
extern keyword) and a size of 10. array2 also has external linkage, but no specified size. array2 is
noncompliant because for arrays with external linkage, you must explicitly specify a size.

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

6 MISRA C 2012

6-102

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.11

6-103

MISRA C:2012 Rule 8.12
Within an enumerator list, the value of an implicitly-specified enumeration constant shall be unique

Description
Rule Definition

Within an enumerator list, the value of an implicitly-specified enumeration constant shall be unique.

Rationale

An implicitly specified enumeration constant has a value one greater than its predecessor. If the first
enumeration constant is implicitly specified, then its value is 0. An explicitly specified enumeration
constant has the specified value.

If implicitly and explicitly specified constants are mixed within an enumeration list, it is possible for
your program to replicate values. Such replications can be unintentional and can cause unexpected
behavior.

Polyspace Implementation

The rule checker flags an enumeration if it has an implicitly specified enumeration constant with the
same value as another enumeration constant.

Additional Message in Report

The constant constant1 has same value as the constant constant2.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Replication of Value in Implicitly Specified Enum Constants

enum color1 {red_1, blue_1, green_1}; /* Compliant */
enum color2 {red_2 = 1, blue_2 = 2, green_2 = 3}; /* Compliant */
enum color3 {red_3 = 1, blue_3, green_3}; /* Compliant */
enum color4 {red_4, blue_4, green_4 = 1}; /* Non Compliant */
enum color5 {red_5 = 2, blue_5, green_5 = 2}; /* Compliant */
enum color6 {red_6 = 2, blue_6, green_6 = 2, yellow_6}; /* Non Compliant */

Compliant situations:

• color1: All constants are implicitly specified.
• color2: All constants are explicitly specified.
• color3: Though there is a mix of implicit and explicit specification, all constants have unique

values.
• color5: The implicitly specified constants have unique values.

6 MISRA C 2012

6-104

Noncompliant situations:

• color4: The implicitly specified constant blue_4 has the same value as green_4.
• color6: The implicitly specified constant blue_6 has the same value as yellow_6.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.12

6-105

MISRA C:2012 Rule 8.13
A pointer should point to a const-qualified type whenever possible

Description
Rule Definition

A pointer should point to a const-qualified type whenever possible.

Rationale

This rule ensures that you do not inadvertently use pointers to modify objects.

Polyspace Implementation

The rule checker flags a pointer to a non-const function parameter if the pointer does not modify the
addressed object. The assumption is that the pointer is not meant to modify the object and so must
point to a const-qualified type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Pointer That Should Point to const-Qualified Types

#include <string.h>

typedef unsigned short uint16_t;

uint16_t ptr_ex(uint16_t *p) { /* Non-compliant */
 return *p;
}

char last_char(char * const s){ /* Non-compliant */
 return s[strlen(s) - 1u];
}

uint16_t first(uint16_t a[5]){ /* Non-compliant */
 return a[0];
}

This example shows three different noncompliant pointer parameters.

• In the ptr_ex function, p does not modify an object. However, the type to which p points is not
const-qualified, so it is noncompliant.

• In last_char, the pointer s is const-qualified but the type it points to is not. This parameter is
noncompliant because s does not modify an object.

• The function first does not modify the elements of the array a. However, the element type is not
const-qualified, so a is also noncompliant.

6 MISRA C 2012

6-106

Correction — Use const Keywords

One possible correction is to add const qualifiers to the definitions.

#include <string.h>

typedef unsigned short uint16_t;

uint16_t ptr_ex(const uint16_t *p){ /* Compliant */
 return *p;
}

char last_char(const char * const s){ /* Compliant */
 return s[strlen(s) - 1u];
}

uint16_t first(const uint16_t a[5]) { /* Compliant */
 return a[0];
}

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.13

6-107

MISRA C:2012 Rule 8.14
The restrict type qualifier shall not be used

Description
Rule Definition

The restrict type qualifier shall not be used.

Rationale

When you use a restrict qualifier carefully, it improves the efficiency of code generated by a
compiler. It can also improve static analysis. However, when using the restrict qualifier, it is
difficult to make sure that the memory areas operated on by two or more pointers do not overlap.

Polyspace Implementation

The rule checker flags all uses of the restrict qualifier.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Use of restrict Qualifier

void f(int n, int * restrict p, int * restrict q)/*Noncompliant*/
{
}

In this example, both uses of the restrict qualifier are flagged.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-108

MISRA C:2012 Rule 9.1
The value of an object with automatic storage duration shall not be read before it has been set

Description
Message in Report:

Rule Definition

The value of an object with automatic storage duration shall not be read before it has been set.

Rationale

A variable with an automatic storage duration is allocated memory at the beginning of an enclosing
code block and deallocated at the end. All non-global variables have this storage duration, except
those declared static or extern.

Variables with automatic storage duration are not automatically initialized and have indeterminate
values. Therefore, you must not read such a variable before you have set its value through a write
operation.

Polyspace Implementation

The Polyspace analysis checks some of the violations as non-initialized variables. For more
information, see Non-initialized local variable.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The analyses can
produce different results. In Code Prover, you can also see a difference in results based on your
choice for the option Verification level (-to). See “Check for Coding Standard Violations”.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Initialization
Category: Mandatory
AGC Category: Mandatory

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.3 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 9.1

6-109

MISRA C:2012 Rule 9.2
The initializer for an aggregate or union shall be enclosed in braces

Description
Rule Definition

The initializer for an aggregate or union shall be enclosed in braces.

Rationale

The rule applies to both objects and subobjects. For example, when initializing a structure that
contains an array, the values assigned to the structure must be enclosed in braces. Within these
braces, the values assigned to the array must be enclosed in another pair of braces.

Enclosing initializers in braces improves clarity of code that contains complex data structures such as
multidimensional arrays and arrays of structures.

Tip To avoid nested braces for subobjects, use the syntax {0}, which sets all values to zero.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Initialization of Two-dimensional Arrays
void initialize(void) {
 int x[4][2] = {{0,0},{1,0},{0,1},{1,1}}; /* Compliant */
 int y[4][2] = {{0},{1,0},{0,1},{1,1}}; /* Compliant */
 int z[4][2] = {0}; /* Compliant */
 int w[4][2] = {0,0,1,0,0,1,1,1}; /* Non-compliant */
}

In this example, the rule is not violated when:

• Initializers for each row of the array are enclosed in braces.
• The syntax {0} initializes all elements to zero.

The rule is violated when a separate pair of braces is not used to enclose the initializers for each row.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability

See Also
Check MISRA C:2012 (-misra3)

6 MISRA C 2012

6-110

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 9.2

6-111

MISRA C:2012 Rule 9.3
Arrays shall not be partially initialized

Description
Rule Definition

Arrays shall not be partially initialized.

Rationale

Providing an explicit initialization for each array element makes it clear that every element has been
considered.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Partial and Complete Initializations

void func(void) {
 int x[3] = {0,1,2}; /* Compliant */
 int y[3] = {0,1}; /* Non-compliant */
 int z[3] = {0}; /* Compliant - exception */
 int a[30] = {[1] = 1,[15]=1}; /* Compliant - exception */
 int b[30] = {[1] = 1, 1}; /* Non-compliant */
 char c[20] = "Hello World"; /* Compliant - exception */
}

In this example, the rule is not violated when each array element is explicitly initialized.

The rule is violated when some elements of the array are implicitly initialized. Exceptions include the
following:

• The initializer has the form {0}, which initializes all elements to zero.
• The array initializer consists only of designated initializers. Typically, you use this approach for

sparse initialization.
• The array is initialized using a string literal.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability

See Also
Check MISRA C:2012 (-misra3)

6 MISRA C 2012

6-112

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 9.3

6-113

MISRA C:2012 Rule 9.4
An element of an object shall not be initialized more than once

Description
Rule Definition

An element of an object shall not be initialized more than once.

Rationale

Designated initializers allow explicitly initializing elements of objects such as arrays in any order.
However, using designated initializers, one can inadvertently initialize the same element twice and
therefore overwrite the first initialization.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Array Initialization Using Designated Initializers

void func(void) {
 int a[5] = {-2,-1,0,1,2}; /* Compliant */
 int b[5] = {[0]=-2, [1]=-1, [2]=0, [3]=1, [4]=2}; /* Compliant */
 int c[5] = {[0]=-2, [1]=-1, [1]=0, [3]=1, [4]=2}; /* Non-compliant */

}

In this example, the rule is violated when the array element c[1] is initialized twice using a
designated initializer.

Structure Initialization Using Designated Initializers

struct myStruct {
 int a;
 int b;
 int c;
 int d;
};

void func(void) {
 struct myStruct struct1 = {-4,-2,2,4}; /* Compliant */
 struct myStruct struct2 = {.a=-4, .b=-2, .c=2, .d=4}; /* Compliant */
 struct myStruct struct3 = {.a=-4, .b=-2, .b=2, .d=4}; /* Non-compliant */
}

In this example, the rule is violated when struct3.b is initialized twice using a designated
initializer.

6 MISRA C 2012

6-114

Check Information
Group: Initialization
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 9.4

6-115

MISRA C:2012 Rule 9.5
Where designated initializers are used to initialize an array object the size of the array shall be
specified explicitly

Description
Rule Definition

Where designated initializers are used to initialize an array object the size of the array shall be
specified explicitly.

Rationale

If the size of an array is not specified explicitly, it is determined by the highest index of the elements
that are initialized. When using long designated initializers, it might not be immediately apparent
which element has the highest index.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Using Designated Initializers Without Specifying Array Size

int a[5] = {[0]= 1, [2] = 1, [4]= 1, [1] = 1}; /* Compliant */
int b[] = {[0]= 1, [2] = 1, [4]= 1, [1] = 1}; /* Non-compliant */
int c[] = {[0]= 1, [1] = 1, [2]= 1, [3]=0, [4] = 1}; /* Non-compliant */

void display(int);

void main() {
 func(a,5);
 func(b,5);
 func(c,5);
}

void func(int* arr, int size) {
 for(int i=0; i<size; i++)
 display(arr[i]);
}

In this example, the rule is violated when the arrays b and c are initialized using designated
initializers but the array size is not specified.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability

6 MISRA C 2012

6-116

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 9.5

6-117

MISRA C:2012 Rule 10.1
Operands shall not be of an inappropriate essential type

Description
Rule Definition

Operands shall not be of an inappropriate essential type.

Rationale
What Are Essential Types?

An essential type category defines the essential type of an object or expression.

Essential type category Standard types
Essentially Boolean bool or _Bool (defined in stdbool.h)

You can also define types that are essentially Boolean using the
option Effective boolean types (-boolean-types).

Essentially character char
Essentially enum named enum
Essentially signed signed char, signed short, signed int, signed long, signed long

long
Essentially unsigned unsigned char, unsigned short, unsigned int, unsigned long,

unsigned long long
Essentially floating float, double, long double

Amplification and Rationale

For operands of some operators, you cannot use certain essential types. In the table below, each row
represents an operator/operand combination. If the essential type column is not empty for that row,
there is a MISRA restriction when using that type as the operand. The number in the table
corresponds to the rationale list after the table.

Operation Essential type category of arithmetic operand
Operator Operand Boolean character enum signed unsigned floating

[] integer 3 4 1
+ (unary) 3 4 5
- (unary) 3 4 5 8

+ - either 3 5
* / either 3 4 5
% either 3 4 5 1

< > <= >= either 3

6 MISRA C 2012

6-118

Operation Essential type category of arithmetic operand
== != either
! && || any 2 2 2 2 2
<< >> left 3 4 5,6 6 1
<< >> right 3 4 7 7 1
~ & | ^ any 3 4 5,6 6 1

?: 1st 2 2 2 2 2
?: 2nd and 3rd

1 An expression of essentially floating type for these operands is a constraint violation.
2 When an operand is interpreted as a Boolean value, use an expression of essentially Boolean

type.
3 When an operand is interpreted as a numeric value, do not use an operand of essentially Boolean

type.
4 When an operand is interpreted as a numeric value, do not use an operand of essentially

character type. The numeric values of character data are implementation-defined.
5 In an arithmetic operation, do not use an operand of essentially enum type. An enum object uses

an implementation-defined integer type. An operation involving an enum object can therefore
yield a result with an unexpected type.

6 Perform only shift and bitwise operations on operands of essentially unsigned type. When you use
shift and bitwise operations on essentially signed types, the resulting numeric value is
implementation-defined.

7 To avoid undefined behavior on negative shifts, use an essentially unsigned right-hand operand.
8 For the unary minus operator, do not use an operand of essentially unsigned type. The

implemented size of int determines the signedness of the result.

Note that for a bit-field type, if the bit-field is implemented as:

• A Boolean, the bit-field is essentially Boolean.
• Signed or unsigned type, the bit-field is essentially signed or unsigned respectively.

The type of the bit-field is the smallest type that can represent the bit-field. For instance, the type
stmp here is essentially 8 bits integer:

typedef signed int mybitfield;
typedef struct { mybitfield f1 : 1; } stmp;

Additional Message in Report

The operand_name operand of the operator_name operator is of an inappropriate essential type
category category_name.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

 MISRA C:2012 Rule 10.1

6-119

Examples
Violation of Rule 10.1, Rationale 2: Inappropriate Operand Types for Operators That Take
Essentially Boolean Operands
#include<stdbool.h>
extern float f32a;
extern char cha;
extern signed char s8a;
extern unsigned char u8a,u8b,ru8a;
enum enuma { a1, a2, a3 } ena, enb;
extern bool bla, blb, rbla;
void foo(void) {

 rbla = cha && bla; /* Non-compliant: cha is essentially char */
 enb = ena ? a1 : a2; /* Non-compliant: ena is essentially enum */
 rbla = s8a && bla; /* Non-compliant: s8a is essentially signed char */
 ena = u8a ? a1 : a2; /* Non-compliant: u8a is essentially unsigned char */
 rbla = f32a && bla; /* Non-compliant: f32a is essentially float */
 rbla = bla && blb; /* Compliant */
 ru8a = bla ? u8a : u8b; /* Compliant */
}

In the noncompliant examples, rule 10.1 is violated because:

• The operator && expects only essentially Boolean operands. However, at least one of the operands
used has a different type.

• The first operand of ?: is expected to be essentially Boolean. However, a different operand type is
used.

Note For Polyspace to detect the rule violation, you must define the type name boolean as an
effective Boolean type. For more information, see Effective boolean types (-boolean-
types).

Violation of Rule 10.1, Rationale 3: Inappropriate Boolean Operands
#include<stdbool.h>
enum enuma { a1, a2, a3 } ena;
enum { K1 = 1, K2 = 2 }; /* Essentially signed */
extern char cha, chb;
extern bool bla, blb, rbla;
extern signed char rs8a, s8a;
extern unsigned char u8a;

void foo(void) {

 rbla = bla * blb; /* Non-compliant - Boolean used as a numeric value */
 rbla = bla > blb; /* Non-compliant - Boolean used as a numeric value */

 rbla = bla && blb; /* Compliant */
 rbla = cha > chb; /* Compliant */
 rbla = ena > a1; /* Compliant */
 rbla = u8a > 0U; /* Compliant */
 rs8a = K1 * s8a; /* Compliant - K1 obtained from anonymous enum */

}

In the noncompliant examples, rule 10.1 is violated because the operators * and > do not expect
essentially Boolean operands. However, the operands used here are essentially Boolean.

Note For Polyspace to detect the rule violation, you must define the type name boolean as an
effective Boolean type. For more information, see Effective boolean types (-boolean-
types).

6 MISRA C 2012

6-120

Violation of Rule 10.1, Rationale 4: Inappropriate Character Operands
extern char rcha, cha, chb;
extern unsigned char ru8a, u8a;

void foo(void) {

 rcha = cha & chb; /* Non-compliant - char type used as a numeric value */
 rcha = cha << 1; /* Non-compliant - char type used as a numeric value */

 ru8a = u8a & 2U; /* Compliant */
 ru8a = u8a << 2U; /* Compliant */

}

In the noncompliant examples, rule 10.1 is violated because the operators & and << do not expect
essentially character operands. However, at least one of the operands used here has essentially
character type.

Violation of Rule 10.1, Rationale 5: Inappropriate Enum Operands
typedef unsigned char boolean;

enum enuma { a1, a2, a3 } rena, ena, enb;

void foo(void) {

 ena--; /* Non-Compliant - arithmetic operation with enum type*/
 rena = ena * a1; /* Non-Compliant - arithmetic operation with enum type*/
 ena += a1; /* Non-Compliant - arithmetic operation with enum type*/

}

In the noncompliant examples, rule 10.1 is violated because the arithmetic operators --, * and += do
not expect essentially enum operands. However, at least one of the operands used here has
essentially enum type.

Violation of Rule 10.1, Rationale 6: Inappropriate Signed Operand for Bitwise Operations
extern signed char s8a;
extern unsigned char ru8a, u8a;

void foo(void) {

 ru8a = s8a & 2; /* Non-compliant - bitwise operation on signed type */
 ru8a = 2 << 3U; /* Non-compliant - shift operation on signed type */

 ru8a = u8a << 2U; /* Compliant */

}

In the noncompliant examples, rule 10.1 is violated because the & and << operations must not be
performed on essentially signed operands. However, the operands used here are signed.

Violation of Rule 10.1, Rationale 7: Inappropriate Signed Right Operand for Shift
Operations
extern signed char s8a;
extern unsigned char ru8a, u8a;

void foo(void) {

 ru8a = u8a << s8a; /* Non-compliant - shift magnitude uses signed type */
 ru8a = u8a << -1; /* Non-compliant - shift magnitude uses signed type */

 ru8a = u8a << 2U; /* Compliant */
 ru8a = u8a << 1; /* Compliant - exception */

}

In the noncompliant examples, rule 10.1 is violated because the operation << does not expect an
essentially signed right operand. However, the right operands used here are signed.

 MISRA C:2012 Rule 10.1

6-121

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 10.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C:2012 Rules 10.x”

6 MISRA C 2012

6-122

MISRA C:2012 Rule 10.2
Expressions of essentially character type shall not be used inappropriately in addition and subtraction
operations

Description
Rule Definition

Expressions of essentially character type shall not be used inappropriately in addition and subtraction
operations.

Rationale

Essentially character type expressions are char variables. Do not use char in arithmetic operations
because the data does not represent numeric values.

It is appropriate to use char with addition and subtraction operations only in the following cases:

• When one operand of the addition (+) operation is a char and the other is a signed or unsigned
char, short, int, long or long long. In this case, the operation returns a char.

• When the first operand of the subtraction (-) operation is a char and the second is a signed or
unsigned char, short, int, long or long long. If both operands are char, the operation
returns a standard type. Otherwise, the operation returns a char.

The above uses allow manipulation of character data such as conversion between lowercase and
uppercase characters or conversion between digits and their ordinal values.

For more information on essential types, see MISRA C:2012 Rule 10.1.

Additional Message in Report

• The operand_name operand of the + operator applied to an expression of essentially character
type shall have essentially signed or unsigned type.

• The right operand of the - operator applied to an expression of essentially character type shall
have essentially signed or unsigned or character type.

• The left operand of the - operator shall have essentially character type if the right operand has
essentially character type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Inappropriate use of char with Addition and Subtraction Operators

#include<stdint.h>
typedef double float64_t;
extern uint8_t u8a;
extern int8_t s8a;

 MISRA C:2012 Rule 10.2

6-123

extern int16_t s16a;
extern int32_t s32a;
extern float64_t fla;

void foo (void)
{
 char cha;

 s16a = s16a - 'a'; /* Noncompliant*/

 cha = '0' + fla; /* Noncompliant*/

 cha = cha + ':'; /* Noncompliant*/
}

• You cannot subtract a char-type variable from an integer. When you subtract 'a' from the integer
s16a, Polyspace raises a violation.

• In addition operations, char type variables can only be added to integer type variables. When you
add the floating point number fla to '0', Polyspace raises a violation.

• The arithmetic operation cha+':' is not a conversion from upper to lower case or from digit to
cardinal value. Polyspace raises a violation when char variables are used in arithmetic
expressions.

Permissible use of char in Arithmetic Operation

#include<stdint.h>
typedef double float64_t;
extern uint8_t u8a;
extern int8_t s8a;
extern int16_t s16a;
extern int32_t s32a;
void foo (void)
{
 char cha;

 cha = '0' + u8a; /* Compliant*/

 cha = s8a + '0'; /* Compliant*/

 s32a = cha - '0'; /* Compliant*/

 cha = '0' - s8a; /* Compliant*/

 cha++; /* Compliant*/
}

char type variables can be used in certain addition or subtraction operations to perform char data
manipulations. For instance:

• You can add an unsigned integer u8a to the char type data '0' to convert from '0' to a different
character.

• Similarly, you can add the signed integer s8a to '0' to perform a desired character conversion.
• You can also subtract s8a from the char data '0'.
• Incrementing and decrementing char data is also permissible.

6 MISRA C 2012

6-124

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 10.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C:2012 Rules 10.x”

 MISRA C:2012 Rule 10.2

6-125

MISRA C:2012 Rule 10.3
The value of an expression shall not be assigned to an object with a narrower essential type or of a
different essential type category

Description
Rule Definition

The value of an expression shall not be assigned to an object with a narrower essential type or of a
different essential type category.

Rationale

The use of implicit conversions between types can lead to unintended results, including possible loss
of value, sign, or precision.

For more information on essential types, see MISRA C:2012 Rule 10.1.

Polyspace Implementation

The checker raises a violation if an expression is assigned to a variable with a narrower essential type
or a different essential type category.

The checker does not raise a violation of this rule:

• If the expression is simply the constant zero.
• If a signed constant is assigned to an unsigned variable but the signed constant has the same

representation as its unsigned equivalent. For instance, the checker does not flag statements such
as:

unsigned int u = 1;

Additional Message in Report

• The expression is assigned to an object with a different essential type category.
• The expression is assigned to an object with a narrower essential type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 10.4 | MISRA C:2012 Rule 10.5 | MISRA C:2012 Rule 10.6 | Check
MISRA C:2012 (-misra3)

6 MISRA C 2012

6-126

Topics
“Check for Coding Standard Violations”
“Justify Coding Rule Violations Using Code Prover Checks”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C:2012 Rules 10.x”

 MISRA C:2012 Rule 10.3

6-127

MISRA C:2012 Rule 10.4
Both operands of an operator in which the usual arithmetic conversions are performed shall have the
same essential type category

Description
Rule Definition

Both operands of an operator in which the usual arithmetic conversions are performed shall have the
same essential type category.

Rationale

The use of implicit conversions between types can lead to unintended results, including possible loss
of value, sign, or precision.

For more information on essential types, see MISRA C:2012 Rule 10.1.

Polyspace Implementation

The checker raises a violation of this rule if the two operands of an operation have different essential
types. The checker message states the types detected on the two sides of the operation.

The checker does not raise a violation of this rule:

• If one of the operands is the constant zero.
• If one of the operands is a signed constant and the other operand is unsigned, and the signed

constant has the same representation as its unsigned equivalent.

For instance, the statement u8b = u8a + 3;, where u8a and u8b are unsigned char
variables, does not violate the rule because the constants 3 and 3U have the same representation.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Operands with Different Essential Types

#define S64_MAX (9223372036854775807LL)
#define S64_MIN (-9223372036854775808LL)
long long input_s64_a, input_s64_b, result_s64;

void my_func(void){
 if (input_s64_a < S64_MIN + input_s64_b) { //Noncompliant: 2 violations
 result_s64 = S64_MIN;
 }
}

In this example, the type of S64_MIN is essentially unsigned. The value 9223372036854775808LL is
one more than the largest value that can be represented by a 64-bit variable. Therefore, the value

6 MISRA C 2012

6-128

overflows and the result wraps around to a negative value, so -9223372036854775808LL is
essentially unsigned.

The operation input_s64_a < S64_MIN + input_s64_b violates the rule twice.

• The + operation violates the rule. The left operand is essentially unsigned and the right operand is
signed.

• The < operation also violates the rule. As a result of type promotion, the result of the + operation
is essentially unsigned. Now, the left operand of the < operation is essentially signed but the right
operand is essentially unsigned.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.7 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C:2012 Rules 10.x”

 MISRA C:2012 Rule 10.4

6-129

MISRA C:2012 Rule 10.5
The value of an expression should not be cast to an inappropriate essential type

Description
Rule Definition

The value of an expression should not be cast to an inappropriate essential type.

Rationale

Converting Between Variable Types

 From
Boolean character enum signed unsigned floating

To Boolean Avoid Avoid Avoid Avoid Avoid
character Avoid Avoid

enum Avoid Avoid Avoid Avoid Avoid Avoid
signed Avoid

unsigned Avoid
floating Avoid Avoid

Some inappropriate explicit casts are:

• In C99, the result of a cast of assignment to _Bool is always 0 or 1. This result is not necessarily
the case when casting to another type which is defined as essentially Boolean.

• A cast to an essential enum type may result in a value that does not lie within the set of
enumeration constants for that type.

• A cast from essential Boolean to any other type is unlikely to be meaningful.
• Converting between floating and character types is not meaningful as there is no precise mapping

between the two representations.

Some acceptable explicit casts are:

• To change the type in which a subsequent arithmetic operation is performed.
• To truncate a value deliberately.
• To make a type conversion explicit in the interests of clarity.

For more information on essential types, see MISRA C:2012 Rule 10.1.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: The Essential Type Model

6 MISRA C 2012

6-130

Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.8 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C:2012 Rules 10.x”

 MISRA C:2012 Rule 10.5

6-131

MISRA C:2012 Rule 10.6
The value of a composite expression shall not be assigned to an object with wider essential type

Description
Rule Definition

The value of a composite expression shall not be assigned to an object with wider essential type.

Rationale

A composite expression is a nonconstant expression using a composite operator. In the Essential Type
Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

If you assign the result of a composite expression to a larger type, the implicit conversion can result
in loss of value, sign, precision, or layout.

For more information on essential types, see MISRA C:2012 Rule 10.1.

Additional Message in Report

The composite expression is assigned to an object with a wider essential type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.7 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C:2012 Rules 10.x”

6 MISRA C 2012

6-132

MISRA C:2012 Rule 10.7
If a composite expression is used as one operand of an operator in which the usual arithmetic
conversions are performed then the other operand shall not have wider essential type

Description
Rule Definition

If a composite expression is used as one operand of an operator in which the usual arithmetic
conversions are performed, then the other operand shall not have wider essential type.

Rationale

A composite expression is a nonconstant expression using a composite operator. In the Essential Type
Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

Restricting implicit conversion on composite expressions mean that sequences of arithmetic
operations within expressions must use the same essential type. This restriction reduces confusion
and avoids loss of value, sign, precision, or layout. However, this rule does not imply that all operands
in an expression are of the same essential type.

For more information on essential types, see MISRA C:2012 Rule 10.1.

Additional Message in Report

• The right operand shall not have wider essential type than the left operand which is a composite
expression.

• The left operand shall not have wider essential type than the right operand which is a composite
expression.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

 MISRA C:2012 Rule 10.7

6-133

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C:2012 Rules 10.x”

6 MISRA C 2012

6-134

MISRA C:2012 Rule 10.8
The value of a composite expression shall not be cast to a different essential type category or a wider
essential type

Description
Rule Definition

The value of a composite expression shall not be cast to a different essential type category or a wider
essential type.

Rationale

A composite expression is a non-constant expression using a composite operator. In the Essential
Type Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

Casting to a wider type is not permitted because the result may vary between implementations.
Consider this expression:

(uint32_t) (u16a +u16b);

On a 16-bit machine the addition is performed in 16 bits. The result is wrapped before it is cast to 32
bits. On a 32-bit machine, the addition takes place in 32 bits and preserves high-order bits that are
lost on a 16-bit machine. Casting to a narrower type with the same essential type category is
acceptable as the explicit truncation of the results always leads to the same loss of information.

For more information on essential types, see MISRA C:2012 Rule 10.1.

Polyspace Implementation

The rule checker raises a defect only if the result of a composite expression is cast to a different or
wider essential type.

For instance, in this example, a violation is shown in the first assignment to i but not the second. In
the first assignment, a composite expression i+1 is directly cast from a signed to an unsigned type. In
the second assignment, the composite expression is first cast to the same type and then the result is
cast to a different type.

typedef int int32_T;
typedef unsigned char uint8_T;
...
...
int32_T i;
i = (uint8_T)(i+1); /* Noncompliant */
i = (uint8_T)((int32_T)(i+1)); /* Compliant */

 MISRA C:2012 Rule 10.8

6-135

Additional Message in Report

• The value of a composite expression shall not be cast to a different essential type category.
• The value of a composite expression shall not be cast to a wider essential type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Casting to Different or Wider Essential Type

extern unsigned short ru16a, u16a, u16b;
extern unsigned int u32a, ru32a;
extern signed int s32a, s32b;

void foo(void)
{
 ru16a = (unsigned short) (u32a + u32a);/* Compliant */
 ru16a += (unsigned short) s32a; /* Compliant - s32a is not composite */
 ru32a = (unsigned int) (u16a + u16b); /* Noncompliant - wider essential type */
}

In this example, rule 10.8 is violated in the following cases:

• s32a and s32b are essentially signed variables. However, the result (s32a + s32b) is cast
to an essentially unsigned type.

• u16a and u16b are essentially unsigned short variables. However, the result (s32a +
s32b) is cast to a wider essential type, unsigned int.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 10.5 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-136

MISRA C:2012 Rule 11.1
Conversions shall not be performed between a pointer to a function and any other type

Description
Rule Definition

Conversions shall not be performed between a pointer to a function and any other type.

Rationale

The rule forbids the following two conversions:

• Conversion from a function pointer to any other type. This conversion causes undefined behavior.
• Conversion from a function pointer to another function pointer, if the function pointers have
different argument and return types.

The conversion is forbidden because calling a function through a pointer with incompatible type
results in undefined behavior.

Polyspace Implementation

Polyspace considers both explicit and implicit casts when checking this rule. However, casts from
NULL or (void*)0 do not violate this rule.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Cast between two function pointers

typedef void (*fp16) (short n);
typedef void (*fp32) (int n);

#include <stdlib.h> /* To obtain macro NULL */

void func(void) { /* Exception 1 - Can convert a null pointer
 * constant into a pointer to a function */
 fp16 fp1 = NULL; /* Compliant - exception */
 fp16 fp2 = (fp16) fp1; /* Compliant */
 fp32 fp3 = (fp32) fp1; /* Non-compliant */
 if (fp2 != NULL) {} /* Compliant - exception */
 fp16 fp4 = (fp16) 0x8000; /* Non-compliant - integer to
 * function pointer */}

In this example, the rule is violated when:

• The pointer fp1 of type fp16 is cast to type fp32. The function pointer types fp16 and fp32
have different argument types.

 MISRA C:2012 Rule 11.1

6-137

• An integer is cast to type fp16.

The rule is not violated when function pointers fp1 and fp2 are cast to NULL.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-138

MISRA C:2012 Rule 11.2
Conversions shall not be performed between a pointer to an incomplete type and any other type

Description
Rule Definition

Conversions shall not be performed between a pointer to an incomplete type and any other type.

Rationale

An incomplete type is a type that does not contain sufficient information to determine its size. For
example, the statement struct s; describes an incomplete type because the fields of s are not
defined. The size of a variable of type s cannot be determined.

Conversions to or from a pointer to an incomplete type result in undefined behavior. Typically, a
pointer to an incomplete type is used to hide the full representation of an object. This encapsulation
is broken if another pointer is implicitly or explicitly cast to such a pointer.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Casts from incomplete type
#include <stdio.h>
struct s *sp;
struct t *tp;
short *ip;
struct ct *ctp1;
struct ct *ctp2;

void foo(void) {

 ip = (short *) sp; /* Non-compliant */
 sp = (struct s *) 1234; /* Non-compliant */
 tp = (struct t *) sp; /* Non-compliant */
 ctp1 = (struct ct *) ctp2; /* Compliant */

 /* You can convert a null pointer constant to
 * a pointer to an incomplete type */
 sp = NULL; /* Compliant - exception */

 /* A pointer to an incomplete type may be converted into void */
 struct s *f(void);
 (void) f(); /* Compliant - exception */

}

In this example, types s, t and ct are incomplete. The rule is violated when:

 MISRA C:2012 Rule 11.2

6-139

• The variable sp with an incomplete type is cast to a basic type.
• The variable sp with an incomplete type is cast to a different incomplete type t.

The rule is not violated when:

• The variable ctp2 with an incomplete type is cast to the same incomplete type.
• The NULL pointer is cast to the variable sp with an incomplete type.
• The return value of f with incomplete type is cast to void.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 11.5 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-140

MISRA C:2012 Rule 11.3
A cast shall not be performed between a pointer to object type and a pointer to a different object type

Description
Rule Definition

A cast shall not be performed between a pointer to object type and a pointer to a different object
type.

Rationale

If a pointer to an object is cast into a pointer to a different object, the resulting pointer can be
incorrectly aligned. The incorrect alignment causes undefined behavior.

Even if the conversion produces a pointer that is correctly aligned, the behavior can be undefined if
the pointer is used to access an object.

Exception: You can convert a pointer to object type into a pointer to one of the following types:

• char
• signed char
• unsigned char

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Noncompliant: Cast to Pointer Pointing to Object of Wider Type

signed char *p1;
unsigned int *p2;

void foo(void){
 p2 = (unsigned int *) p1; /* Non-compliant */
}

In this example, p1 can point to a signed char object. However, p1 is cast to a pointer that points
to an object of wider type, unsigned int.

Noncompliant: Cast to Pointer Pointing to Object of Narrower Type

extern unsigned int read_value (void);
extern void display (unsigned int n);

void foo (void){
 unsigned int u = read_value ();
 unsigned short *hi_p = (unsigned short *) &u; /* Non-compliant */
 *hi_p = 0;

 MISRA C:2012 Rule 11.3

6-141

 display (u);
}

In this example, u is an unsigned int variable. &u is cast to a pointer that points to an object of
narrower type, unsigned short.

On a big-endian machine, the statement *hi_p = 0 attempts to clear the high bits of the memory
location that &u points to. But, from the result of display(u), you might find that the high bits have
not been cleared.

Compliant: Cast Adding a Type Qualifier

const short *p;
const volatile short *q;
void foo (void){
 q = (const volatile short *) p; /* Compliant */
}

In this example, both p and q can point to short objects. The cast between them adds a volatile
qualifier only and is therefore compliant.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 11.4 | MISRA C:2012 Rule 11.5 | MISRA C:2012 Rule 11.8 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-142

MISRA C:2012 Rule 11.4
A conversion should not be performed between a pointer to object and an integer type

Description
Rule Definition

A conversion should not be performed between a pointer to object and an integer type.

Rationale

Conversion between integers and pointers can cause errors or undefined behavior.

• If an integer is cast to a pointer, the resulting pointer can be incorrectly aligned. The incorrect
alignment causes undefined behavior.

• If a pointer is cast to an integer, the resulting value can be outside the allowed range for the
integer type.

Polyspace Implementation

Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Casts between pointer and integer

#include <stdbool.h>

typedef unsigned char uint8_t;
typedef char char_t;
typedef unsigned short uint16_t;
typedef signed int int32_t;

typedef _Bool bool_t;
uint8_t *PORTA = (uint8_t *) 0x0002; /* Non-compliant */

void foo(void) {

 char_t c = 1;
 char_t *pc = &c; /* Compliant */

 uint16_t ui16 = 7U;
 uint16_t *pui16 = &ui16; /* Compliant */
 pui16 = (uint16_t *) ui16; /* Non-compliant */

 uint16_t *p;

 MISRA C:2012 Rule 11.4

6-143

 int32_t addr = (int32_t) p; /* Non-compliant */
 bool_t b = (bool_t) p; /* Non-compliant */
 enum etag { A, B } e = (enum etag) p; /* Non-compliant */
}

In this example, the rule is violated when:

• The integer 0x0002 is cast to a pointer.

If the integer defines an absolute address, it is more common to assign the address to a pointer in
a header file. To avoid the assignment being flagged, you can then exclude headers files from
coding rules checking. For more information, see Do not generate results for (-do-not-
generate-results-for).

• The pointer p is cast to integer types such as int32_t, bool_t or enum etag.

The rule is not violated when the address &ui16 is assigned to a pointer.

Check Information
Group: Pointer Type Conversions
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 11.3 | MISRA C:2012 Rule 11.7 | MISRA C:2012 Rule 11.9 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-144

MISRA C:2012 Rule 11.5
A conversion should not be performed from pointer to void into pointer to object

Description
Rule Definition

A conversion should not be performed from pointer to void into pointer to object.

Rationale

If a pointer to void is cast into a pointer to an object, the resulting pointer can be incorrectly
aligned. The incorrect alignment causes undefined behavior. However, such a cast can sometimes be
necessary, for example, when using memory allocation functions.

Polyspace Implementation

Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Cast from Pointer to void

void foo(void) {

 unsigned int u32a = 0;
 unsigned int *p32 = &u32a;
 void *p;
 unsigned int *p16;

 p = p32; /* Compliant - pointer to uint32_t
 * into pointer to void */
 p16 = p; /* Non-compliant */

 p = (void *) p16; /* Compliant */
 p32 = (unsigned int *) p; /* Non-compliant */
}

In this example, the rule is violated when the pointer p of type void* is cast to pointers to other
types.

The rule is not violated when p16 and p32, which are pointers to non-void types, are cast to void*.

Check Information
Group: Pointer Type Conversions
Category: Advisory
AGC Category: Advisory

 MISRA C:2012 Rule 11.5

6-145

See Also
MISRA C:2012 Rule 11.2 | MISRA C:2012 Rule 11.3 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-146

MISRA C:2012 Rule 11.6
A cast shall not be performed between pointer to void and an arithmetic type

Description
Rule Definition

A cast shall not be performed between pointer to void and an arithmetic type.

Rationale

Conversion between integer types and pointers to void can cause errors or undefined behavior.

• If an integer type is cast to a pointer, the resulting pointer can be incorrectly aligned. The
incorrect alignment causes undefined behavior.

• If a pointer is cast to an arithmetic type, the resulting value can be outside the allowed range for
the type.

Conversion between non-integer arithmetic types and pointers to void is undefined.

Polyspace Implementation

Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Casts Between Pointer to void and Arithmetic Types

void foo(void) {

 void *p;
 unsigned int u;
 unsigned short r;

 p = (void *) 0x1234u; /* Non-compliant - undefined */
 u = (unsigned int) p; /* Non-compliant - undefined */

 p = (void *) 0; /* Compliant - Exception */

}

In this example, p is a pointer to void. The rule is violated when:

• An integer value is cast to p.
• p is cast to an unsigned int type.

The rule is not violated if an integer constant with value 0 is cast to a pointer to void.

 MISRA C:2012 Rule 11.6

6-147

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-148

MISRA C:2012 Rule 11.7
A cast shall not be performed between pointer to object and a non-integer arithmetic type

Description
Rule Definition

A cast shall not be performed between pointer to object and a non-integer arithmetic type.

Rationale

This rule covers types that are essentially Boolean, character, enum or floating.

• If an essentially Boolean, character or enum variable is cast to a pointer, the resulting pointer can
be incorrectly aligned. The incorrect alignment causes undefined behavior. If a pointer is cast to
one of those types, the resulting value can be outside the allowed range for the type.

• Casts to or from a pointer to a floating type results in undefined behavior.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Casts from Pointer to Non-Integer Arithmetic Types

int foo(void) {

 short *p;
 float f;
 long *l;

 f = (float) p; /* Non-compliant */
 p = (short *) f; /* Non-compliant */

 l = (long *) p; /* Compliant */
}

In this example, the rule is violated when:

• The pointer p is cast to float.
• A float variable is cast to a pointer to short.

Casting between a pointer and a non-integerer variable might cause a compilation failure. Polyspace
flags such casts.

The rule is not violated when the pointer p is cast to long*.

Check Information
Group: Pointer Type Conversions

 MISRA C:2012 Rule 11.7

6-149

Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 11.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-150

MISRA C:2012 Rule 11.8
A cast shall not remove any const or volatile qualification from the type pointed to by a pointer

Description
Rule Definition

A cast shall not remove any const or volatile qualification from the type pointed to by a pointer.

Rationale

This rule forbids:

• Casts from a pointer to a const object to a pointer that does not point to a const object.
• Casts from a pointer to a volatile object to a pointer that does not point to a volatile object.

Such casts violate type qualification. For example, the const qualifier indicates the read-only status
of an object. If a cast removes the qualifier, the object is no longer read-only.

Polyspace Implementation

Polyspace flags both implicit and explicit conversions that violate this rule.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Casts That Remove Qualifiers

void foo(void) {

 /* Cast on simple type */
 unsigned short x;
 unsigned short * const cpi = &x; /* const pointer */
 unsigned short * const *pcpi; /* pointer to const pointer */
 unsigned short **ppi;
 const unsigned short *pci; /* pointer to const */
 volatile unsigned short *pvi; /* pointer to volatile */
 unsigned short *pi;

 pi = cpi; /* Compliant - no cast required */
 pi = (unsigned short *) pci; /* Non-compliant */
 pi = (unsigned short *) pvi; /* Non-compliant */
 ppi = (unsigned short **)pcpi; /* Non-compliant */
}

In this example:

• The variables pci and pcpi have the const qualifier in their type. The rule is violated when the
variables are cast to types that do not have the const qualifier.

 MISRA C:2012 Rule 11.8

6-151

• The variable pvi has a volatile qualifier in its type. The rule is violated when the variable is
cast to a type that does not have the volatile qualifier.

Even though cpi has a const qualifier in its type, the rule is not violated in the statement p=cpi;.
The assignment does not cause a type conversion because both p and cpi have type unsigned
short.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 11.3 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-152

MISRA C:2012 Rule 11.9
The macro NULL shall be the only permitted form of integer null pointer constant

Description
Rule Definition

The macro NULL shall be the only permitted form of integer null pointer constant.

Rationale

The following expressions allow the use of a null pointer constant:

• Assignment to a pointer
• The == or != operation, where one operand is a pointer
• The ?: operation, where one of the operands on either side of : is a pointer

Using NULL rather than 0 makes it clear that a null pointer constant was intended.

Polyspace Implementation

The checker flags the assignment of the constant zero to pointers, equalities (or inequalities)
comparing pointers with the constant zero, and other similar expressions listed in the MISRA C: 2012
documentation.

Following the updates in MISRA C: 2012 Technical Corrigendum 1, the checker allows the use of {0}
to initialize aggregates containing only pointers, for instance, arrays of pointers or structures (or
unions) with only a pointer field. If an aggregate contains multiple fields, the initialization is still
flagged. In these cases, you should use the macro NULL for pointer fields and 0 for integer fields to
distinguish between them.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Using 0 in Pointer Assignments and Comparisons

void main(void) {

 int *p1 = 0; /* Non-compliant */
 int *p2 = (void *) 0; /* Compliant */

#define MY_NULL_1 0 /* Non-compliant */
#define MY_NULL_2 (void *) 0

 if (p1 == MY_NULL_1)
 { }
 if (p2 == MY_NULL_2) /* Compliant */
 { }

 MISRA C:2012 Rule 11.9

6-153

}

In this example, the rule is violated when the constant 0 is used instead of (void*) 0 for pointer
assignments and comparisons.

Initialization of Aggregates with Pointer Members Using {0}

void init () {
 int *myArray[5] = {0}; //Compliant

 struct structPtr {
 int *ptr;
 } structPtr = {0}; //Compliant

 struct StructIntPtr {
 int data;
 int *ptr;
 } StructIntPtr = {0,0}; //Non-compliant
}

Following the updates in MISRA C: 2012 Technical Corrigendum 1, the checker allows the use of {0}
to initialize aggregates containing only pointers such as:

• Arrays of pointers, for instance, myArray
• Structures with one pointer field only, for instance, structPtr

If an aggregate contains multiple fields, such as StructIntPtr, the initialization is still flagged. In
these cases, you should use the macro NULL for pointer fields and 0 for integer fields to distinguish
between them.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Readability

See Also
MISRA C:2012 Rule 11.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-154

MISRA C:2012 Rule 12.1
The precedence of operators within expressions should be made explicit

Description
Rule Definition

The precedence of operators within expressions should be made explicit.

Rationale

The C language has a large number of operators and their precedence is not intuitive. Inexperienced
programmers can easily make mistakes. Remove any ambiguity by using parentheses to explicitly
define operator precedence.

The following table list the MISRA C definition of operator precedence for this rule.

Description Operator and Operand Preceden
ce

Primary identifier, constant, string literal, (expression) 16
Postfix [] () (function call) . -> ++(post-increment) --(post-

decrement) () {}(C99: compound literals)
15

Unary ++(pre-increment) --(pre-decrement) & * + - ~ ! sizeof
_Alignof defined (preprocessor)

14

Cast () 13
Multiplicative * / % 12
Additive + - 11
Bitwise shift << >> 10
Relational <> <= >= 9
Equality == != 8
Bitwise AND & 7
Bitwise XOR ^ 6
Bitwise OR | 5
Logical AND && 4
Logical OR || 3
Conditional ?: 2
Assignment = *= /= += -= <<= >>= &= ^= |= 1
Comma , 0

Additional Message in Report

Operand of logical %s is not a primary expression. The precedence of operators within expressions
should be made explicit.

 MISRA C:2012 Rule 12.1

6-155

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Ambiguous Precedence in Multi-Operation Expressions

int a, b, c, d, x;

void foo(void) {
 x = sizeof a + b; /* Non-compliant - MISRA-12.1 */

 x = a == b ? a : a - b; /* Non-compliant - MISRA-12.1 */

 x = a << b + c ; /* Non-compliant - MISRA-12.1 */

 if (a || b && c) { } /* Non-compliant - MISRA-12.1 */

 if ((a>x) && (b>x) || (c>x)) { } /* Non-compliant - MISRA-12.1 */
}

This example shows various violations of MISRA rule 12.1. In each violation, if you do not know the
order of operations, the code could execute unexpectedly.

Correction — Clarify With Parentheses

To comply with this MISRA rule, add parentheses around individual operations in the expressions.
One possible solution is shown here.

int a, b, c, d, x;

void foo(void) {
 x = sizeof(a) + b;

 x = (a == b) ? a : (a - b);

 x = a << (b + c);

 if ((a || b) && c) { }

 if (((a>x) && (b>x)) || (c>x)) { }
}

Ambiguous Precedence In Preprocessing Expressions

if defined X && X + Y > Z /* Non-compliant - MISRA-12.1 */
endif

In this example, a violation of MISRA rule 12.1 is shown in preprocessing code. In this violation, if
you do not know the correct order of operations, the results can be unexpected and cause problems.

Correction — Clarify with Parentheses

To comply with this MISRA rule, add parentheses around individual operations in the expressions.
One possible solution is shown here.

6 MISRA C 2012

6-156

if defined (X) && ((X + Y) > Z)
endif

Compliant Expressions Without Parentheses

int a, b, c, x,i = 0;
struct {int a; } s, *ps, *pp[2];

void foo(void) {
 ps = &s;
 pp[i]-> a; /* Compliant - no need to write (pp[i])->a */
 ps++; / Compliant - no need to write *(p++) */

 x = f (a + b, c); /* Compliant - no need to write f ((a+b),c) */

 x = a, b; /* Compliant - parsed as (x = a), b */

 if (a && b && c){ /* Compliant - all operators have
 * the same precedence */
 }
}

In this example, the expressions shown have multiple operations. However, these expressions are
compliant because operator precedence is already clear.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 12.2 | MISRA C:2012 Rule 12.3 | MISRA C:2012 Rule 12.4 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 12.1

6-157

MISRA C:2012 Rule 12.2
The right hand operand of a shift operator shall lie in the range zero to one less than the width in bits
of the essential type of the left hand operand

Description
Rule Definition

The right hand operand of a shift operator shall lie in the range zero to one less than the width in bits
of the essential type of the left hand operand.

Rationale

Consider this statement:

var = abc << num;

If abc is a 16-bit integer, then num must be in the range 0–15, (nonnegative and less than 16). If num
is negative or greater than 16, then the shift behavior is undefined.

Polyspace Implementation

Polyspace raises a violation when the right operand of a shift operator exceeds the range defined in
this rule. When the right operand is a variable, the violation is raised unless all possible value of the
operand remains within the range defined in this rule.

In Polyspace, the numbers that are manipulated in preprocessing directives are 64 bits wide. The
valid shift range is between 0 and 63. When bitfields are within a complex expression, Polyspace
extends this check onto the bitfield field width or the width of the base type.

Additional Message in Report

• Shift amount is bigger than size.
• Shift amount is negative.
• The right operand of a shift operator shall lie in the range zero to one less than the width in bits of

the essential type of the left operand.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Avoid Shift Operations That Have Unacceptable Right Operand

void foo(void) {
 int i;
 unsigned int BitPack = 0U;

 for (i = 0; i < 32; i++) {
 BitPack |= (1U << ((unsigned int)i)); //Noncompliant

6 MISRA C 2012

6-158

 }
}

In this example, the left operand 1U of the shift operator has an essential type unsigned char.
Acceptable values for the right operand lies in the range from zero to seven. Because the right
operand i ranges from zero to 31, Polyspace flags the shift operation.

Check Information
Group: Expressions
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 12.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 12.2

6-159

MISRA C:2012 Rule 12.3
The comma operator should not be used

Description
Rule Definition

The comma operator should not be used.

Rationale

The comma operator can be detrimental to readability. You can often write the same code in another
form.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Comma Usage in C Code

typedef signed int abc, xyz, jkl;
static void func1 (abc, xyz, jkl); /* Compliant - case 1 */
int foo(void)
{
 volatile int rd = 1; /* Compliant - case 2*/
 int var=0, foo=0, k=0, n=2, p, t[10]; /* Compliant - case 3*/
 int abc = 0, xyz = abc + 1; /* Compliant - case 4*/
 int jkl = (abc + xyz, abc + xyz); /* Noncompliant - case 1*/
 var = 1, foo += var, n = 3; /* Noncompliant - case 2*/
 var = (n = 1, foo = 2); /* Noncompliant - case 3*/
 for (int *ptr = &t[0],var = 0 ;
 var < n; ++var, ++ptr){} /* Noncompliant - case 4*/
 if ((abc,xyz)<0) { return 1; } /* Noncompliant - case 5*/
}

In this example, the code shows various uses of commas in C code.

Noncompliant Cases

Case Reason for noncompliance
1 When reading the code, it is not immediately obvious what jkl is

initialized to. For example, you could infer that jkl has a value abc+xyz,
(abc+xyz)*(abc+xyz), f((abc+xyz),(abc+xyz)), and so on.

2 When reading the code, it is not immediately obvious whether foo has a
value 0 or 1 after the statement.

3 When reading the code, it is not immediately obvious what value is
assigned to var.

6 MISRA C 2012

6-160

Case Reason for noncompliance
4 When reading the code, it is not immediately obvious which values control

the for loop.
5 When reading the code, it is not immediately obvious whether the if

statement depends on abc, xyz, or both.

Compliant Cases

Case Reason for compliance
1 Using commas to call functions with variables is allowed.
2 Comma operator is not used.
3 & 4 When using the comma for initialization, the variables and their values

are immediately obvious.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 12.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 12.3

6-161

MISRA C:2012 Rule 12.4
Evaluation of constant expressions should not lead to unsigned integer wrap-around

Description
Rule Definition

Evaluation of constant expressions should not lead to unsigned integer wrap-around.

Rationale

Unsigned integer expressions do not strictly overflow, but instead wraparound. Although there may
be good reasons to use modulo arithmetic at run time, intentional use at compile time is less likely.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 12.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-162

MISRA C:2012 Rule 12.5
The sizeof operator shall not have an operand which is a function parameter declared as “array of
type”

Description
Rule Definition

The sizeof operator shall not have an operand which is a function parameter declared as “array of
type”.

This rule comes from MISRA C: 2012 Amendment 1.

Rationale

The sizeof operator acting on an array normally returns the array size in bytes. For instance, in the
following code, sizeof(arr) returns the size of arr in bytes.

int32_t arr[4];
size_t numberOfElements = sizeof (arr) / sizeof(arr[0]);

However, when the array is a function parameter, it degenerates to a pointer. The sizeof operator
acting on the array returns the corresponding pointer size and not the array size.

The use of sizeof operator on an array that is a function parameter typically indicates an
unintended programming error.

Additional Message in Report

The sizeof operator shall not have an operand which is a function parameter declared as “array of
type”.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Incorrect Use of sizeof Operator

#include <stdint.h>
int32_t glbA[] = { 1, 2, 3, 4, 5 };
void f (int32_t A[4])
{
 uint32_t numElements = sizeof(A) / sizeof(int32_t); /* Non-compliant */
 uint32_t numElements_glbA = sizeof(glbA) / sizeof(glbA[0]); /* Compliant */
}

In this example, the variable numElements always has the same value of 1, irrespective of the
number of members that appear to be in the array (4 in this case), because A has type int32_t *
and not int32_t[4].

 MISRA C:2012 Rule 12.5

6-163

The variable numElements_glbA has the expected vale of 5 because the sizeof operator acts on
the global array glbA.

Check Information
Group: Expressions
Category: Mandatory
AGC Category: Mandatory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

6 MISRA C 2012

6-164

MISRA C:2012 Rule 13.1
Initializer lists shall not contain persistent side effects

Description
Rule Definition

Initializer lists shall not contain persistent side effects.

Rationale

C99 permits initializer lists with expressions that can be evaluated only at run-time. However, the
order in which elements of the list are evaluated is not defined. If one element of the list modifies the
value of a variable which is used in another element, the ambiguity in order of evaluation causes
undefined values. Therefore, this rule requires that expressions occurring in an initializer list cannot
modify the variables used in them.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Initializers with Persistent Side Effect

volatile int v;
int x;
int y;

void f(void) {
 int arr[2] = {x+y,x-y}; /* Compliant */
 int arr2[2] = {v,0}; /* Non-compliant */
 int arr3[2] = {x++,y}; /* Non-compliant */
}

In this example, the rule is not violated in the first initialization because the initializer does not
modify either x or y. The rule is violated in the other initializations.

• In the second initialization, because v is volatile, the initializer can modify v.
• In the third initialization, the initializer modifies the variable x.

Check Information
Group: Side Effects
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 13.2 | Check MISRA C:2012 (-misra3)

 MISRA C:2012 Rule 13.1

6-165

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-166

MISRA C:2012 Rule 13.2
The value of an expression and its persistent side effects shall be the same under all permitted
evaluation orders

Description
Rule Definition

The value of an expression and its persistent side effects shall be the same under all permitted
evaluation orders.

Rationale

If an expression results in different values depending on the order of evaluation, its value becomes
implementation-defined.

Polyspace Implementation

Polyspace raises a violation if an expression satisfies any of these conditions:

• The same variable is modified more than once in the expression or it is both read and written.
• The expression allows more than one order of evaluation.
• The expression contains a single volatile object that occurs multiple times.
• The expression contains more than one volatile object.

Because volatile objects can change their value at anytime, an expression containing multiple
volatile variables or multiple instances of the same volatile variable might have different
results depending on the order of evaluation.

Additional Message in Report

The value of 'XX' depends on the order of evaluation. The value of volatile 'XX' depends on the order
of evaluation because of multiple accesses.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Variable Modified More Than Once in Expression

int a[10], b[10];
#define COPY_ELEMENT(index) (a[(index)]=b[(index)])/* Noncompliant */

void main () {
 int i=0, k=0;

 COPY_ELEMENT (k); /* Compliant */
 COPY_ELEMENT (i++);}

 MISRA C:2012 Rule 13.2

6-167

In this example, the rule is violated by the statement COPY_ELEMENT(i++) because i++ occurs twice
and the order of evaluation of the two expressions is unspecified.

Variable Modified and Used in Multiple Function Arguments
void f (unsigned int param1, unsigned int param2) {}

void main () {
 unsigned int i=0;
 f (i++, i); /* Non-compliant */
}

In this example, the rule is violated because it is unspecified whether the operation i++ occurs before
or after the second argument is passed to f. The call f(i++,i) can translate to either f(0,0) or
f(0,1).

Multiple volatile Variables in Expression
struct {
 volatile float x;
 volatile float y;
} volData;

float xCopy;
float yCopy;
float res, res2;

void function4(void) {
 res = volData.x + volData.y; //Noncompliant
 res = volData.x * volData.x; //Noncompliant
 xCopy = volData.x;
 yCopy = volData.y;
 res = xCopy + yCopy; //Compliant
}

In this example, the expression volData.x + volData.y is noncompliant because the expression
involves multiple volatile objects. The expression consists of three operations: accessing the value of
volData.x, accessing the value of volData.y, and the addition. The values of the volatile fields x
and y in the volData structure might change at any time. The value of res might vary depending on
which variable is read first. Because the C standard does not specify the order in which the variables
are read, the value of res might depend on the hardware and software that you use. Polyspace flags
one of the volatile objects in the expression. Similarly, Polyspace flags one of the volatile
objects in the expression volData.x * volData.x.

To avoid the violation, assign the volatile variables to nonvolatile temporary variables and use these
temporary variables in the expression.

Check Information
Group: Side Effects
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Dir 4.9 | MISRA C:2012 Rule 13.1 | MISRA C:2012 Rule 13.3 | MISRA
C:2012 Rule 13.4 | Check MISRA C:2012 (-misra3)

6 MISRA C 2012

6-168

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.2

6-169

MISRA C:2012 Rule 13.3
A full expression containing an increment (++) or decrement (--) operator should have no other
potential side effects other than that caused by the increment or decrement operator

Description
Rule Definition

A full expression containing an increment (++) or decrement (--) operator should have no other
potential side effects other than that caused by the increment or decrement operator.

Rationale

The rule is violated if the following happens in the same line of code:

• The increment or decrement operator acts on a variable.
• Another read or write operation is performed on the variable.

For example, the line y=x++ violates this rule. The ++ and = operator both act on x.

Although the operator precedence rules determine the order of evaluation, placing the ++ and
another operator in the same line can reduce the readability of the code.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Increment Operator Used in Expression with Other Side Effects

int input(void);
int choice(void);
int operation(int, int);

int func() {
 int x = input(), y = input(), res;
 int ch = choice();
 if (choice == -1)
 return(x++); /* Non-compliant */
 if (choice == 0) {
 res = x++ + y++; /* Non-compliant */
 return(res);
 }
 else if (choice == 1) {
 x++; /* Compliant */
 y++; /* Compliant */
 return (x+y);
 }
 else {
 res = operation(x++,y); /* Non-compliant */
 return(res);

6 MISRA C 2012

6-170

 }
}

In this example, the rule is violated when the expressions containing the ++ operator have side effects
other than that caused by the operator. For example, in the expression return(x++), the other side-
effect is the return operation.

Check Information
Group: Side Effects
Category: Advisory
AGC Category: Readability

See Also
MISRA C:2012 Rule 13.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.3

6-171

MISRA C:2012 Rule 13.4
The result of an assignment operator should not be used

Description
Rule Definition

The result of an assignment operator should not be used.

Rationale

The rule is violated if the following happens in the same line of code:

• The assignment operator acts on a variable.
• Another read or operation is performed on the result of the assignment.

For example, the line a[x]=a[x=y]; violates this rule. The [] operator acts on the result of the
assignment x=y.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Result of Assignment Used
int x, y, b, c, d;
int a[10];
unsigned int bool_var, false=0, true=1;

int foo(void) {

 x = y; /* Compliant - x is not used */

 a[x] = a[x = y]; /* Non-compliant - Value of x=y is used */

 if (bool_var = false)/* Non-compliant - bool_var=false is used */
{}

 if (bool_var == false) {} /* Compliant */

 if ((0u == 0u) || (bool_var = true))/* Non-compliant */
 /*- even though (bool_var=true) is not evaluated */
 {}

 if ((x = f ()) != 0)/* Non-compliant - value of x=f() is used */
 {}
 a[b += c] = a[b];/* Non-compliant - value of b += c is used */
 b = c = d = 0; /* Non-compliant - value of d=0 and c=d=0 are used */

6 MISRA C 2012

6-172

}

In this example, the rule is violated when the result of an assignment is used.

Check Information
Group: Side Effects
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 13.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.4

6-173

MISRA C:2012 Rule 13.5
The right hand operand of a logical && or || operator shall not contain persistent side effects

Description
Rule Definition

The right hand operand of a logical && or || operator shall not contain persistent side effects.

Rationale

The right operand of an || operator is not evaluated if the left operand is true. The right operand of
an && operator is not evaluated if the left operand is false. In these cases, if the right operand
modifies the value of a variable, the modification does not take place. Following the operation, if you
expect a modified value of the variable, the modification might not always happen.

Polyspace Implementation

• For this rule, Polyspace considers that a function call does not have a persistent side effect if the
function body is not present in the same file as the function call.

If a call to a pure function is flagged, before ignoring this rule violation, make sure that the
function has no side effects. For instance, floating-point functions such as abs() seem to only
return a value and have no other side effect. However, these functions make use of the FPU
Register Stack and can have side-effects in certain architectures, for instance, certain Intel®
architectures.

• If the right operand is a volatile variable, Polyspace does not flag this as a rule violation.

Additional Message in Report

The right hand operand of a && operator shall not contain side effects. The right hand operand of a ||
operator shall not contain side effects.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Right Operand of Logical Operator with Persistent Side Effects

int check (int arg) {
 static int count;
 if(arg > 0) {
 count++; /* Persistent side effect */
 return 1;
 }
 else
 return 0;
}

6 MISRA C 2012

6-174

int getSwitch(void);
int getVal(void);

void main(void) {
 int val = getVal();
 int mySwitch = getSwitch();
 int checkResult;

 if(mySwitch && check(val)) { /* Non-compliant */
 }

 checkResult = check(val);
 if(checkResult && mySwitch) { /* Compliant */
 }

 if(check(val) && mySwitch) { /* Compliant */
 }
}

In this example, the rule is violated when the right operand of the && operation contains a function
call. The function call has a persistent side effect because the static variable count is modified in the
function body. Depending on mySwitch, this modification might or might not happen.

The rule is not violated when the left operand contains a function call. Alternatively, to avoid the rule
violation, assign the result of the function call to a variable. Use this variable in the logical operation
in place of the function call.

In this example, the function call has the side effect of modifying a static variable. Polyspace flags
all function calls when used on the right-hand side of a logical && or || operator, even when the
function does not have a side effect. Manually inspect your function body to see if it has side effects.
If the function does not have side effects, add a comment and justification in your Polyspace result
explaining why you retained your code.

Check Information
Group: Side Effects
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.5

6-175

MISRA C:2012 Rule 13.6
The operand of the sizeof operator shall not contain any expression which has potential side effects

Description
Rule Definition

The operand of the sizeof operator shall not contain any expression which has potential side effects.

Rationale

The argument of a sizeof operator is usually not evaluated at run time. If the argument is an
expression, you might wrongly expect that the expression is evaluated.

Polyspace Implementation

The rule is not violated if the argument is a volatile variable.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Expressions in sizeof Operator

#include <stddef.h>
int x;
int y[40];
struct S {
 int a;
 int b;
};
struct S myStruct;

void main() {
 size_t sizeOfType;
 sizeOfType = sizeof(x); /* Compliant */
 sizeOfType = sizeof(y); /* Compliant */
 sizeOfType = sizeof(myStruct); /* Compliant */
 sizeOfType = sizeof(x++); /* Non-compliant */
}

In this example, the rule is violated when the expression x++ is used as argument of sizeof
operator.

Check Information
Group: Side Effects
Category: Mandatory
AGC Category: Mandatory

6 MISRA C 2012

6-176

See Also
MISRA C:2012 Rule 18.8 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.6

6-177

MISRA C:2012 Rule 14.1
A loop counter shall not have essentially floating type

Description
Rule Definition

A loop counter shall not have essentially floating type.

Rationale

When using a floating-point loop counter, accumulation of rounding errors can result in a mismatch
between the expected and actual number of iterations. This rounding error can happen when a loop
step that is not a power of the floating point radix is rounded to a value that can be represented by a
float.

Even if a loop with a floating-point loop counter appears to behave correctly on one implementation,
it can give a different number of iteration on another implementation.

Polyspace Implementation

If the for index is a variable symbol, Polyspace checks that it is not a float.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
for Loop Counters

int main(void){
 unsigned int counter = 0u;
 int result = 0;
 float foo;

 // Float loop counters
 for(float foo = 0.0f; foo < 1.0f; foo +=0.001f){/* Non-compliant*/
 ++counter;
 }

 float fff = 0.0f;
 for(fff = 0.0f; fff <12.0f; fff += 1.0f){/* Non-compliant*/
 result++;
 }

 // Integer loop count
 for(unsigned int count = 0u; count < 1000u; ++count){/* Compliant */
 foo = (float) count * 0.001f;
 }
}

6 MISRA C 2012

6-178

In this example, the three for loops show three different loop counters. The first and second for
loops use float variables as loop counters, and therefore are not compliant. The third loop uses the
integer count as the loop counter. Even though count is used as a float inside the loop, the variable
remains an integer when acting as the loop index. Therefore, this for loop is compliant.

while Loop Counters

int main(void){
 unsigned int u32a;
 float foo;

 foo = 0.0f;
 while (foo < 1.0f){/* Non-compliant - foo used as a loop counter */
 foo += 0.001f;
 }

 foo = read_float32();
 do{
 u32a = read_u32();
 }while(((float)u32a - foo) > 10.0f);
 /* Compliant - foo doesn't change in the loop */
 /* so cannot be a counter */
 return 1;
}

This example shows two while loops both of which use foo in the while-loop conditions.

The first while loop uses foo in the condition and inside the loop. Because foo changes, floating-
point rounding errors can cause unexpected behavior.

The second while loop does not use foo inside the loop, but does use foo inside the while-
condition. So foo is not the loop counter. The integer u32a is the loop counter because it changes
inside the loop and is part of the while condition. Because u32a is an integer, the rounding error
issue is not a concern, making this while loop compliant.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 14.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 14.1

6-179

MISRA C:2012 Rule 14.2
A for loop shall be well-formed

Description
Rule Definition

A for loop shall be well-formed.

Rationale

The for loop provides a flexible looping facility. You can perform other operations besides the loop
counter initialization, termination, and increment in the control statement, and increment the loop
counter anywhere inside the loop body. However, using a restricted loop format makes your code
easier to review and to analyze.

Polyspace Implementation

A for loop consists of a control statement with three clauses and a loop body. The checker raises a
violation if:

• The first clause does not contain an initialization (except for when the clause is empty). The
checker considers the last assigned variable of the first for-loop clause as the loop counter. If the
first clause is empty, the checker considers the variable incremented or decremented in the third
clause as the loop counter.

• The second clause does not contain a comparison operation involving the loop counter.
• The third clause contains an operation other than incrementing or decrementing the loop counter

(separated by a comma from the increment or decrement).
• The loop counter has a data type that is not an integer or a pointer type.
• The loop counter is incremented inside the loop body.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Altering the Loop Counter Inside the Loop

void foo(void){

 for(short index=0; index < 5; index++){ /* Non-compliant */
 index = index + 3; /* Altering the loop counter */
 }
}

In this example, the loop counter index changes inside the for loop. It is hard to determine when
the loop terminates.

6 MISRA C 2012

6-180

Correction — Use Another Variable to Terminate Early

One possible correction is to use an extra flag to terminate the loop early.

In this correction, the second clause of the for loop depends on the counter value, index < 5, and
upon an additional flag, !flag. With the additional flag, the for loop definition and counter remain
readable, and you can escape the loop early.

#define FALSE 0
#define TRUE 1

void foo(void){

 int flag = FALSE;

 for(short index=0; (index < 5) && !flag; index++){ /* Compliant */
 if((index % 4) == 0){
 flag = TRUE; /* allows early termination of loop */
 }
 }
}

for Loops With Empty Clauses

void foo(void){
 for(short index = 0; ; index++) {} /* Non-compliant */

 for(short index = 0; index < 10;) {} /* Non-compliant */

 short index;
 for(; index < 10;) {} /* Non-compliant */

 for(; index < 10; index++) {} /* Compliant */

 for(;;){}
 /* Compliant - Exception all three clauses can be empty */
}

This example shows for loops definitions with a variety of missing clauses. To be compliant, initialize
the first clause variable before the for loop (line 9). However, you cannot have a for loop without
the second or third clause.

The one exception is a for loop with all three clauses empty, so as to allow for infinite loops.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Readability

See Also
MISRA C:2012 Rule 14.1 | MISRA C:2012 Rule 14.3 | MISRA C:2012 Rule 14.4 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”

 MISRA C:2012 Rule 14.2

6-181

“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-182

MISRA C:2012 Rule 14.3
Controlling expressions shall not be invariant

Description
Rule Definition

Controlling expressions shall not be invariant.

Rationale

If the controlling expression, for example an if condition, has a constant value, the non-changing
value can point to a programming error.

Polyspace Implementation

The checker flags conditions in if or while statements or conditions that appear as the first
operands of ternary operators (?:) if the conditions are invariant, for instance, evaluate always to
true or false.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The analyses can
produce different results.

Polyspace Bug Finder flags some violations of MISRA C 14.3 through the Dead code and Useless
if checkers.

Polyspace Code Prover does not use gray code to flag MISRA C 14.3 violations. In Code Prover, you
can also see a difference in results based on your choice for the option Verification level (-
to). See “Check for Coding Standard Violations”.

Additional Message in Report

• Boolean operations whose results are invariant shall not be permitted.
• Expression is always true.
• Expression is always false.
• Controlling expressions shall not be invariant.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 2.1 | MISRA C:2012 Rule 14.2 | Check MISRA C:2012 (-misra3)

 MISRA C:2012 Rule 14.3

6-183

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-184

MISRA C:2012 Rule 14.4
The controlling expression of an if statement and the controlling expression of an iteration-statement
shall have essentially Boolean type

Description
Rule Definition

The controlling expression of an if statement and the controlling expression of an iteration-statement
shall have essentially Boolean type

Rationale

Strong typing requires the controlling expression on an if statement or iteration statement to have
essentially Boolean type.

Polyspace Implementation

Polyspace does not flag integer constants, for example if(2).

The analysis recognizes the Boolean types, bool or _Bool (defined in stdbool.h)

You can also define types that are essentially Boolean using the option Effective boolean types
(-boolean-types).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Controlling Expression in if, while, and for

#include <stdbool.h>
#include <stdlib.h>

#define TRUE 1

typedef _Bool bool_t;
extern bool_t flag;

void foo(void){
 int *p = 1;
 int *q = 0;
 int i = 0;
 while(p){} /* Non-compliant - p is a pointer */

 while(q != NULL){} /* Compliant */

 while(TRUE){} /* Compliant */

 while(flag){} /* Compliant */

 MISRA C:2012 Rule 14.4

6-185

 if(i){} /* Non-compliant - int32_t is not boolean */

 if(i != 0){} /* Compliant */

 for(int i=-10; i;i++){} /* Non-compliant - int32_t is not boolean */

 for(int i=0; i<10;i++){} /* Compliant */
}

This example shows various controlling expressions in while, if, and for statements.

The noncompliant statements (the first while, if, and for examples), use a single non-Boolean
variable. If you use a single variable as the controlling statement, it must be essentially Boolean (lines
17 and 19). Boolean expressions are also compliant with MISRA.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 14.2 | MISRA C:2012 Rule 20.8 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-186

MISRA C:2012 Rule 15.1
The goto statement should not be used

Description
Rule Definition

The goto statement should not be used.

Rationale

Unrestricted use of goto statements makes the program unstructured and difficult to understand.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Use of goto Statements

void foo(void) {
 int i = 0, result = 0;

label1:
 for (i; i < 5; i++) {
 if (i > 2) goto label2; /* Non-compliant */
 }

label2: {
 result++;
 goto label1; /* Non-compliant */
 }
}

In this example, the rule is violated when goto statements are used.

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule 15.4 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 15.1

6-187

Introduced in R2014b

6 MISRA C 2012

6-188

MISRA C:2012 Rule 15.2
The goto statement shall jump to a label declared later in the same function

Description
Rule Definition

The goto statement shall jump to a label declared later in the same function.

Rationale

Unrestricted use of goto statements makes the program unstructured and difficult to understand.
You can use a forward goto statement together with a backward one to implement iterations.
Restricting backward goto statements ensures that you use only iteration statements provided by the
language such as for or while to implement iterations. This restriction reduces visual complexity of
the code.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Use of Backward goto Statements
void foo(void) {
 int i = 0, result = 0;

label1:
 for (i; i < 5; i++) {
 if (i > 2) goto label2; /* Compliant */
 }

label2: {
 result++;
 goto label1; /* Non-compliant */
 }
}

In this example, the rule is violated when a goto statement causes a backward jump to label1.

The rule is not violated when a goto statement causes a forward jump to label2.

Check Information
Group: Control Flow
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule 15.4 | Check
MISRA C:2012 (-misra3)

 MISRA C:2012 Rule 15.2

6-189

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-190

MISRA C:2012 Rule 15.3
Any label referenced by a goto statement shall be declared in the same block, or in any block
enclosing the goto statement

Description
Rule Definition

Any label referenced by a goto statement shall be declared in the same block, or in any block
enclosing the goto statement.

Rationale

Unrestricted use of goto statements makes the program unstructured and difficult to understand.
Restricting use of goto statements to jump between blocks or into nested blocks reduces visual code
complexity.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
goto Statements Jump Inside Block

void f1(int a) {
 if(a <= 0) {
 goto L2; /* Non-compliant - L2 in different block*/
 }

 goto L1; /* Compliant - L1 in same block*/

 if(a == 0) {
 goto L1; /* Compliant - L1 in outer block*/
 }

 goto L2; /* Non-compliant - L2 in inner block*/

 L1: if(a > 0) {
 L2:;
 }
}

In this example, goto statements cause jumps to different labels. The rule is violated when:

• The label occurs in a block different from the block containing the goto statement.

The block containing the label neither encloses nor is enclosed by the current block.
• The label occurs in a block enclosed by the block containing the goto statement.

The rule is not violated when:

 MISRA C:2012 Rule 15.3

6-191

• The label occurs in the same block as the block containing the goto statement..
• The label occurs in a block that encloses the block containing the goto statement..

goto Statements in switch Block

void f2 (int x, int z) {
 int y = 0;

 switch(x) {
 case 0:
 if(x == y) {
 goto L1; /* Non-compliant - switch-clauses are treated as blocks */
 }
 break;
 case 1:
 y = x;
 L1: ++x;
 break;
 default:
 break;
 }

}

In this example, the label for the goto statement appears to occur in a block that encloses the block
containing the goto statement. However, for the purposes of this rule, the software considers that
each case statement begins a new block. Therefore, the goto statement violates the rule.

Check Information
Group: Control Flow
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule 15.4 | MISRA
C:2012 Rule 16.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-192

MISRA C:2012 Rule 15.4
There should be no more than one break or goto statement used to terminate any iteration statement

Description
Rule Definition

There should be no more than one break or goto statement used to terminate any iteration statement.

Rationale

If you use one break or goto statement in your loop, you have one secondary exit point from the
loop. Restricting number of exits from a loop in this way reduces visual complexity of your code.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
break Statements in Inner and Outer Loops

volatile int stop;

int func(int *arr, int size, int sat) {
 int i,j;
 int sum = 0;
 for (i=0; i< size; i++) { /* Compliant */
 if(sum >= sat)
 break;
 for (j=0; j< i; j++) { /* Compliant */
 if(stop)
 break;
 sum += arr[j];
 }
 }
}

In this example, the rule is not violated in both the inner and outer loop because both loops have one
break statement each.

break and goto Statements in Loop

volatile int stop;

void displayStopMessage();

int func(int *arr, int size, int sat) {
 int i;
 int sum = 0;
 for (i=0; i< size; i++) {
 if(sum >= sat)
 break;

 MISRA C:2012 Rule 15.4

6-193

 if(stop)
 goto L1; /* Non-compliant */
 sum += arr[i];
 }

 L1: displayStopMessage();
}

In this example, the rule is violated because the for loop has one break statement and one goto
statement.

goto Statement in Inner Loop and break Statement in Outer Loop

volatile int stop;

void displayMessage();

int func(int *arr, int size, int sat) {
 int i,j;
 int sum = 0;
 for (i=0; i< size; i++) {
 if(sum >= sat)
 break;
 for (j=0; j< i; j++) { /* Compliant */
 if(stop)
 goto L1; /* Non-compliant */
 sum += arr[i];
 }
 }

 L1: displayMessage();
}

In this example, the rule is not violated in the inner loop because you can exit the loop only through
the one goto statement. However, the rule is violated in the outer loop because you can exit the loop
through either the break statement or the goto statement in the inner loop.

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule 15.3 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-194

MISRA C:2012 Rule 15.5
A function should have a single point of exit at the end

Description
Rule Definition

A function should have a single point of exit at the end.

Rationale

This rule requires that a return statement must occur as the last statement in the function body.
Otherwise, the following issues can occur:

• Code following a return statement can be unintentionally omitted.
• If a function that modifies some of its arguments has early return statements, when reading the

code, it is not immediately clear which modifications actually occur.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
More Than One return Statement in Function
#define MAX ((unsigned int)2147483647)
#define NULL (void*)0

typedef unsigned int bool_t;
bool_t false = 0;
bool_t true = 1;

bool_t f1(unsigned short n, char *p) { /* Non-compliant */
 if(n > MAX) {
 return false;
 }

 if(p == NULL) {
 return false;
 }

 return true;
}

In this example, the rule is violated because there are three return statements.
Correction — Use Variable to Store Return Value

One possible correction is to store the return value in a variable and return this variable just before
the function ends.

#define MAX ((unsigned int)2147483647)
#define NULL (void*)0

 MISRA C:2012 Rule 15.5

6-195

typedef unsigned int bool_t;
bool_t false = 0;
bool_t true = 1;
bool_t return_value;

bool_t f2 (unsigned short n, char *p) { /* Compliant */
 return_value = true;
 if(n > MAX) {
 return_value = false;
 }

 if(p == NULL) {
 return_value = false;
 }

 return return_value;
}

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 17.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-196

MISRA C:2012 Rule 15.6
The body of an iteration-statement or a selection-statement shall be a compound statement

Description
Rule Definition

The body of an iteration-statement or a selection-statement shall be a compound- statement.

Rationale

If the block of code associated with an iteration or selection statement is not contained in braces, you
can make mistakes about the association. For example:

• You can wrongly associate a line of code with an iteration or selection statement because of its
indentation.

• You can accidentally place a semicolon following the iteration or selection statement. Because of
the semicolon, the line following the statement is no longer associated with the statement even
though you intended otherwise.

This checker enforces the practice of adding braces following a selection or iteration statement even
for a single line in the body. Later, when more lines are added, the developer adding them does not
need to note the absence of braces and include them.

Polyspace Implementation

The checker flags for loops where the first token following a for statement is not a left brace, for
instance:

for (i=init_val; i > 0; i--)
 if (arr[i] < 0)
 arr[i] = 0;

Similar checks are performed for if, else if, else, switch, for and do..while statements.

The second line of the message on the Result Details pane indicates which statement is violating the
rule. For instance, in the preceding example, there are two violations. The second line of the message
points to the for loop for one violation and the if condition for another.

Additional Message in Report

• The else keyword shall be followed by either a compound statement, or another if statement.
• An if (expression) construct shall be followed by a compound statement.
• The statement forming the body of a while statement shall be a compound statement.
• The statement forming the body of a do ... while statement shall be a compound statement.
• The statement forming the body of a for statement shall be a compound statement.
• The statement forming the body of a switch statement shall be a compound statement.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

 MISRA C:2012 Rule 15.6

6-197

Examples
Iteration Block
int data_available = 1;
void f1(void) {
 while(data_available) /* Non-compliant */
 process_data();

 while(data_available) { /* Compliant */
 process_data();
 }
}

In this example, the second while block is enclosed in braces and does not violate the rule.

Nested Selection Statements
#include<stdbool.h>
void f1(bool flag_1, bool flag_2) {
 if(flag_1) /* Non-compliant */
 if(flag_2) /* Non-compliant */
 action_1();
 else /* Non-compliant */
 action_2();
}

In this example, the rule is violated because the if or else blocks are not enclosed in braces. Unless
indented as above, it is easy to associate the else statement with the inner if.
Correction — Place Selection Statement Block in Braces

One possible correction is to enclose each block associated with an if or else statement in braces.

#include<stdbool.h>
void f1(bool flag_1, bool flag_2) {
 if(flag_1) { /* Compliant */
 if(flag_2) { /* Compliant */
 action_1();
 }
 }
 else { /* Compliant */
 action_2();
 }
}

Spurious Semicolon After Iteration Statement
#include<stdbool.h>
void f1(bool flag_1) {
 while(flag_1); /* Non-compliant */
 {
 flag_1 = action_1();
 }
}

In this example, the rule is violated even though the while statement is followed by a block in
braces. The semicolon following the while statement causes the block to dissociated from the while
statement.

6 MISRA C 2012

6-198

The rule helps detect such spurious semicolons.

Check Information
Group: Control Flow
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 15.6

6-199

MISRA C:2012 Rule 15.7
All if … else if constructs shall be terminated with an else statement

Description
Rule Definition

All if … else if constructs shall be terminated with an else statement.

Rationale

Unless there is a terminating else statement in an if...elseif...else construct, during code
review, it is difficult to tell if you considered all possible results for the if condition.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Missing else Block

#include<stdbool.h>
void action_1(void);
void action_2(void);

void f1(bool flag_1, bool flag_2) {
 if(flag_1) {
 action_1();
 }
 else if(flag_2) {/* Non-compliant */
 action_2();
 }
}

In this example, the rule is violated because the if ... else if construct does not have a
terminating else block.

Correction — Add else Block

To avoid the rule violation, add a terminating else block. This else block can, for instance, handle
exceptions or be empty.

#include<stdbool.h>
bool ERROR = 0;
void action_1(void);
void action_2(void);

void f1(bool flag_1, bool flag_2) {
 if(flag_1) {
 action_1();
 }
 else if(flag_2) {

6 MISRA C 2012

6-200

 action_2();
 }else{
 // Can be empty
 ERROR = 1;
 }
}

Check Information
Group: Control Flow
Category: Required
AGC Category: Readability

See Also
MISRA C:2012 Rule 16.5 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 15.7

6-201

MISRA C:2012 Rule 16.1
All switch statements shall be well-formed

Description
Rule Definition

All switch statements shall be well-formed

Rationale

The syntax for switch statements in C is not particularly rigorous and can allow complex,
unstructured behavior. This rule and other rules impose a simple consistent structure on the switch
statement.

Polyspace Implementation

Following the MISRA specifications, the coding rules checker also raises a violation of rule 16.1 if a
switch statement violates one of these rules: 16.2, 16.3, 16.4, 16.5 or 16.6.

Additional Message in Report

All messages in report file begin with "MISRA-C switch statements syntax normative restriction."

• Initializers shall not be used in switch clauses.
• The child statement of a switch shall be a compound statement.
• All switch clauses shall appear at the same level.
• A switch clause shall only contain switch labels and switch clauses, and no other code.
• A switch statement shall only contain switch labels and switch clauses, and no other code.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule 16.2 | MISRA C:2012 Rule 16.3 | MISRA
C:2012 Rule 16.4 | MISRA C:2012 Rule 16.5 | MISRA C:2012 Rule 16.6 | Check MISRA
C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-202

MISRA C:2012 Rule 16.2
A switch label shall only be used when the most closely-enclosing compound statement is the body of
a switch statement

Description
Rule Definition

A switch label shall only be used when the most closely-enclosing compound statement is the body of
a switch statement

Rationale

The C Standard permits placing a switch label (for instance, case or default) before any statement
contained in the body of a switch statement. This flexibility can lead to unstructured code. To prevent
unstructured code, make sure a switch label appears only at the outermost level of the body of a
switch statement.

Additional Message in Report

All messages in report file begin with "MISRA-C switch statements syntax normative restriction."

• Initializers shall not be used in switch clauses.
• The child statement of a switch shall be a compound statement.
• All switch clauses shall appear at the same level.
• A switch clause shall only contain switch labels and switch clauses, and no other code.
• A switch statement shall only contain switch labels and switch clauses, and no other code.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 16.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.2

6-203

MISRA C:2012 Rule 16.3
An unconditional break statement shall terminate every switch-clause

Description
Rule Definition

An unconditional break statement shall terminate every switch-clause

Rationale

A switch-clause is a case containing at least one statement. Two consecutive labels without an
intervening statement is compliant with MISRA.

If you fail to end your switch-clauses with a break statement, then control flow “falls” into the next
statement. This next statement can be another switch-clause, or the end of the switch. This behavior
is sometimes intentional, but more often it is an error. If you add additional cases later, an
unterminated switch-clause can cause problems.

Polyspace Implementation

Polyspace raises a warning for each noncompliant case clause.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 16.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-204

MISRA C:2012 Rule 16.4
Every switch statement shall have a default label

Description
Rule Definition

Every switch statement shall have a default label

Rationale

The requirement for a default label is defensive programming. Even if your switch covers all
possible values, there is no guarantee that the input takes one of these values. Statements following
the default label take some appropriate action. If the default label requires no action, use
comments to describe why there are no specific actions.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Switch Statement Without default

short func1(short xyz){

 switch(xyz){ /* Non-compliant - default label is required */
 case 0:
 ++xyz;
 break;
 case 1:
 case 2:
 break;
 }
 return xyz;
}

In this example, the switch statement does not include a default label, and is therefore
noncompliant.

Correction — Add default With Error Flag

One possible correction is to use the default label to flag input errors. If your switch-clauses cover
all expected input, then the default cases flags any input errors.

short func1(short xyz){
int errorflag = 0;
 switch(xyz){ /* Compliant */
 case 0:
 ++xyz;
 break;
 case 1:
 case 2:

 MISRA C:2012 Rule 16.4

6-205

 break;
 default:
 errorflag = 1;
 break;
 }
 if (errorflag == 1)
 return errorflag;
 else
 return xyz;
}

Switch Statement for Enumerated Inputs

enum Colors{
 RED, GREEN, BLUE
};

enum Colors func2(enum Colors color){
 enum Colors next;

 switch(color){ /* Non-compliant - default label is required */
 case RED:
 next = GREEN;
 break;
 case GREEN:
 next = BLUE;
 break;
 case BLUE:
 next = RED;
 break;
 }
 return next;
}

In this example, the switch statement does not include a default label, and is therefore
noncompliant. Even though this switch statement handles all values of the enumeration, there is no
guarantee that color takes one of the those values.

Correction — Add default

To be compliant, add the default label to the end of your switch. You can use this case to flag
unexpected inputs.

enum Colors{
 RED, GREEN, BLUE, ERROR
};

enum Colors func2(enum Colors color){
 enum Colors next;

 switch(color){ /* Compliant */
 case RED:
 next = GREEN;
 break;
 case GREEN:
 next = BLUE;
 break;
 case BLUE:

6 MISRA C 2012

6-206

 next = RED;
 break;
 default:
 next = ERROR;
 break;
 }

 return next;
}

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 2.1 | MISRA C:2012 Rule 16.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.4

6-207

MISRA C:2012 Rule 16.5
A default label shall appear as either the first or the last switch label of a switch statement

Description
Rule Definition

A default label shall appear as either the first or the last switch label of a switch statement.

Rationale

Using this rule, you can easily locate the default label within a switch statement.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Default Case in switch Statements

void foo(int var){

 switch(var){
 default: /* Compliant - default is the first label */
 case 0:
 ++var;
 break;
 case 1:
 case 2:
 break;
 }

 switch(var){
 case 0:
 ++var;
 break;
 default: /* Non-compliant - default is mixed with the case labels */
 case 1:
 case 2:
 break;
 }

 switch(var){
 case 0:
 ++var;
 break;
 case 1:
 case 2:
 default: /* Compliant - default is the last label */
 break;
 }

6 MISRA C 2012

6-208

 switch(var){
 case 0:
 ++var;
 break;
 case 1:
 case 2:
 break;
 default: /* Compliant - default is the last label */
 var = 0;
 break;
 }
}

This example shows the same switch statement several times, each with default in a different place.
As the first, third, and fourth switch statements show, default must be the first or last label.
default can be part of a compound switch-clause (for instance, the third switch example), but it
must be the last listed.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 15.7 | MISRA C:2012 Rule 16.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.5

6-209

MISRA C:2012 Rule 16.6
Every switch statement shall have at least two switch-clauses

Description
Rule Definition

Every switch statement shall have at least two switch-clauses.

Rationale

A switch statement with a single path is redundant and can indicate a programming error.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 16.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-210

MISRA C:2012 Rule 16.7
A switch-expression shall not have essentially Boolean type

Description
Rule Definition

A switch-expression shall not have essentially Boolean type

Rationale

The C Standard requires the controlling expression to a switch statement to have an integer type.
Because C implements Boolean values with integer types, it is possible to have a Boolean expression
control a switch statement. For controlling flow with Boolean types, an if-else construction is
more appropriate.

Polyspace Implementation

The analysis recognizes the Boolean types, bool or _Bool (defined in stdbool.h)

You can also define types that are essentially Boolean using the option Effective boolean types
(-boolean-types).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.7

6-211

MISRA C:2012 Rule 17.1
The features of <stdarg.h> shall not be used

Description
Rule Definition

The features of <stdarg.h> shall not be used..

Rationale

The rule forbids use of va_list, va_arg, va_start, va_end, and va_copy.

You can use these features in ways where the behavior is not defined in the Standard. For instance:

• You invoke va_start in a function but do not invoke the corresponding va_end before the
function block ends.

• You invoke va_arg in different functions on the same variable of type va_list.
• va_arg has the syntax type va_arg (va_list ap, type).

You invoke va_arg with a type that is incompatible with the actual type of the argument
retrieved from ap.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Use of va_start, va_list, va_arg, and va_end
#include<stdarg.h>
void f2(int n, ...) {
 int i;
 double val;
 va_list vl; /* Non-compliant */

 va_start(vl, n); /* Non-compliant */

 for(i = 0; i < n; i++)
 {
 val = va_arg(vl, double); /* Non-compliant */
 }

 va_end(vl); /* Non-compliant */
}

In this example, the rule is violated because va_start, va_list, va_arg and va_end are used.

Undefined Behavior of va_arg

#include <stdarg.h>

6 MISRA C 2012

6-212

void h(va_list ap) { /* Non-compliant */
 double y;

 y = va_arg(ap, double); /* Non-compliant */
}

void g(unsigned short n, ...) {
 unsigned int x;
 va_list ap; /* Non-compliant */

 va_start(ap, n); /* Non-compliant */
 x = va_arg(ap, unsigned int); /* Non-compliant */

 h(ap);

 /* Undefined - ap is indeterminate because va_arg used in h () */
 x = va_arg(ap, unsigned int); /* Non-compliant */

}

void f(void) {
 /* undefined - uint32_t:double type mismatch when g uses va_arg () */
 g(1, 2.0, 3.0);
}

In this example, va_arg is used on the same variable ap of type va_list in both functions g and h.
In g, the second argument is unsigned int and in h, the second argument is double. This type
mismatch causes undefined behavior.

Check Information
Group: Function
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 17.1

6-213

MISRA C:2012 Rule 17.2
Functions shall not call themselves, either directly or indirectly

Description
Rule Definition

Functions shall not call themselves, either directly or indirectly.

Rationale

Variables local to a function are stored in the call stack. If a function calls itself directly or indirectly
several times, the available stack space can be exceeded, causing serious failure. Unless the
recursion is tightly controlled, it is difficult to determine the maximum stack space required.

Polyspace Implementation

The checker reports each function that calls itself, directly or indirectly. Even if several functions are
involved in one recursion cycle, each function is individually reported.

You can calculate the total number of recursion cycles using the code complexity metric Number of
Recursions.

Additional Message in Report

Message in Report: Function XX is called indirectly by YY.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Direct and Indirect Recursion
void foo1(void) { /* Non-compliant - Indirect recursion foo1->foo2->foo1... */
 foo2();
 foo1(); /* Non-compliant - Direct recursion */
}

void foo2(void) { /* Non-compliant - Indirect recursion foo2->foo1->foo2... */
 foo1();
}

In this example, the rule is violated because of:

• Direct recursion foo1 → foo1.
• Indirect recursion foo1 → foo2 → foo1.
• Indirect recursion foo2 → foo1 → foo2.

Check Information
Group: Function

6 MISRA C 2012

6-214

Category: Required
AGC Category: Required

See Also
Number of Recursions | Number of Direct Recursions | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 17.2

6-215

MISRA C:2012 Rule 17.3
A function shall not be declared implicitly

Description
Rule Definition

A function shall not be declared implicitly.

Rationale

An implicit declaration occurs when you call a function before declaring or defining it. When you
declare a function explicitly before calling it, the compiler can match the argument and return types
with the parameter types in the declaration. If an implicit declaration occurs, the compiler makes
assumptions about the argument and return types. For instance, it assumes a return type of int. The
assumptions might not agree with what you expect and cause undesired type conversions.

Additional Message in Report

Function 'XX' has no complete visible prototype at call.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Function Not Declared Before Call

#include <math.h>

extern double power3 (double val, int exponent);
int getChoice(void);

double func() {
 double res;
 int ch = getChoice();
 if(ch == 0) {
 res = power(2.0, 10); /* Non-compliant */
 }
 else if(ch==1) {
 res = power2(2.0, 10); /* Non-compliant */
 }
 else {
 res = power3(2.0, 10); /* Compliant */
 return res;
 }
}

double power2 (double val, int exponent) {
 return (pow(val, exponent));
}

6 MISRA C 2012

6-216

In this example, the rule is violated when a function that is not declared is called in the code. Even if
a function definition exists later in the code, the rule violation occurs.

The rule is not violated when the function is declared before it is called in the code. If the function
definition exists in another file and is available only during the link phase, you can declare the
function in one of the following ways:

• Declare the function with the extern keyword in the current file.
• Declare the function in a header file and include the header file in the current file.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory

See Also
MISRA C:2012 Rule 8.2 | MISRA C:2012 Rule 8.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 17.3

6-217

MISRA C:2012 Rule 17.4
All exit paths from a function with non-void return type shall have an explicit return statement with
an expression

Description
Rule Definition

All exit paths from a function with non-void return type shall have an explicit return statement with
an expression.

Rationale

If a non-void function does not explicitly return a value but the calling function uses the return
value, the behavior is undefined. To prevent this behavior:

1 You must provide return statements with an explicit expression.
2 You must ensure that during run time, at least one return statement executes.

Additional Message in Report

Missing return value for non-void function 'XX'.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Missing Return Statement Along Certain Execution Paths

int absolute(int v) {
 if(v < 0) {
 return v;
 }
} // Non-compliant

In this example, the rule is violated because a return statement does not exist on all execution
paths. If v >= 0, then the control returns to the calling function without an explicit return value.

Return Statement Without Explicit Expression

#define SIZE 10
int table[SIZE];

unsigned short lookup(unsigned short v) {
 if((v < 0) || (v > SIZE)) {
 return; // Non-compliant
 }
 return table[v];
}

6 MISRA C 2012

6-218

In this example, the rule is violated because the return statement in the if block does not have an
explicit expression.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory

See Also
MISRA C:2012 Rule 15.5 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 17.4

6-219

MISRA C:2012 Rule 17.5
The function argument corresponding to a parameter declared to have an array type shall have an
appropriate number of elements

Description
Rule Definition

The function argument corresponding to a parameter declared to have an array type shall have an
appropriate number of elements.

Rationale

If you use an array declarator for a function parameter instead of a pointer, the function interface is
clearer because you can state the minimum expected array size. If you do not state a size, the
expectation is that the function can handle an array of any size. In such cases, the size value is
typically another parameter of the function, or the array is terminated with a sentinel value.

However, it is legal in C to specify an array size but pass an array of smaller size. This rule prevents
you from passing an array of size smaller than the size you declared.

Additional Message in Report

The function argument corresponding to a parameter declared to have an array type shall have an
appropriate number of elements.

The argument type has actual_size elements whereas the parameter type expects
expected_size elements.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Incorrect Array Size Passed to Function

void func(int arr[4]);

int main() {
 int arrSmall[3] = {1,2,3};
 int arr[4] = {1,2,3,4};
 int arrLarge[5] ={1,2,3,4,5};

 func(arrSmall); /* Non-compliant */
 func(arr); /* Compliant */
 func(arrLarge); /* Compliant */

 return 0;
}

6 MISRA C 2012

6-220

In this example, the rule is violated when arrSmall, which has size 3, is passed to func, which
expects at least 4 elements.

Check Information
Group: Functions
Category: Advisory
AGC Category: Readability

See Also
Check MISRA C:2012 (-misra3) | MISRA C:2012 Rule 17.6

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Rule 17.5

6-221

MISRA C:2012 Rule 17.6
The declaration of an array parameter shall not contain the static keyword between the []

Description
Rule Definition

The declaration of an array parameter shall not contain the static keyword between the [].

Rationale

If you use the static keyword within [] for an array parameter of a function, you can inform a C99
compiler that the array contains a minimum number of elements. The compiler can use this
information to generate efficient code for certain processors. However, in your function call, if you
provide less than the specified minimum number, the behavior is not defined.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Use of static Keyword Within [] in Array Parameter
extern int arr1[20];
extern int arr2[10];

unsigned int total (unsigned int n,
 unsigned int arr[static 20]) { // Non-compliant

 unsigned int i;
 unsigned int sum = 0;

 for (i=0U; i < n; i++) {
 sum+= arr[i];
 }

 return sum;
}

void func (void) {
 int res, res2;
 res = total (10U, arr1); //Undefined behavior
 res2 = total (20U, arr2);
}

In this example, the rule is violated when the static keyword is used within [] in the array
parameter of function total. Even if you call total with array arguments where the behavior is
well-defined, the rule violation occurs.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory

6 MISRA C 2012

6-222

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 17.6

6-223

MISRA C:2012 Rule 17.7
The value returned by a function having non-void return type shall be used

Description
Rule Definition

The value returned by a function having non-void return type shall be used.

Rationale

You can unintentionally call a function with a non-void return type but not use the return value.
Because the compiler allows the call, you might not catch the omission. This rule forbids calls to a
non-void function where the return value is not used. If you do not intend to use the return value of a
function, explicitly cast the return value to void.

Polyspace Implementation

The checker flags functions with non-void return if the return value is not used or not explicitly cast
to a void type.

The checker does not flag the functions memcpy, memset, memmove, strcpy, strncpy, strcat,
strncat because these functions simply return a pointer to their first arguments.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Used and Unused Return Values
unsigned int cutOff(unsigned int val) {
 if (val > 10 && val < 100) {
 return val;
 }
 else {
 return 0;
 }
}

unsigned int getVal(void);

void func2(void) {
 unsigned int val = getVal(), res;
 cutOff(val); /* Non-compliant */
 res = cutOff(val); /* Compliant */
 (void)cutOff(val); /* Compliant */
}

In this example, the rule is violated when the return value of cutOff is not used subsequently.

The rule is not violated when the return value is:

6 MISRA C 2012

6-224

• Assigned to another variable.
• Explicitly cast to void.

Check Information
Group: Function
Category: Required
AGC Category: Readability

See Also
MISRA C:2012 Rule 2.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 17.7

6-225

MISRA C:2012 Rule 17.8
A function parameter should not be modified

Description
Rule Definition

A function parameter should not be modified.

Rationale

When you modify a parameter, the function argument corresponding to the parameter is not modified.
However, you or another programmer unfamiliar with C can expect by mistake that the argument is
also modified when you modify the parameter.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Function Parameter Modified

int input(void);

void func(int param1, int* param2) {

 param1 = input(); /* Non-compliant */
 param2 = input(); / Compliant */
}

In this example, the rule is violated when the parameter param1 is modified.

The rule is not violated when the parameter is a pointer param2 and *param2 is modified.

Check Information
Group: Functions
Category: Advisory
AGC Category: Readability

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-226

Introduced in R2015b

 MISRA C:2012 Rule 17.8

6-227

MISRA C:2012 Rule 18.1
A pointer resulting from arithmetic on a pointer operand shall address an element of the same array
as that pointer operand

Description
Rule Definition

A pointer resulting from arithmetic on a pointer operand shall address an element of the same array
as that pointer operand.

Rationale

Using an invalid array subscript can lead to erroneous behavior of the program. Run-time derived
array subscripts are especially troublesome because they cannot be easily checked by manual review
or static analysis.

The C Standard defines the creation of a pointer to one beyond the end of the array. The rule permits
the C Standard. Dereferencing a pointer to one beyond the end of an array causes undefined behavior
and is noncompliant.

Polyspace Implementation

Polyspace flags this rule during the analysis as:

• Bug Finder — Array access out-of-bounds and Pointer access out-of-bounds.
• Code Prover — Illegally dereferenced pointer and Out of bounds array index.

Bug Finder and Code Prover check this rule differently and can show different results for this rule. In
Code Prover, you can also see a difference in results based on your choice for the option
Verification level (-to). See “Check for Coding Standard Violations”.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Dir 4.1 | MISRA C:2012 Rule 18.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-228

MISRA C:2012 Rule 18.2
Subtraction between pointers shall only be applied to pointers that address elements of the same
array

Description
Rule Definition

Subtraction between pointers shall only be applied to pointers that address elements of the same
array.

Rationale

This rule applies to expressions of the form pointer_expression1 - pointer_expression2.
The behavior is undefined if pointer_expression1 and pointer_expression2:

• Do not point to elements of the same array,
• Or do not point to the element one beyond the end of the array.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Subtracting Pointers

#include <stddef.h>
#include <stdint.h>

void f1 (int32_t *ptr)
{
 int32_t a1[10];
 int32_t a2[10];
 int32_t *p1 = &a1[1];
 int32_t *p2 = &a2[10];
 ptrdiff_t diff1, diff2, diff3;

 diff1 = p1 - a1; // Compliant
 diff2 = p2 - a2; // Compliant
 diff3 = p1 - p2; // Non-compliant
}

In this example, the three subtraction expressions show the difference between compliant and
noncompliant pointer subtractions. The diff1 and diff2 subtractions are compliant because the
pointers point to the same array. The diff3 subtraction is not compliant because p1 and p2 point to
different arrays.

Check Information
Group: Pointers and Arrays

 MISRA C:2012 Rule 18.2

6-229

Category: Required
AGC Category: Required

See Also
MISRA C:2012 Dir 4.1 | MISRA C:2012 Rule 18.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-230

MISRA C:2012 Rule 18.3
The relational operators >, >=, < and <= shall not be applied to objects of pointer type except where
they point into the same object

Description
Rule Definition

The relational operators >, >=, <, and <= shall not be applied to objects of pointer type except where
they point into the same object.

Rationale

If two pointers do not point to the same object, comparisons between the pointers produces
undefined behavior.

You can address the element beyond the end of an array, but you cannot access this element.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Pointer and Array Comparisons

void f1(void){
 int arr1[10];
 int arr2[10];
 int *ptr1 = arr1;

 if(ptr1 < arr2){} /* Non-compliant */
 if(ptr1 < arr1){} /* Compliant */
}

In this example, ptr1 is a pointer to arr1. To be compliant with rule 18.3, you can compare only
ptr1 with arr1. Therefore, the comparison between ptr1 and arr2 is noncompliant.

Structure Comparisons

struct limits{
 int lower_bound;
 int upper_bound;
};

void func2(void){
 struct limits lim_1 = { 2, 5 };
 struct limits lim_2 = { 10, 5 };

 if(&lim_1.lower_bound <= &lim_2.upper_bound){} /* Non-compliant *
 if(&lim_1.lower_bound <= &lim_1.upper_bound){} /* Compliant */
}

 MISRA C:2012 Rule 18.3

6-231

This example defines two limits structures, lim1 and lim2, and compares the elements. To be
compliant with rule 18.3, you can compare only the structure elements within a structure. The first
comparison compares the lower_bound of lim1 and the upper_bound of lim2. This comparison is
noncompliant because the lim_1.lower_bound and lim_2.upper_bound are elements of two
different structures.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Dir 4.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-232

MISRA C:2012 Rule 18.4
The +, -, += and -= operators should not be applied to an expression of pointer type

Description
Rule Definition

The +, -, += and -= operators should not be applied to an expression of pointer type.

Rationale

The preferred form of pointer arithmetic is using the array subscript syntax ptr[expr]. This syntax
is clear and less prone to error than pointer manipulation. With pointer manipulation, any explicitly
calculated pointer value has the potential to access unintended or invalid memory addresses. Array
indexing can also access unintended or invalid memory, but it is easier to review.

To a new C programmer, the expression ptr+1 can be mistakenly interpreted as one plus the address
of ptr. However, the new memory address depends on the size, in bytes, of the pointer’s target. This
confusion can lead to unexpected behavior.

When used with caution, pointer manipulation using ++ can be more natural (for instance,
sequentially accessing locations during a memory test).

Polyspace Implementation

Polyspace flags operations on pointers, for example, Pointer + Integer, Integer + Pointer,
Pointer - Integer.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Pointers and Array Expressions
void fun1(void){
 unsigned char arr[10];
 unsigned char *ptr;
 unsigned char index = 0U;

 index = index + 1U; /* Compliant - rule only applies to pointers */

 arr[index] = 0U; /* Compliant */
 ptr = &arr[5]; /* Compliant */
 ptr = arr;
 ptr++; /* Compliant - increment operator not + */
 (ptr + 5) = 0U; / Non-compliant */
 ptr[5] = 0U; /* Compliant */
}

This example shows various operations with pointers and arrays. The only operation in this example
that is noncompliant is using the + operator directly with a pointer (line 12).

 MISRA C:2012 Rule 18.4

6-233

Adding Array Elements Inside a for Loop

void fun2(void){
 unsigned char array_2_2[2][2] = {{1U, 2U}, {4U, 5U}};
 unsigned char i = 0U;
 unsigned char j = 0U;
 unsigned char sum = 0U;

 for(i = 0u; i < 2U; i++){
 unsigned char *row = array_2_2[i];

 for(j = 0u; j < 2U; j++){
 sum += row[j]; /* Compliant */
 }
 }
}

In this example, the second for loop uses the array pointer row in an arithmetic expression.
However, this usage is compliant because it uses the array index form.

Pointers and Array Expressions

void fun3(unsigned char *ptr1, unsigned char ptr2[]){
 ptr1++; /* Compliant */
 ptr1 = ptr1 - 5; /* Non-compliant */
 ptr1 -= 5; /* Non-compliant */
 ptr1[2] = 0U; /* Compliant */

 ptr2++; /* Compliant */
 ptr2 = ptr2 + 3; /* Non-compliant */
 ptr2 += 3; /* Non-compliant */
 ptr2[3] = 0U; /* Compliant */
}

This example shows the offending operators used on pointers and arrays. Notice that the same types
of expressions are compliant and noncompliant for both pointers and arrays.

If ptr1 does not point to an array with at least six elements, and ptr2 does not point to an array with
at least 4 elements, this example violates rule 18.1.

Check Information
Group: Pointers and Arrays
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 18.1 | MISRA C:2012 Rule 18.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-234

MISRA C:2012 Rule 18.5
Declarations should contain no more than two levels of pointer nesting

Description
Rule Definition

Declarations should contain no more than two levels of pointer nesting.

Rationale

The use of more than two levels of pointer nesting can seriously impair the ability to understand the
behavior of the code. Avoid this usage.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Pointer Nesting

typedef char *INTPTR;

void function(char ** arrPar[]) /* Non-compliant - 3 levels */
{
 char ** obj2; /* Compliant */
 char *** obj3; /* Non-compliant */
 INTPTR * obj4; /* Compliant */
 INTPTR * const * const obj5; /* Non-compliant */
 char ** arr[10]; /* Compliant */
 char ** (*parr)[10]; /* Compliant */
 char * (**pparr)[10]; /* Compliant */
}

struct s{
 char * s1; /* Compliant */
 char ** s2; /* Compliant */
 char *** s3; /* Non-compliant */
};

struct s * ps1; /* Compliant */
struct s ** ps2; /* Compliant */
struct s *** ps3; /* Non-compliant */

char ** (*pfunc1)(void); /* Compliant */
char ** (**pfunc2)(void); /* Compliant */
char ** (***pfunc3)(void); /* Non-compliant */
char *** (**pfunc4)(void); /* Non-compliant */

This example shows various pointer declarations and nesting levels. Any pointer with more than two
levels of nesting is considered noncompliant.

 MISRA C:2012 Rule 18.5

6-235

Check Information
Group: Pointers and Arrays
Category: Advisory
AGC Category: Readability

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-236

MISRA C:2012 Rule 18.6
The address of an object with automatic storage shall not be copied to another object that persists
after the first object has ceased to exist

Description
Rule Definition

The address of an object with automatic storage shall not be copied to another object that persists
after the first object has ceased to exist.

Rationale

The address of an object becomes indeterminate when the lifetime of that object expires. Any use of
an indeterminate address results in undefined behavior.

Polyspace Implementation

Polyspace flags a violation when assigning an address to a global variable, returning a local variable
address, or returning a parameter address.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Address of Local Variables
char *func(void){
 char local_auto;
 return &local_auto ; /* Non-compliant
 * &local_auto is indeterminate */
}

In this example, because local_auto is a local variable, after the function returns, the address of
local_auto is indeterminate.

Copying Pointer Addresses to Local Variables
char *sp;

void f(unsigned short u){
 g(&u);
}

void h(void){
 static unsigned short *q;

 unsigned short x =0u;
 q = &x; /* Non-compliant -
 * &x stored in object with greater lifetime */
}

 MISRA C:2012 Rule 18.6

6-237

In this example, the function h stores the address of a local variable x in the a static variable q. The
lifetime of the static variable q persists after the lifetime of the local variable x ends. Copying x into q
is noncompliant with this rule and Polyspace flags the variable x.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-238

MISRA C:2012 Rule 18.7
Flexible array members shall not be declared

Description
Rule Definition

Flexible array members shall not be declared.

Rationale

Flexible array members are usually used with dynamic memory allocation. Dynamic memory
allocation is banned by Directive 4.12 and Rule 21.3 on page 6-267.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 21.3 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.7

6-239

MISRA C:2012 Rule 18.8
Variable-length array types shall not be used

Description
Rule Definition

Variable-length array types shall not be used.

Rationale

When the size of an array declared in a block or function prototype is not an integer constant
expression, you specify variable array types. Variable array types are typically implemented as a
variable size object stored on the stack. Using variable type arrays can make it impossible to
determine statistically the amount of memory for the stack requires.

If the size of a variable-length array is negative or zero, the behavior is undefined.

If a variable-length array must be compatible with another array type, then the size of the array types
must be identical and positive integers. If your array does not meet these requirements, the behavior
is undefined.

If you use a variable-length array type in a sizeof, it is uncertain if the array size is evaluated or not.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 13.6 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-240

MISRA C:2012 Rule 19.1
An object shall not be assigned or copied to an overlapping object

Description
Rule Definition

An object shall not be assigned or copied to an overlapping object.

Rationale

When you assign an object to another object with overlapping memory, the behavior is undefined. The
exceptions are:

• You assign an object to another object with exactly overlapping memory and compatible type.
• You copy one object to another using memmove.

Additional Message in Report

• An object shall not be assigned or copied to an overlapping object.
• Destination and source of XX overlap, the behavior is undefined.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Assignment of Union Members

void func (void) {
 union {
 short i;
 int j;
 } a = {0}, b = {1};

 a.j = a.i; /* Non-compliant */
 a = b; /* Compliant */
}

In this example, the rule is violated when a.i is assigned to a.j because the two variables have
overlapping regions of memory.

Assignment of Array Segments

#include <string.h>

int arr[10];

void func(void) {
 memcpy (&arr[5], &arr[4], 2u * sizeof(arr[0])); /* Non-compliant */
 memcpy (&arr[5], &arr[4], sizeof(arr[0])); /* Compliant */

 MISRA C:2012 Rule 19.1

6-241

 memcpy (&arr[1], &arr[4], 2u * sizeof(arr[0])); /* Compliant */
}

In this example, memory equal to twice sizeof(arr[0]) is the memory space taken up by two array
elements. If that memory space begins from &a[4] and &a[5], the two memory regions overlap. The
rule is violated when the memcpy function is used to copy the contents of these two overlapping
memory regions.

Check Information
Group: Overlapping Storage
Category: Mandatory
AGC Category: Mandatory

See Also
MISRA C:2012 Rule 19.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-242

MISRA C:2012 Rule 19.2
The union keyword should not be used

Description
Rule Definition

The union keyword should not be used.

Rationale

If you write to a union member and read the same union member, the behavior is well-defined. But if
you read a different member, the behavior depends on the relative sizes of the members. For
instance:

• If you read a union member with wider memory size, the value you read is unspecified.
• Otherwise, the value is implementation-dependent.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Possible Problems with union Keyword

unsigned int zext(unsigned int s)
{
 union /* Non-compliant */
 {
 unsigned int ul;
 unsigned short us;
 } tmp;

 tmp.us = s;
 return tmp.ul; /* Unspecified value */
}

In this example, the 16-bit short field tmp.us is written but the wider 32-bit int field tmp.ul is
read. Using the union keyword can cause such unspecified behavior. Therefore, the rule forbids
using the union keyword.

Check Information
Group: Overlapping Storage
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 19.1 | Check MISRA C:2012 (-misra3)

 MISRA C:2012 Rule 19.2

6-243

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-244

MISRA C:2012 Rule 20.1
#include directives should only be preceded by preprocessor directives or comments

Description
Rule Definition

#include directives should only be preceded by preprocessor directives or comments.

Rationale

For better code readability, group all #include directives in a file at the top of the file. Undefined
behavior can occur if you use #include to include a standard header file within a declaration or
definition, or if you use part of the Standard Library before including the related standard header
files.

Polyspace Implementation

Polyspace flags text that precedes a #include directive. Polyspace ignores preprocessor directives,
comments, spaces, or "new lines".

Additional Message in Report

#include directives should only be preceded by preprocessor directives or comments.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.1

6-245

MISRA C:2012 Rule 20.2
The ', " or \ characters and the /* or // character sequences shall not occur in a header file name

Description
Rule Definition

The ', " or \ characters and the /* or // character sequences shall not occur in a header file name.

Rationale

The program’s behavior is undefined if:

• You use ', ", \, /* or // between < > delimiters in a header name preprocessing token.
• You use ', \, /* or // between " delimiters in a header name preprocessing token.

Although \ results in undefined behavior, many implementations accept / in its place.

Polyspace Implementation

Polyspace flags the characters ', ", \, /* or // between < and > in #include <filename>.

Polyspace flags the characters ', \, /* or // between " and " in #include "filename".

Additional Message in Report

The ', "or \ characters and the /* or // character sequences shall not occur in a header file name.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-246

MISRA C:2012 Rule 20.3
The #include directive shall be followed by either a <filename> or "filename" sequence

Description
Rule Definition

The #include directive shall be followed by either a <filename> or "filename" sequence.

Rationale

This rule applies only after macro replacement.

The behavior is undefined if an #include directive does not use one of the following forms:

• #include <filename>
• #include "filename"

Additional Message in Report

• ‘#include' expects "FILENAME" or <FILENAME>
• ‘#include_next' expects "FILENAME" or <FILENAME>
• ‘#include' does not expect string concatenation.
• ‘#include_next' does not expect string concatenation.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.3

6-247

MISRA C:2012 Rule 20.4
A macro shall not be defined with the same name as a keyword

Description
Rule Definition

A macro shall not be defined with the same name as a keyword.

Rationale

Using macros to change the meaning of keywords can be confusing. The behavior is undefined if you
include a standard header while a macro is defined with the same name as a keyword.

Additional Message in Report

• The macro macro_name shall not be redefined.
• The macro macro_name shall not be undefined.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Redefining int keyword
#include <stdlib.h>
#define int some_other_type /* Non-compliant - int keyword behavior altered */

//...

In this example, the #define violates Rule 20.4 because it alters the behavior of the int keyword.
The inclusion of the standard header results in undefined behavior.
Correction — Rename keyword

One possible correction is to use a different keyword:

#include <stdlib.h>
#define int_mine some_other_type

//...

Redefining keywords versus statements
#define while(E) for (; (E) ;) /* Non-compliant - while redefined*/
#define unless(E) if (!(E)) /* Compliant*/

#define seq(S1, S2) do{ S1; S2;} while(false) /* Compliant*/
#define compound(S) {S;} /* Compliant*/
//...

In this example, it is noncompliant to redefine the keyword while, but it is compliant to define a
macro that expands to statements.

6 MISRA C 2012

6-248

Redefining keywords in different standards

#define inline // Non-compliant

In this example, redefining inline is compliant in C90, but not in C99 because inline is not a
keyword in C90.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.4

6-249

MISRA C:2012 Rule 20.5
#undef should not be used

Description
Rule Definition

#undef should not be used.

Rationale

#undef can make the software unclear which macros exist at a particular point within a translation
unit.

Additional Message in Report

#undef shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Readability

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-250

MISRA C:2012 Rule 20.6
Tokens that look like a preprocessing directive shall not occur within a macro argument

Description
Rule Definition

Tokens that look like a preprocessing directive shall not occur within a macro argument.

Rationale

An argument containing sequences of tokens that otherwise act as preprocessing directives leads to
undefined behavior.

Polyspace Implementation

Polyspace looks for the # character in a macro arguments (outside a string or character constant).

Additional Message in Report

Macro argument shall not look like a preprocessing directive.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Macro Expansion Causing Non-Compliance

#define M(A) printf (#A)

#include <stdio.h>

void foo(void){
 M(
#ifdef SW /* Non-compliant */
 "Message 1"
#else
 "Message 2" /* Compliant - SW not defined */
#endif /* Non-compliant */
);
}

This example shows a macro definition and the macro usage. #ifdef SW and #endif are
noncompliant because they look like a preprocessing directive. Polyspace does not flag #else
"Message 2" because after macro expansion, Polyspace knows SW is not defined. The expanded
macro is printf ("\"Message 2\"");

Check Information
Group: Preprocessing Directives

 MISRA C:2012 Rule 20.6

6-251

Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-252

MISRA C:2012 Rule 20.7
Expressions resulting from the expansion of macro parameters shall be enclosed in parentheses

Description
Rule Definition

Expressions resulting from the expansion of macro parameters shall be enclosed in parentheses.

Rationale

If you do not use parentheses, then it is possible that operator precedence does not give the results
that you want when macro substitution occurs.

If you are not using a macro parameter as an expression, then the parentheses are not necessary
because no operators are involved in the macro.

Additional Message in Report

Expanded macro parameter param shall be enclosed in parentheses.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Macro Expressions

#define mac1(x, y) (x * y)
#define mac2(x, y) ((x) * (y))

void foo(void){
 int r;

 r = mac1(1 + 2, 3 + 4); /* Non-compliant */
 r = mac1((1 + 2), (3 + 4)); /* Compliant */

 r = mac2(1 + 2, 3 + 4); /* Compliant */
}

In this example, mac1 and mac2 are two defined macro expressions. The definition of mac1 does not
enclose the arguments in parentheses. In line 7, the macro expands to r = (1 + 2 * 3 + 4); This
expression can be (1 + (2 * 3) + 4) or (1 + 2) * (3 + 4). However, without parentheses,
the program does not know the intended expression. Line 8 uses parentheses, so the line expands to
(1 + 2) * (3 + 4). This macro expression is compliant.

The definition of mac2 does enclose the argument in parentheses. Line 10 (the same macro
arguments in line 7) expands to (1 + 2) * (3 + 4). This macro and macro expression are
compliant.

 MISRA C:2012 Rule 20.7

6-253

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Dir 4.9 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-254

MISRA C:2012 Rule 20.8
The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or 1

Description
Rule Definition

The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or 1.

Rationale

Strong typing requires that conditional inclusion preprocessing directives, #if or #elif, have a
controlling expression that evaluates to a Boolean value.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 14.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.8

6-255

MISRA C:2012 Rule 20.9
All identifiers used in the controlling expression of #if or #elif preprocessing directives shall be
#define’d before evaluation

Description
Rule Definition

All identifiers used in the controlling expression of #if or #elif preprocessing directives shall be
#define’d before evaluation.

Rationale

If attempt to use a macro identifier in a preprocessing directive, and you have not defined that
identifier, then the preprocessor assumes that it has a value of zero. This value might not meet
developer expectations.

Additional Message in Report

Identifier is not defined.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Macro Identifiers

#if M == 0 /* Non-compliant - Not defined */
#endif

#if defined (M) /* Compliant - M is not evaluate */
#if M == 0 /* Compliant - M is known to be defined */
#endif
#endif

#if defined (M) && (M == 0) /* Compliant
 * if M defined, M evaluated in (M == 0) */
#endif

This example shows various uses of M in preprocessing directives. The second and third #if clauses
check to see if the software defines M before evaluating M. The first #if clause does not check to see
if M is defined, and because M is not defined, the statement is noncompliant.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required

6 MISRA C 2012

6-256

See Also
MISRA C:2012 Dir 4.9 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.9

6-257

MISRA C:2012 Rule 20.10
The # and ## preprocessor operators should not be used

Description
Rule Definition

The # and ## preprocessor operators should not be used.

Rationale

The order of evaluation associated with multiple #, multiple ##, or a mix of # and ## preprocessor
operators is unspecified. In some cases, it is therefore not possible to predict the result of macro
expansion.

The use of ## can result in obscured code.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 1.3 | MISRA C:2012 Rule 20.11 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-258

MISRA C:2012 Rule 20.11
A macro parameter immediately following a # operator shall not immediately be followed by a ##
operator

Description
Rule Definition

A macro parameter immediately following a # operator shall not immediately be followed by a ##
operator.

Rationale

The order of evaluation associated with multiple #, multiple ##, or a mix of # and ## preprocessor
operators, is unspecified. Rule 20.10 discourages the use of # and ##. The result of a # operator is a
string literal. It is extremely unlikely that pasting this result to any other preprocessing token results
in a valid token.

Additional Message in Report

The ## preprocessor operator shall not follow a macro parameter following a # preprocessor
operator.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Use of # and ##

#define A(x) #x /* Compliant */
#define B(x, y) x ## y /* Compliant */
#define C(x, y) #x ## y /* Non-compliant */

In this example, you can see three uses of the # and ## operators. You can use these preprocessing
operators alone (line 1 and line 2), but using # then ## is noncompliant (line 3).

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 20.10 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”

 MISRA C:2012 Rule 20.11

6-259

“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-260

MISRA C:2012 Rule 20.12
A macro parameter used as an operand to the # or ## operators, which is itself subject to further
macro replacement, shall only be used as an operand to these operators

Description
Rule Definition

A macro parameter used as an operand to the # or ## operators, which is itself subject to further
macro replacement, shall only be used as an operand to these operators.

Rationale

The parameter to # or ## is not expanded prior to being used. The same parameter appearing
elsewhere in the replacement text is expanded. If the macro parameter is itself subject to macro
replacement, its use in mixed contexts within a macro replacement might not meet developer
expectations.

Additional Message in Report

Expanded macro parameter param1 is also an operand of op operator.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.12

6-261

MISRA C:2012 Rule 20.13
A line whose first token is # shall be a valid preprocessing directive

Description
Rule Definition

A line whose first token is # shall be a valid preprocessing directive

Rationale

You typically use a preprocessing directive to conditionally exclude source code until a corresponding
#else, #elif, or #endif directive is encountered. If your compiler does not detect a preprocessing
directive because it is malformed or invalid, you can end up excluding more code than you intended.

If all preprocessing directives are syntactically valid, even in excluded code, this unintended code
exclusion cannot happen.

Additional Message in Report

Directive is not syntactically meaningful.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-262

MISRA C:2012 Rule 20.14
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if, #ifdef or
#ifndef directive to which they are related

Description
Rule Definition

All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if, #ifdef or
#ifndef directive to which they are related.

Rationale

When conditional compilation directives include or exclude blocks of code and are spread over
multiple files, confusion arises. If you terminate an #if directive within the same file, you reduce the
visual complexity of the code and the chances of an error.

If you terminate #if directives within the same file, you can use #if directives in included files

Additional Message in Report

• '#else' not within a conditional.
• '#elseif' not within a conditional.
• '#endif' not within a conditional.

Unterminated conditional directive.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.14

6-263

MISRA C:2012 Rule 21.1
#define and #undef shall not be used on a reserved identifier or reserved macro name

Description
Rule Definition

#define and #undef shall not be used on a reserved identifier or reserved macro name.

Rationale

Reserved identifiers and reserved macro names are intended for use by the implementation.
Removing or changing the meaning of a reserved macro can result in undefined behavior. This rule
applies to the following:

• Identifiers or macro names beginning with an underscore
• Identifiers in file scope described in the C Standard Library
• Macro names described in the C Standard Library as being defined in a standard header

The rule checker can flag different identifiers or macros depending on the version of the C standard
used in the analysis. See C standard version (-c-version). For instance, if you run a C99
analysis, the reserved identifiers and macros are defined in the ISO/IEC 9899:1999 standard, Section
7, "Library".

Additional Message in Report

• The macro macro_name shall not be redefined.
• The macro macro_name shall not be undefined.
• The macro macro_name shall not be defined.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Defining or Undefining Reserved Identifiers

#undef __LINE__ /* Non-compliant - begins with _ */
#define _Guard_H 1 /* Non-compliant - begins with _ */
#undef _ BUILTIN_sqrt /* Non-compliant - implementation may
 * use _BUILTIN_sqrt for other purposes,
 * e.g. generating a sqrt instruction */
#define defined /* Non-compliant - reserved identifier */
#define errno my_errno /* Non-compliant - library identifier */
#define isneg(x) ((x) < 0) /* Compliant - rule doesn't include
 * future library directions */

6 MISRA C 2012

6-264

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 20.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.1

6-265

MISRA C:2012 Rule 21.2
A reserved identifier or reserved macro name shall not be declared

Description
Rule Definition

A reserved identifier or reserved macro name shall not be declared.

Rationale

The Standard allows implementations to treat reserved identifiers specially. If you reuse reserved
identifiers, you can cause undefined behavior.

Polyspace Implementation

• If you define a macro name that corresponds to a standard library macro, object, or function, rule
21.1 is violated.

• The rule considers tentative definitions as definitions.

Additional Message in Report

Identifier 'XX' shall not be reused.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-266

MISRA C:2012 Rule 21.3
The memory allocation and deallocation functions of <stdlib.h> shall not be used

Description
Rule Definition

The memory allocation and deallocation functions of <stdlib.h> shall not be used.

Rationale

Using memory allocation and deallocation routines can cause undefined behavior. For instance:

• You free memory that you had not allocated dynamically.
• You use a pointer that points to a freed memory location.

Polyspace Implementation

The checker flags uses of the calloc, malloc, realloc, aligned_alloc and free functions.

If you define macros with the same names as these dynamic heap memory allocation functions, and
you expand the macros in the code, this rule is violated. It is assumed that rule 21.2 is not violated.

Additional Message in Report

• The macro <name> shall not be used.
• Identifier XX should not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Use of malloc, calloc, realloc and free

#include <stdlib.h>

static int foo(void);

typedef struct struct_1 {
 int a;
 char c;
} S_1;

static int foo(void) {

 S_1 * ad_1;
 int * ad_2;
 int * ad_3;

 ad_1 = (S_1*)calloc(100U, sizeof(S_1)); /* Non-compliant */

 MISRA C:2012 Rule 21.3

6-267

 ad_2 = malloc(100U * sizeof(int)); /* Non-compliant */
 ad_3 = realloc(ad_3, 60U * sizeof(long)); /* Non-compliant */

 free(ad_1); /* Non-compliant */
 free(ad_2); /* Non-compliant */
 free(ad_3); /* Non-compliant */

 return 1;
}

In this example, the rule is violated when the functions malloc, calloc, realloc and free are
used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 18.7 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-268

MISRA C:2012 Rule 21.4
The standard header file <setjmp.h> shall not be used

Description
Rule Definition

The standard header file <setjmp.h> shall not be used.

Rationale

Using setjmp and longjmp, you can bypass normal function call mechanisms and cause undefined
behavior.

Polyspace Implementation

If the longjmp function is a macro and the macro is expanded in the code, this rule is violated. It is
assumed that rule 21.2 is not violated.

Additional Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.4

6-269

MISRA C:2012 Rule 21.5
The standard header file <signal.h> shall not be used

Description
Rule Definition

The standard header file <signal.h> shall not be used.

Rationale

Using signal handling functions can cause implementation-defined and undefined behavior.

Polyspace Implementation

If the signal function is a macro and the macro is expanded in the code, this rule is violated. It is
assumed that rule 21.2 is not violated.

Additional Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-270

MISRA C:2012 Rule 21.6
The Standard Library input/output functions shall not be used

Description
Rule Definition

The Standard Library input/output functions shall not be used.

Rationale

This rule applies to the functions that are provided by <stdio.h> and in C99, their character-wide
equivalents provided by <wchar.h>. Using these functions can cause unspecified, undefined and
implementation-defined behavior.

Polyspace Implementation

If the Standard Library function is a macro and the macro is expanded in the code, this rule is
violated. It is assumed that rule 21.2 is not violated.

Additional Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.6

6-271

MISRA C:2012 Rule 21.7
The Standard Library functions atof, atoi, atol, and atoll functions of <stdlib.h> shall not be
used

Description
Rule Definition

The Standard Library functions atof, atoi, atol, and atoll functions of <stdlib.h> shall not be
used.

Rationale

When a string cannot be converted, the behavior of these functions can be undefined.

Polyspace Implementation

If the function is a macro and the macro is expanded in the code, this rule is violated. It is assumed
that rule 21.2 is not violated.

Additional Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-272

MISRA C:2012 Rule 21.8
The Standard Library functions of abort, exit, getnenv and system of <stdlib.h> shall not be
used

Description
Rule Definition

The Standard Library functions of abort, exit, getnenv and system of <stdlib.h> shall not be
used.

Rationale

Using these functions can cause undefined and implementation-defined behaviors.

Polyspace Implementation

Polyspace flags the use of the abort, exit, _Exit, or quick_exit functions that are defined in
<stdlib.h>.

If these functions are user defined, Polyspace does not flag them.

Additional Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.8

6-273

MISRA C:2012 Rule 21.9
The Standard Library library functions bsearch and qsort of <stdlib.h> shall not be used

Description
Rule Definition

The library functions bsearch and qsort of <stdlib.h> shall not be used.

Rationale

The comparison function in these library functions can behave inconsistently when the elements
being compared are equal. Also, the implementation of qsort can be recursive and place unknown
demands on the call stack.

Polyspace Implementation

If the function is a macro and the macro is expanded in the code, this rule is violated. It is assumed
that rule 21.2 is not violated.

Additional Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-274

MISRA C:2012 Rule 21.10
The Standard Library time and date functions shall not be used

Description
Rule Definition

The Standard Library time and date functions shall not be used.

Rationale

Using these functions can cause unspecified, undefined and implementation-defined behavior.

Polyspace Implementation

If the function is a macro and the macro is expanded in the code, this rule is violated. It is assumed
that rule 21.2 is not violated.

Additional Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.10

6-275

MISRA C:2012 Rule 21.11
The standard header file <tgmath.h> shall not be used

Description
Rule Definition

The standard header file <tgmath.h> shall not be used.

Rationale

Using the facilities of this header file can cause undefined behavior.

Polyspace Implementation

If the function is a macro and the macro is expanded in the code, this rule is violated. It is assumed
that rule 21.2 is not violated.

Additional Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Use of Function in tgmath.h

#include <tgmath.h>

float f1,res;

void func(void) {
 res = sqrt(f1); /* Non-compliant */
}

In this example, the rule is violated when the sqrt macro defined in tgmath.h is used.
Correction — Use Appropriate Function in math.h

For this example, one possible correction is to use the function sqrtf defined in math.h for float
arguments.

#include <math.h>

float f1, res;

void func(void) {

6 MISRA C 2012

6-276

 res = sqrtf(f1);
}

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.11

6-277

MISRA C:2012 Rule 21.12
The exception handling features of <fenv.h> should not be used

Description
Rule Definition

The exception handling features of <fenv.h> should not be used.

Rationale

In some cases, the values of the floating-point status flags are unspecified. Attempts to access them
can cause undefined behavior.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Use of Features in <fenv.h>

#include <fenv.h>

void func(float x, float y) {
 float z;

 feclearexcept(FE_DIVBYZERO); /* Non-compliant */
 z = x/y;

 if(fetestexcept (FE_DIVBYZERO)) { /* Non-compliant */
 }
 else {
#pragma STDC FENV_ACCESS ON
 z=x*y;
 if(z>x) {
#pragma STDC FENV_ACCESS OFF
 if(fetestexcept (FE_OVERFLOW)) { /* Non-compliant */
 }
 }
 }
}

In this example, the rule is violated when the identifiers feclearexcept and fetestexcept, and
the macros FE_DIVBYZERO and FE_OVERFLOW are used.

Check Information
Group: Standard libraries
Category: Advisory
AGC Category: Advisory

6 MISRA C 2012

6-278

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Rule 21.12

6-279

MISRA C:2012 Rule 21.15
The pointer arguments to the Standard Library functions memcpy, memmove and memcmp shall be
pointers to qualified or unqualified versions of compatible types

Description
Rule Definition

The pointer arguments to the Standard Library functions memcpy, memmove and memcmp shall be
pointers to qualified or unqualified versions of compatible types.

This rule comes from MISRA C: 2012 Amendment 1.

Rationale

The functions

memcpy(arg1, arg2, num_bytes);
memmove(arg1, arg2, num_bytes);
memcmp(arg1, arg2, num_bytes);

perform a byte-by-byte copy, move or comparison between the memory locations that arg1 and arg2
point to. A byte-by-byte copy, move or comparison is meaningful only if arg1 and arg2 have
compatible types.

Using pointers to different data types for arg1 and arg2 typically indicates a coding error.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Incompatible Argument Types for memcpy

#include <stdint.h>

void f (uint8_t s1[8], uint16_t s2[8])
{
 (void) memcpy (s1, s2, 8); /* Non-compliant */
}

In this example, s1 and s2 are pointers to different data types. The memcpy statement copies eight
bytes from one buffer to another.

Eight bytes represent the entire span of the buffer that s1 points to, but only part of the buffer that
s2 points to. Therefore, the memcpy statement copies only part of s2 to s1, which might be
unintended.

Check Information
Group: Standard libraries

6 MISRA C 2012

6-280

Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 21.16 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 21.15

6-281

MISRA C:2012 Rule 21.16
The pointer arguments to the Standard Library function memcmp shall point to either a pointer type,
an essentially signed type, an essentially unsigned type, an essentially Boolean type or an essentially
enum type

Description
Rule Definition

The pointer arguments to the Standard Library function memcmp shall point to either a pointer type,
an essentially signed type, an essentially unsigned type, an essentially Boolean type or an essentially
enum type.

This rule comes from MISRA C: 2012 Amendment 1.

Rationale

The Standard Library function

memcmp (lhs, rhs, num);

performs a byte-by-byte comparison of the first num bytes of the two objects that lhs and rhs point
to.

Do not use memcmp for a byte-by-byte comparison of the following.

Type Rationale
Structures If members of a structure have different data types, your compiler introduces

additional padding for data alignment in memory. The content of these extra
padding bytes is meaningless. If you perform a byte-by-byte comparison of
structures with memcmp, you compare even the meaningless data stored in the
padding. You might reach the false conclusion that two data structures are not
equal, even if their corresponding members have the same value.

Objects with
essentially floating
type

The same floating point value can be stored using different representations. If
you perform a byte-by-byte comparison of two variables with memcmp, you can
reach the false conclusion that the variables are unequal even when they have
the same value. The reason is that the values are stored using two different
representations.

Essentially char
arrays

Essentially char arrays are typically used to store strings. In strings, the content
in bytes after the null terminator is meaningless. If you perform a byte-by-byte
comparison of two strings with memcmp, you might reach the false conclusion
that two strings are not equal, even if the bytes before the null terminator store
the same value.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

6 MISRA C 2012

6-282

Examples
Using memcmp for Comparison of Structures, Unions, and essentially char Arrays
#include <stdbool.h>
#include <stdint.h>

struct S {
//...
};

bool f1(struct S* s1, struct S* s2)
{
 return (memcmp(s1, s2, sizeof(struct S)) != 0); /* Non-compliant */
}

union U {
 uint32_t range;
 uint32_t height;
};
bool f2(union U* u1, union U* u2)
{
 return (memcmp(u1, u2, sizeof(union U)) != 0); /* Non-compliant */
}

const char a[6] = "task";
bool f3(const char b[6])
{
 return (memcmp(a, b, 6) != 0); /* Non-compliant */
}

In this example:

• Structures s1 and s2 are compared in the bool_t f1 function. The return value of this function
might indicate that s1 and s2 are different due to padding. This comparison is noncompliant.

• Unions u1 and u2 are compared in the bool_t f2 function. The return value of this function
might indicate that u1 and u2 are the same due to unintentional comparison of u1.range and
u2.height, or u1.height and u2.range. This comparison is noncompliant.

• Essentially char arrays a and b are compared in the bool_t f3 function. The return value of this
function might incorrectly indicate that the strings are different because the length of a (four) is
less than the number of bytes compared (six). This comparison is noncompliant.

Check Information
Group: Standard libraries
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 21.15 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 21.16

6-283

Introduced in R2017a

6 MISRA C 2012

6-284

MISRA C:2012 Rule 22.5
A pointer to a FILE object shall not be dereferenced

Description
Rule Definition

A pointer to a FILE object shall not be dereferenced.

Rationale

The Standard states that the address of a FILE object used to control a stream can be significant.
Copying that object might not give the same behavior. This rule ensures that you cannot perform such
a copy.

Directly manipulating a FILE object might be incompatible with its use as a stream designator.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
FILE* Pointer Dereferenced

#include <stdio.h>

void func(void) {
 FILE *pf1;
 FILE *pf2;
 FILE f3;

 pf2 = pf1; /* Compliant */
 f3 = *pf2; /* Non-compliant */
 pf2->_flags=0; /* Non-compliant */
 }

In this example, the rule is violated when the FILE* pointer pf2 is dereferenced.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”

 MISRA C:2012 Rule 22.5

6-285

“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

6 MISRA C 2012

6-286

MISRA C++: 2008

7

MISRA C++:2008 Rule 0-1-1
A project shall not contain unreachable code

Description
Rule Definition

A project shall not contain unreachable code.

Rationale

This rule flags situations where a group of statements is unreachable because of syntactic reasons.
For instance, code following a return statement are always unreachable.

Unreachable code involve unnecessary maintenance and can often indicate programming errors.

Polyspace Implementation

Bug Finder and Code Prover check this coding rule differently. The analyses can produce different
results.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Unreachable statements

int func(int arg) {
 int temp = 0;
 switch(arg) {
 temp = arg; // Noncompliant
 case 1:
 {
 break;
 }
 default:
 {
 break;
 }
 }
 return arg;
 arg++; // Noncompliant
}

These statements are unreachable:

• Statements inside a switch statement that do not belong to a case or default block.
• Statements after a return statement.

7 MISRA C++: 2008

7-2

Check Information
Group: Language Independent Issues
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 0-1-1

7-3

MISRA C++:2008 Rule 0-1-2
A project shall not contain infeasible paths

Description
Rule Definition

A project shall not contain infeasible paths.

Rationale

This rule flags situations where a group of statements is redundant because of nonsyntactic reasons.
For instance, an if condition is always true or false. Code that is unreachable from syntactic reasons
are flagged by rule 0-1-1.

Unreachable or redundant code involve unnecessary maintenance and can often indicate
programming errors.

Polyspace Implementation

Bug Finder and Code Prover check this rule differently. The analysis can produce different results.

• Bug Finder checks for this rule through the Dead code and Useless if checkers..
• Code Prover does not use run-time checks to detect violations of this rule. Instead, Code Prover

detects the violations at compile time.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Boolean Operations with Invariant Results

void func (unsigned int arg) {
 if (arg >= 0U) //Noncompliant
 arg = 1U;
 if (arg < 0U) //Noncompliant
 arg = 1U;
}

An unsigned int variable is nonnegative. Both if conditions involving the variable are always true
or always false and are therefore redundant.

Check Information
Group: Language Independent Issues
Category: Required

7 MISRA C++: 2008

7-4

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 0-1-2

7-5

MISRA C++:2008 Rule 0-1-3
A project shall not contain unused variables

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis” (Polyspace Bug Finder Access).

Rule Definition

A project shall not contain unused variables.

Polyspace Implementation

The checker flags local or global variables that are declared or defined but not used anywhere in the
source files. This specification also applies to members of structures and classes.

Additional Message in Report

A project shall not contain unused variables.

Variable is never used or used only in unreachable code.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Use of Named Bit Field for Padding

#include <iostream>
struct S {
 unsigned char b1 : 3;
 unsigned char pad: 1; //Noncompliant
 unsigned char b2 : 4;
};
void init(struct S S_obj)
{
 S_obj.b1 = 0;
 S_obj.b2 = 0;
}

In this example, the bit field pad is used for padding the structure. Therefore, the field is never read
or written and causes a violation of this rule. To avoid the violation, use an unnamed field for padding.

#include <iostream>
struct S {
 unsigned char b1 : 3;
 unsigned char : 1; //Compliant
 unsigned char b2 : 4;
};

7 MISRA C++: 2008

7-6

void init(struct S S_obj)
{
 S_obj.b1 = 0;
 S_obj.b2 = 0;
}

Check Information
Group: Language Independent Issues
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2018a

 MISRA C++:2008 Rule 0-1-3

7-7

MISRA C++:2008 Rule 0-1-4
A project shall not contain non-volatile POD variables having only one use

Description
Rule Definition

A project shall not contain non-volatile POD variables having only one use.

Rationale

If you use a non-volatile variable with a Plain Old Data type (int, double, etc.) only once, you can
replace the variable with a constant literal. Your use of a variable indicates that you intended more
than one use for that variable and might have a programming error in the code. You might have
omitted the other uses of the non-volatile variable or incorrectly used other variables at intended
points of use.

Polyspace Implementation

The checker flags local and static variables that have a function scope (locally static) and file scope,
which are used only once. The checker considers const-qualified global variables without the
extern specifier as static variables with file scope.

The checker counts these use cases as one use of the non-volatile variable:

• An explicit initialization using a constant literal or the return value of a function
• An assignment
• A reference to the variable such as a read operation
• An assignment of the variable address to a pointer

If the variable address is assigned to a pointer, the checker assumes that the pointer might be
dereferenced later and does not flag the variable.

Some objects are designed to be used only once by their semantics. Polyspace does not flag a single
use of these objects:

• lock_guard
• scoped_lock
• shared_lock
• unique_lock
• thread
• future
• shared_future

If you use nonstandard objects that provide similar functionality as the objects in the preceding list,
Polyspace might flag single uses of the nonstandard objects. Justify their single uses by using
comments.

7 MISRA C++: 2008

7-8

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Non-volatile Variable Used Only Once

#include <mutex>
int readStatus1();
int readStatus2();
extern std::mutex m;
void foo()
{
 // Initiating lock 'lk'
 std::lock_guard<std::mutex> lk{m};
 int checkEngineStatus1 = readStatus1();
 int checkEngineStatus2 = readStatus2();//Noncompliant

 if(checkEngineStatus1) {
 //Perform some actions if both statuses are valid
 }
 // Release lock when 'lk' is deleted at exit point of scope
}

In this example, the variable checkEngineStatus2 is used only once. The single use of this variable
might indicate a programming error. For instance, you might have intended to check both
checkEngineStatus1 and checkEngineStatus2 in the if condition, but omitted the second
check. The lock_guard object lk is also used only once. Because the semantics of a lock_guard
object justifies its single use, Polyspace does not flag it.

Check Information
Group: Language Independent Issues
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 MISRA C++:2008 Rule 0-1-4

7-9

MISRA C++:2008 Rule 0-1-5
A project shall not contain unused type declarations

Description
Rule Definition

A project shall not contain unused type declarations.

Rationale

If a type is declared but not used, when reviewing the code later, it is unclear if the type is redundant
or left unused by mistake.

Unused types can indicate coding errors. For instance, you declared a enumerated data type for some
specialized data but used an integer type for the data.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Unused enum Declaration

enum switchValue {low, medium, high}; //Noncompliant

void operate(int userInput) {
 switch(userInput) {
 case 0: // Turn on low setting
 break;
 case 1: // Turn on medium setting
 break;
 case 2: // Turn on high setting
 break;
 default: // Return error
 }
}

In this example, the enumerated type switchValue is not used. Perhaps the intention was to use the
type as switch input like this.

enum switchValue {low, medium, high}; //Compliant

void operate(switchValue userInput) {
 switch(userInput) {
 case low: // Turn on low setting
 break;
 case medium: // Turn on medium setting
 break;
 case high: // Turn on high setting
 break;
 default: // Return error

7 MISRA C++: 2008

7-10

 }
}

Check Information
Group: Language Independent Issues
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2018a

 MISRA C++:2008 Rule 0-1-5

7-11

MISRA C++:2008 Rule 0-1-7
The value returned by a function having a non- void return type that is not an overloaded operator
shall always be used

Description
Rule Definition

The value returned by a function having a non- void return type that is not an overloaded operator
shall always be used.

Rationale

The unused return value might indicate a coding error or oversight.

Overloaded operators are excluded from this rule because their usage must emulate built-in
operators which might not use their return value.

Polyspace Implementation

The checker flags functions with non-void return if the return value is not used or not explicitly cast
to a void type.

The checker does not flag the functions memcpy, memset, memmove, strcpy, strncpy, strcat,
strncat because these functions simply return a pointer to their first arguments.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Return Value Not Used

#include <iostream>
#include <new>

int assignMemory(int * ptr){
 int res = 1;
 ptr = new (std::nothrow) int;
 if(ptr==NULL) {
 res = 0;
 }
 return res;
}

void main() {
 int val;
 int status;

 assignMemory(&val); //Noncompliant
 status = assignMemory(&val); //Compliant

7 MISRA C++: 2008

7-12

 (void)assignMemory(&val); //Compliant

}

The first call to the function assignMemory is noncompliant because the return value is not used.
The second and third calls use the return value. The return value from the second call is assigned to a
local variable.

The return value from the third call is cast to void. Casting to void indicates deliberate non-use of
the return value and cannot be a coding oversight.

Check Information
Group: Language Independent Issues
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 0-1-7

7-13

MISRA C++:2008 Rule 0-1-9
There shall be no dead code

Description
Rule Definition

There shall be no dead code.

Rationale

If an operation is reachable but removing the operation does not affect program behavior, the
operation constitutes dead code. For instance, suppose that a variable is never read following a write
operation. The write operation is redundant.

The presence of dead code can indicate an error in the program logic. Because a compiler can
remove dead code, its presence can cause confusion for code reviewers.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Redundant Operations

#define ULIM 10000

int func(int arg) {
 int res;
 res = arg*arg + arg;
 if (res > ULIM)
 res = 0; //Noncompliant
 return arg;
}

In this example, the operations involving res are redundant because the function func returns its
argument arg. All operations involving res can be removed without changing the effect of the
function.

The checker flags the last write operation on res because the variable is never read after that point.
The dead code can indicate an unintended coding error. For instance, you intended to return the
value of res instead of arg.

Check Information
Group: Language Independent Issues
Category: Required

7 MISRA C++: 2008

7-14

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2016b

 MISRA C++:2008 Rule 0-1-9

7-15

MISRA C++:2008 Rule 0-1-10
Every defined function shall be called at least once

Description
Rule Definition

Every defined function shall be called at least once.

Rationale

If a function with a definition is not called, it might indicate a serious coding error. For instance, the
function call is unreachable or a different function is called unintentionally.

Polyspace Implementation

The checker detects situations where a static function is defined but not called at all in its translation
unit.

Additional Message in Report

Every defined function shall be called at least once. The static function funcName is not called.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Uncalled Static Function

static void func1() {
}

static void func2() { //Noncompliant
}

void func3();

int main() {
 func1();
 return 0;
}

The static function func2 is defined but not called.

The function func3 is not called either, however, it is only declared and not defined. The absence of a
call to func3 does not violate the rule.

Check Information
Group: Language Independent Issues

7 MISRA C++: 2008

7-16

Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 0-1-10

7-17

MISRA C++:2008 Rule 0-1-11
There shall be no unused parameters (named or unnamed) in nonvirtual functions

Description
Rule Definition

There shall be no unused parameters (named or unnamed) in nonvirtual functions.

Rationale

Unused parameters often indicate later design changes. You perhaps removed all uses of a specific
parameter but forgot to remove the parameter from the parameter list.

Unused parameters constitute an unnecessary overhead. You can also inadvertently call the function
with a different number of arguments causing a parameter mismatch.

Polyspace Implementation

The checker flags a function that has unused named parameters unless the function body is empty.

Additional Message in Report

Function funcName has unused parameters.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Unused Parameters

typedef int (*callbackFn) (int a, int b);

int callback_1 (int a, int b) { //Compliant
 return a+b;
}

int callback_2 (int a, int b) { //Noncompliant
 return a;
}

int callback_3 (int, int b) { //Compliant - flagged by Polyspace
 return b;
}

int getCallbackNumber();
int getInput();

void main() {
 callbackFn ptrFn;
 int n = getCallbackNumber();

7 MISRA C++: 2008

7-18

 int x = getInput(), y = getInput();
 switch(n) {
 case 0: ptrFn = &callback_1; break;
 case 1: ptrFn = &callback_2; break;
 default: ptrFn = &callback_3; break;
 }

 (*ptrFn)(x,y);
}

In this example, the three functions callback_1, callback_2 and callback_3 are used as
callback functions. One of the three functions is called via a function pointer depending on a value
obtained at run time.

• Function callback_1 uses all its parameters and does not violate the rule.
• Function callback_2 does not use its parameter a and violates this rule.
• Function callback_3 also does not use its first parameter but it does not violate the rule because

the parameter is unnamed. However, Polyspace flags the unused parameter as a rule violation. If
you see a violation of this kind, justify the violation with comments. See “Address Polyspace
Results Through Bug Fixes or Justifications”.

Check Information
Group: Language Independent Issues
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2016b

 MISRA C++:2008 Rule 0-1-11

7-19

MISRA C++:2008 Rule 0-1-12
There shall be no unused parameters (named or unnamed) in the set of parameters for a virtual
function and all the functions that override it

Description
Rule Definition

There shall be no unused parameters (named or unnamed) in the set of parameters for a virtual
function and all the functions that override it.

Rationale

Unused parameters often indicate later design changes. You perhaps removed all uses of a specific
parameter but forgot to remove the parameter from the parameter list.

Unused parameters constitute an unnecessary overhead. You can also inadvertently call the function
with a different number of arguments causing a parameter mismatch.

Polyspace Implementation

For each virtual function, the checker looks at all overrides of the function. If an override has a
named parameter that is not used, the checker shows a violation on the original virtual function and
lists the override as a supporting event.

Note that Polyspace checks for unused parameters in virtual functions within single translation units.
For instance, if a base class contains a virtual method with an unused parameter but the derived class
implementation of the method uses that parameter, the rule is not violated. However, if the base class
and derived class are defined in different files, the checker, which operates file by file, flags a
violation of this rule on the base class.

The checker does not flag unused parameters in functions with empty bodies.

Additional Message in Report

There shall be no unused parameters (named or unnamed) in the set of parameters for a virtual
function and all the functions that override it.

Function funcName has unused parameters.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Unused Parameter in Virtual Function

class base {
 public:
 virtual void assignVal (int arg1, int arg2) = 0; //Noncompliant

7 MISRA C++: 2008

7-20

 virtual void assignAnotherVal (int arg1, int arg2) = 0;
};

class derived1: public base {
 public:
 virtual void assignVal (int arg1, int arg2) {
 arg1 = 0;
 }
 virtual void assignAnotherVal (int arg1, int arg2) {
 arg1 = 1;
 }
};

class derived2: public base {
 public:
 virtual void assignVal (int arg1, int arg2) {
 arg1 = 0;
 }
 virtual void assignAnotherVal (int arg1, int arg2) {
 arg2 = 1;
 }
};

In this example, the second parameter of the virtual method assignVal is not used in any of the
derived class implementations of the method.

On the other hand, the implementation of the virtual method assignAnotherVal in derived class
derived1 uses the first parameter of the method. The implementation in derived2 uses the second
parameter. Both parameters of assignAnotherVal are used and therefore the virtual method does
not violate the rule.

Check Information
Group: Language Independent Issues
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2016b

 MISRA C++:2008 Rule 0-1-12

7-21

MISRA C++:2008 Rule 0-2-1
An object shall not be assigned to an overlapping object

Description
Rule Definition

An object shall not be assigned to an overlapping object.

Rationale

When you assign an object to another object with overlapping memory, the behavior is undefined.

The exceptions are:

• You assign an object to another object with exactly overlapping memory and compatible type.
• You copy one object to another with memmove.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Assignment of Union Members

void func (void) {
 union {
 short i;
 int j;
 } a = {0}, b = {1};

 a.j = a.i; //Noncompliant
 a = b; //Compliant
}

In this example, the rule is violated when a.i is assigned to a.j because the two variables have
overlapping regions of memory.

Check Information
Group: Language Independent Issues
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2016b

7 MISRA C++: 2008

7-22

MISRA C++:2008 Rule 0-3-2
If a function generates error information, then that error information shall be tested

Description
Rule Definition

If a function generates error information, then that error information shall be tested.

Rationale

If you do not check the return value of functions that indicate error information through their return
values, your program can behave unexpectedly. Errors from these functions can propagate
throughout the program causing incorrect output, security vulnerabilities, and possibly system
failures.

For the errno-setting functions, to see if the function call completed without errors, check errno for
error values. The return values of these errno-setting functions do not indicate errors. The return
value can be one of the following:

• void
• Even if an error occurs, the return value can be the same as the value from a successful call. Such

return values are called in-band error indicators. For instance, strtol converts a string to a long
integer and returns the integer. If the result of conversion overflows, the function returns
LONG_MAX and sets errno to ERANGE. However, the function can also return LONG_MAX from a
successful conversion. Only by checking errno can you distinguish between an error and a
successful conversion.

For the errno-setting functions, you can determine if an error occurred only by checking errno.

Polyspace Implementation

The checker raises a violation when:

• You call sensitive standard functions that return information about possible errors and you do one
of the following:

• Ignore the return value.

You simply do not assign the return value to a variable, or explicitly cast the return value to
void.

• Use an output from the function (return value or argument passed by reference) without
testing the return value for errors.

The checker considers a function as sensitive if the function call is prone to failure because of
reasons such as:

• Exhausted system resources (for example, when allocating resources).
• Changed privileges or permissions.
• Tainted sources when reading, writing, or converting data from external sources.

 MISRA C++:2008 Rule 0-3-2

7-23

• Unsupported features despite an existing API.

Some of these functions can perform critical tasks such as:

• Set privileges (for example, setuid)
• Create a jail (for example, chroot)
• Create a process (for example, fork)
• Create a thread (for example, pthread_create)
• Lock or unlock mutex (for example, pthread_mutex_lock)
• Lock or unlock memory segments (for example, mlock)

For functions that are not critical, the checker allows casting the function return value to void.
• You call a function that sets errno to indicate error conditions, but do not check errno after the

call. For these functions, checking errno is the only reliable way to determine if an error
occurred.

Functions that set errno on errors include:

• fgetwc, strtol, and wcstol.

For a comprehensive list of functions, see documentation about errno.
• POSIX errno-setting functions such as encrypt and setkey.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Sensitive Function Return Ignored
#include <pthread.h>
#include <cstdlib>
#define fatal_error() abort()

void initialize_1() {
 pthread_attr_t attr;
 pthread_attr_init(&attr); //Noncompliant
}

void initialize_2() {
 pthread_attr_t attr;
 (void)pthread_attr_init(&attr); //Compliant
}

void initialize_3() {
 pthread_attr_t attr;
 int result;
 result = pthread_attr_init(&attr); //Compliant
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

7 MISRA C++: 2008

7-24

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152351

This example shows a call to the sensitive function pthread_attr_init. The return value of
pthread_attr_init is ignored, causing a rule violation.

To be compliant, you can explicitly cast the return value to void or test the return value of
pthread_attr_init and check for errors.

Critical Function Return Ignored

#include <pthread.h>
#include <cstdlib>
#define fatal_error() abort()
extern void *start_routine(void *);

void returnnotchecked_1() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;

 (void)pthread_attr_init(&attr);
 (void)pthread_create(&thread_id, &attr, &start_routine, ((void *)0)); //Noncompliant
 pthread_join(thread_id, &res); //Noncompliant
}

void returnnotchecked_2() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;
 int result;

 (void)pthread_attr_init(&attr);
 result = pthread_create(&thread_id, &attr, &start_routine, NULL); //Compliant
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }

 result = pthread_join(thread_id, &res); //Compliant
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

In this example, two critical functions are called: pthread_create and pthread_join. The return
value of the pthread_create is ignored by casting to void, but because pthread_create is a
critical function (not just a sensitive function), the rule checker still raises a violation. The other
critical function, pthread_join, returns a value that is ignored implicitly.

To be compliant, check the return value of these critical functions to verify the function performed as
expected.

errno Not Checked After Call to strtol

#include<cstdlib>
#include<cerrno>
#include<climits>
#include<iostream>

 MISRA C++:2008 Rule 0-3-2

7-25

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];
 base = 10;

 long val = strtol(str, &endptr, base); //Noncompliant
 std::cout<<"Return value of strtol() = %ld\n" << val;

 errno = 0;
 long val2 = strtol(str, &endptr, base); //Compliant
 if((val2 == LONG_MIN || val2 == LONG_MAX) && errno == ERANGE) {
 std::cout<<"strtol error";
 exit(EXIT_FAILURE);
 }
 std::cout<<"Return value of strtol() = %ld\n" << val2;
}

In the noncompliant example, the return value of strtol is used without checking errno.

To be compliant, before calling strtol, set errno to zero . After a call to strtol, check the return
value for LONG_MIN or LONG_MAX and errno for ERANGE.

Check Information
Group: Language Independent Issues
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2020b

7 MISRA C++: 2008

7-26

MISRA C++:2008 Rule 1-0-1
All code shall conform to ISO/IEC 14882:2003 "The C++ Standard Incorporating Technical
Corrigendum 1"

Description
Rule Definition

All code shall conform to ISO/IEC 14882:2003 "The C++ Standard Incorporating Technical
Corrigendum 1".

Polyspace Implementation

The checker reports compilation errors as detected by a compiler that strictly adheres to the C++03
Standard (ISO/IEC 14882:2003).

Bug Finder and Code Prover check this coding rule differently. The analyses can produce different
results.

Additional Message in Report

The message has two parts:

• Rule statement:

All code shall conform to ISO/IEC 14882:2003 "The C++ Standard Incorporating Technical
Corrigendum 1".

• Compilation error message such as:

Expected a ;

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: General
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 1-0-1

7-27

MISRA C++:2008 Rule 2-3-1
Trigraphs shall not be used

Description
Rule Definition

Trigraphs shall not be used.

Rationale

You denote trigraphs with two question marks followed by a specific third character (for
instance,'??-' represents a '~' (tilde) character and '??)' represents a ']'). These trigraphs can
cause accidental confusion with other uses of two question marks.

For instance, the string

"(Date should be in the form ??-??-??)"

is transformed to

"(Date should be in the form ~~]"

but this transformation might not be intended.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Lexical Conventions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-28

MISRA C++:2008 Rule 2-5-1
Digraphs should not be used

Description
Rule Definition

Digraphs should not be used.

Rationale

Digraphs are a sequence of two characters that are supposed to be treated as a single character. The
checker flags use of these digraphs:

• <%, indicating [
• %>, indicating]
• <:, indicating {
• :>, indicating }
• %:, indicating #
• %:%:

When developing or reviewing code with digraphs, the developer or reviewer can incorrectly consider
the digraph as a sequence of separate characters.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Lexical Conventions
Category: Advisory

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 2-5-1

7-29

MISRA C++:2008 Rule 2-7-1
The character sequence /* shall not be used within a C-style comment

Description
Rule Definition

The character sequence /* shall not be used within a C-style comment.

Rationale

If your code contains a /* in a /* */ comment, it typically means that you have inadvertently
commented out code. See the example that follows.

Polyspace Implementation

You cannot justify a violation of this rule using source code annotations.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Use of /* in /* */ Comment

void setup(void);
void foo() {
 /* Initializer functions
 setup();
 /* Step functions */ //Noncompliant
}

In this example, the call to setup() is commented out because the ending */ is omitted, perhaps
inadvertently. The checker flags this issue by highlighting the /* in the /* */ comment.

Check Information
Group: Lexical Conventions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-30

MISRA C++:2008 Rule 2-7-2
Sections of code shall not be "commented out" using C-style comments

Description
Rule Definition

Sections of code shall not be "commented out" using C-style comments.

Rationale

C-style comments enclosed in /* */ do not support nesting. A comment beginning with /* ends at
the first */ even when the */ is intended as the end of a later nested comment. If a section of code
that is commented out already contains comments, you can encounter compilation errors (or at least
comment out less code than you intend).

Commenting out code is not a good practice. The commented out code can remain out of sync with
the surrounding code without causing compilation errors. Later, if you uncomment the code, you can
encounter unexpected issues.

Use comments only to explain aspects of the code that are not apparent from the code itself.

Polyspace Implementation

The checker uses internal heuristics to detect commented out code. For instance, characters such as
#, ;, { or } indicate comments that might potentially contain code. These comments are then
evaluated against other metrics to determine the likelihood of code masquerading as comment. For
instance, several successive words without a symbol in between reduces this likelihood.

The checker does not flag the following comments even if they contain code:

• Doxygen comments beginning with /** or /*!.
• Comments that repeat the same symbol several times, for instance, the symbol = here:

/* =====================================
 * A comment
 * =====================================*/

• Comments on the first line of a file.
• Comments that mix the C style (/* */) and C++ style (//).

The checker considers that these comments are meant for documentation purposes or entered
deliberately with some forethought.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

 MISRA C++:2008 Rule 2-7-2

7-31

Examples
Code Commented Out With C-Style Comments

#include <iostream>
/* class randInt {//Noncompliant
 public:
 int getRandInt();
};
*/

int getRandInt();

/* Function to print random integers*/
void printInteger() {
 /* int val = getRandInt();//Noncompliant
 * val++;
 * std::cout << val;*/
 std::cout << getRandInt();
}

This example contains two blocks of commented out code, that constitutes two rule violations.

Check Information
Group: Lexical Conventions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2020b

7 MISRA C++: 2008

7-32

MISRA C++:2008 Rule 2-7-3
Sections of code should not be "commented out" using C++-style comments

Description
Rule Definition

Sections of code should not be "commented out" using C++-style comments.

Rationale

Commenting out code is not a good practice. The commented out code can remain out of sync with
the surrounding code without causing compilation errors. Later, if you uncomment the code, you can
encounter unexpected issues.

Use comments only to explain aspects of the code that are not apparent from the code itself.

Polyspace Implementation

The checker uses internal heuristics to detect commented out code. For instance, characters such as
#, ;, { or } indicate comments that might potentially contain code. These comments are then
evaluated against other metrics to determine the likelihood of code masquerading as comment. For
instance, several successive words without a symbol in between reduces this likelihood.

The checker does not flag the following comments even if they contain code:

• Doxygen comments beginning with /// or //!.
• Comments that repeat the same symbol several times, for instance, the symbol = here:

// =====================================
// A comment
// =====================================*/

• Comments on the first line of a file.
• Comments that mix the C style (/* */) and C++ style (//).

The checker considers that these comments are meant for documentation purposes or entered
deliberately with some forethought.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Code Commented Out With C++-Style Comments

#include <iostream>
int getRandInt();

// Function to print random integers
void printInteger() {

 MISRA C++:2008 Rule 2-7-3

7-33

 // int val = getRandInt();
 // val++;
 // std::cout << val;
 std::cout << getRandInt();
}

This example contains a block of commented out code that violates the rule.

Check Information
Group: Lexical Conventions
Category: Advisory

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2020b

7 MISRA C++: 2008

7-34

MISRA C++:2008 Rule 2-10-1
Different identifiers shall be typographically unambiguous

Description
Rule Definition

Different identifiers shall be typographically unambiguous.

Rationale

When you use identifiers that are typographically close, you can confuse between them.

The identifiers should not differ by:

• The interchange of a lowercase letter with its uppercase equivalent.
• The presence or absence of the underscore character.
• The interchange of the letter O and the digit 0.
• The interchange of the letter I and the digit 1.
• The interchange of the letter I and the letter l.
• The interchange of the letter S and the digit 5.
• The interchange of the letter Z and the digit 2.
• The interchange of the letter n and the letter h.
• The interchange of the letter B and the digit 8.
• The interchange of the letters rn and the letter m.

Polyspace Implementation

The rule checker does not consider the fully qualified names of variables when checking this rule.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce different
results.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Typographically Ambiguous Identifiers

void func(void) {
 int id1_numval;
 int id1_num_val; //Non-compliant

 int id2_numval;
 int id2_numVal; //Non-compliant

 MISRA C++:2008 Rule 2-10-1

7-35

 int id3_lvalue;
 int id3_Ivalue; //Non-compliant

 int id4_xyZ;
 int id4_xy2; //Non-compliant

 int id5_zerO;
 int id5_zer0; //Non-compliant

 int id6_rn;
 int id6_m; //Non-compliant
}

In this example, the rule is violated when identifiers that can be confused for each other are used.

Check Information
Group: Lexical Conventions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-36

MISRA C++:2008 Rule 2-10-2
Identifiers declared in an inner scope shall not hide an identifier declared in an outer scope

Description
Rule Definition

Identifiers declared in an inner scope shall not hide an identifier declared in an outer scope.

Rationale

The rule flags situations where the same identifier name is used in two variable declarations, one in
an outer scope and the other in an inner scope.

int var;
...
{
...
 int var;
...
}

All uses of the name in the inner scope refers to the variable declared in the inner scope. However, a
developer or code reviewer can incorrectly assume that the usage refers to the variable declared in
the outer scope.

Polyspace Implementation

The rule checker flags all cases of variable shadowing including when:

• The same identifier name is used in an outer and inner named namespace.
• The same name is used for a class data member and a variable outside the class.
• The same name is used for a method in a base and derived class.

To exclude these cases, switch to the more modern standard AUTOSAR C++14 and check for the rule
AUTOSAR C++14 Rule A2-10-1.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Local Variable Hiding Global Variable

int varInit = 1;

void doSomething(void);

void step(void) {
 int varInit = 0; //Noncompliant
 if(varInit)

 MISRA C++:2008 Rule 2-10-2

7-37

 doSomething();
}

In this example, varInit defined in func hides the global variable varInit. The if condition refers
to the local varInit and the block is unreachable, but you might expect otherwise.

Loop Index Hiding Variable Outside Loop

void runSomeCheck(int);

void checkMatrix(int dim1, int dim2) {
 for(int index = 0; index < dim1; index++) {
 for(int index = 0; index < dim2; index++) { // Noncompliant
 runSomeCheck(index);
 }
 }
}

In this example, the variable index defined in the inner for loop hides the variable with the same
name in the outer loop.

Check Information
Group: Lexical Conventions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-38

MISRA C++:2008 Rule 2-10-3
A typedef name (including qualification, if any) shall be a unique identifier

Description
Rule Definition

A typedef name (including qualification, if any) shall be a unique identifier.

Rationale

The rule flags identifier declarations where the identifier name is the same as a previously declared
typedef name. When you use identifiers that are identical, you can confuse between them.

Polyspace Implementation

The checker does not flag situations where the conflicting names occur in different namespaces.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce different
results.

Additional Message in Report

A typedef name (including qualification, if any) shall be a unique identifier.

Identifier typeName should not be reused.

Already used as typedef name (fileName lineNumber).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Typedef Name Conflicting with Other Identifiers

namespace NS1 {
 typedef int WIDTH;
}

namespace NS2 {
 float WIDTH; //Compliant
}

void f1() {
 typedef int TYPE;
}

void f2() {
 float TYPE; //Noncompliant
}

 MISRA C++:2008 Rule 2-10-3

7-39

In this example, the declaration of TYPE in f2() conflicts with a typedef declaration in f1().

The checker does not flag the redeclaration of WIDTH because the two declarations belong to
different namespaces.

Check Information
Group: Lexical Conventions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-40

MISRA C++:2008 Rule 2-10-4
A class, union or enum name (including qualification, if any) shall be a unique identifier

Description
Rule Definition

A class, union or enum name (including qualification, if any) shall be a unique identifier.

Rationale

The rule flags identifier declarations where the identifier name is the same as a previously declared
class, union or typedef name. When you use identifiers that are identical, you can confuse between
them.

Polyspace Implementation

The checker does not flag situations where the conflicting names occur in different namespaces.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce different
results.

Additional Message in Report

A class, union or enum name (including qualification, if any) shall be a unique identifier.

Identifier tagName should not be reused.

Already used as tag name (fileName lineNumber).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Typedef Name Conflicting with Other Identifiers

void f1() {
 class floatVar {};
}

void f2() {
 float floatVar; //Noncompliant
}

In this example, the declaration of floatVar in f2() conflicts with a class declaration in f1().

Check Information
Group: Lexical Conventions
Category: Required

 MISRA C++:2008 Rule 2-10-4

7-41

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-42

MISRA C++:2008 Rule 2-10-5
The identifier name of a non-member object or function with static storage duration should not be
reused

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis” (Polyspace Bug Finder Access).

Rule Definition

The identifier name of a non-member object or function with static storage duration should not be
reused.

Rationale

The rule flags situations where the name of an identifier with static storage duration is reused. The
rule applies even if the identifiers belong to different namespaces because the reuse leaves the
chance that you mistake one identifier for the other.

Polyspace Implementation

The rule checker flags redefined functions only when there is a declaration.

The checker is not raised on unused code such as

• Noninstantiated templates
• Uncalled static or extern functions
• Uncalled and undefined local functions
• Unused types and variables

Bug Finder and Code Prover check this coding rule differently. The analyses can produce different
results.

Additional Message in Report

The identifier name of a non-member object or function with static storage duration should not be
reused.

Identifier name should not be reused.

Already used as static identifier with static storage duration (fileName lineNumber).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

 MISRA C++:2008 Rule 2-10-5

7-43

Examples
Reuse of Identifiers in Different Namespaces

namespace NS1 {
 static int WIDTH;
}

namespace NS2 {
 float WIDTH; //Noncompliant
}

In this example, the identifier name WIDTH is reused in the two namespaces NS1 and NS2.

Check Information
Group: Lexical Conventions
Category: Advisory

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-44

MISRA C++:2008 Rule 2-10-6
If an identifier refers to a type, it shall not also refer to an object or a function in the same scope

Description
Rule Definition

If an identifier refers to a type, it shall not also refer to an object or a function in the same scope.

Rationale

For compatibility with C, in C++, you are allowed to use the same name for a type and an object or
function. However, the name reuse can cause confusion during development or code review.

Polyspace Implementation

If the identifier is a function and the function is both declared and defined, then the violation is
reported only once.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce different
results.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Reuse of Name for Type and Object

struct vector{
 int x;
 int y;
 int z;
}vector; //Noncompliant

In this example, the name vector is used both for the structured data type and for an object of that
type.

Check Information
Group: Lexical Conventions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 2-10-6

7-45

MISRA C++:2008 Rule 2-13-1
Only those escape sequences that are defined in ISO/IEC 14882:2003 shall be used

Description
Rule Definition

Only those escape sequences that are defined in ISO/IEC 14882:2003 shall be used.

Rationale

Escape sequences are certain special characters represented in string and character literals. They
are written with a backslash (\) followed by a character.

The C++ Standard (ISO/IEC 14882:2003, Sec. 2.13.2) defines a list of escape sequences. See Escape
Sequences. Use of escape sequences (backslash followed by character) outside that list leads to
undefined behavior.

Additional Message in Report

Only those escape sequences that are defined in ISO/IEC 14882:2003 shall be used.

\char is not an ISO/IEC escape sequence.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Incorrect Escape Sequences

void func () {
 const char a[2] = "\k"; //Noncompliant
 const char b[2] = "\b"; //Compliant
}

In this example, \k is not a recognized escape sequence.

Check Information
Group: Lexical Conventions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-46

https://en.cppreference.com/w/cpp/language/escape
https://en.cppreference.com/w/cpp/language/escape

MISRA C++:2008 Rule 2-13-2
Octal constants (other than zero) and octal escape sequences (other than "\0") shall not be used

Description
Rule Definition

Octal constants (other than zero) and octal escape sequences (other than "\0") shall not be used.

Rationale

Octal constants are denoted by a leading zero. A developer or code reviewer can mistake an octal
constant as a decimal constant with a redundant leading zero.

Octal escape sequences beginning with \ can also cause confusion. Inadvertently introducing an 8 or
9 in the digit sequence after \ breaks the escape sequence and introduces a new digit. A developer or
code reviewer can ignore this issue and continue to treat the escape sequence as one digit.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Use of Octal Constants and Octal Escape Sequences

void func(void) {
 int busData[6];

 busData[0] = 100;
 busData[1] = 108;
 busData[2] = 052; //Noncompliant
 busData[3] = 071; //Noncompliant
 busData[4] = '\109'; //Noncompliant
 busData[5] = '\100'; //Noncompliant

}

The checker flags all octal constants (other than zero) and all octal escape sequences (other than \0).

In this example:

• The octal escape sequence contains the digit 9, which is not an octal digit. This escape sequence
has implementation-defined behavior.

• The octal escape sequence \100 represents the number 64, but the rule checker forbids this use.

Check Information
Group: Lexical Conventions
Category: Required

 MISRA C++:2008 Rule 2-13-2

7-47

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-48

MISRA C++:2008 Rule 2-13-3
A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned type

Description
Rule Definition

A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned type.

Rationale

The signedness of a constant is determined from:

• Value of the constant.
• Base of the constant: octal, decimal or hexadecimal.
• Size of the various types.
• Any suffixes used.

Unless you use a suffix u or U, another developer looking at your code cannot determine easily
whether a constant is signed or unsigned.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Lexical Conventions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 2-13-3

7-49

MISRA C++:2008 Rule 2-13-4
Literal suffixes shall be upper case

Description
Rule Definition

Literal suffixes shall be upper case.

Rationale

Literal constants can end with the letter l (el). Enforcing literal suffixes to be upper case removes
potential confusion between the letter l and the digit 1.

For consistency, use upper case constants for other suffixes such as U (unsigned) and F (float).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Use of Literal Constants with Lower Case Suffix

const int a = 0l; //Noncompliant
const int b = 0L; //Compliant

In this example, both a and b are assigned the same literal constant. However, from a quick glance,
one can mistakenly assume that a is assigned the value 01 (octal one).

Check Information
Group: Lexical Conventions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-50

MISRA C++:2008 Rule 2-13-5
Narrow and wide string literals shall not be concatenated

Description
Rule Definition

Narrow and wide string literals shall not be concatenated.

Rationale

Narrow string literals are enclosed in double quotes without a prefix. Wide string literals are
enclosed in double quotes with a prefix L outside the quotes. See string literals.

Concatenation of narrow and wide string literals can lead to undefined behavior.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Concatenation of Narrow and Wide String Literals

char array[] = "Hello" "World";
wchar_t w_array[] = L"Hello" L"World";
wchar_t mixed[] = "Hello" L"World"; //Noncompliant

In this example, in the initialization of the array mixed, the narrow string literal "Hello" is
concatenated with the wide string literal L"World".

Check Information
Group: Lexical Conventions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 2-13-5

7-51

https://en.cppreference.com/w/cpp/language/string_literal

MISRA C++:2008 Rule 3-1-1
It shall be possible to include any header file in multiple translation units without violating the One
Definition Rule

Description
Rule Definition

It shall be possible to include any header file in multiple translation units without violating the One
Definition Rule.

Rationale

If a header file with variable or function definitions appears in multiple inclusion paths, the header
file violates the One Definition Rule possibly leading to unpredictable behavior. For instance, a source
file includes the header file include.h and another header file, which also includes include.h.

Polyspace Implementation

The rule checker flags variable and function definitions in header files.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Basic Concepts
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-52

MISRA C++:2008 Rule 3-1-2
Functions shall not be declared at block scope

Description
Rule Definition

Functions shall not be declared at block scope.

Rationale

It is a good practice to place all declarations at the namespace level.

Additionally, if you declare a function at block scope, it is often not clear if the statement is a function
declaration or an object declaration with a call to the constructor.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Function Declarations at Block Scope

class A {
};

void b1() {
 void func(); //Noncompliant
 A a(); //Noncompliant
}

In this example, the declarations of func and a are in the block scope of b1.

The second function declaration can cause confusion because it is not clear if a is a function that
returns an object of type A or a is itself an object of type A.

Check Information
Group: Basic Concepts
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 3-1-2

7-53

MISRA C++:2008 Rule 3-1-3
When an array is declared, its size shall either be stated explicitly or defined implicitly by
initialization

Description
Rule Definition

When an array is declared, its size shall either be stated explicitly or defined implicitly by
initialization.

Rationale

Though you can declare an incomplete array type and later complete the type, specifying the array
size during the first declaration makes the subsequent array access less error-prone.

Additional Message in Report

When an array is declared, its size shall either be stated explicitly or defined implicitly by
initialization.

Size of array arrayName should be explicitly stated.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Array Size Unspecified During Declaration

int array[10];
extern int array2[]; //Noncompliant
int array3[]= {0,1,2};
extern int array4[10];

In the declaration of array2, the array size is unspecified.

Check Information
Group: Basic Concepts
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-54

MISRA C++:2008 Rule 3-2-1
All declarations of an object or function shall have compatible types

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis” (Polyspace Bug Finder Access).

Rule Definition

All declarations of an object or function shall have compatible types.

Rationale

If the declarations of an object or function in two different translation units have incompatible types,
the behavior is undefined.

Polyspace Implementation

Polyspace considers two types to be compatible if they have the same size and signedness in the
environment that you use. The checker is not raised on unused code such as

• Noninstantiated templates
• Uncalled static or extern functions
• Uncalled and undefined local functions
• Unused types and variables

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Compatible and Incompatible Definitions in Two Files

file1.cpp

typedef char char_t;
typedef signed short int16_t;
typedef signed long int64_t;

namespace bar {
 int64_t a;
 int16_t c;

};

file2.cpp

 MISRA C++:2008 Rule 3-2-1

7-55

typedef char char_t;
typedef signed int int32_t;

namespace bar {
 extern char_t c;// Noncompliant
 extern int32_t a;
 void foo(void){
 ++a;
 ++c;
 }
};

In this example, the variable bar::c is defined as a char in file2.cpp and as a signed short in
file1.cpp. In the target processor i386, the size of these types are not equal. Polyspace flags the
definition of bar::c.

The variable bar::a is defined as a long in file1.cpp and as an int in file2.cpp. In the target
processor i386, both int and long has a size of 32 bits. Because the definitions of bar::a is
compatible in both files, Polyspace does not raise a flag.

Check Information
Group: Basic Concepts
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-56

MISRA C++:2008 Rule 3-2-2
The One Definition Rule shall not be violated

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis” (Polyspace Bug Finder Access).

Rule Definition

The One Definition Rule shall not be violated.

Rationale

Violations of the One Definition Rule leads to undefined behavior.

Polyspace Implementation

The checker flags situations where the same function or object has multiple definitions and the
definitions differ by some token. The checker is not raised on unused code such as

• Noninstantiated templates
• Uncalled static or extern functions
• Uncalled and undefined local functions
• Unused types and variables

Additional Message in Report

The One Definition Rule shall not be violated.

Declaration of class className violates the One Definition Rule:

it conflicts with other declaration (fileName lineNumber).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Different Tokens in Same Type Definition

This example uses two files:

• file1.cpp:

typedef struct S //Noncompliant
{
 int x;
 int y;

 MISRA C++:2008 Rule 3-2-2

7-57

}S;
void foo(S& s){
//...
}

• file2.cpp:

typedef struct S
{
 int y;
 int x;
}S ;
void bar(S& s){
//...
}

In this example, both file1.cpp and file2.cpp define the structure S. However, the definitions
switch the order of the structure fields.

Check Information
Group: Basic Concepts
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-58

MISRA C++:2008 Rule 3-2-3
A type, object or function that is used in multiple translation units shall be declared in one and only
one file

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis” (Polyspace Bug Finder Access).

Rule Definition

A type, object or function that is used in multiple translation units shall be declared in one and only
one file.

Rationale

If you declare an identifier in a header file, you can include the header file in any translation unit
where the identifier is defined or used. In this way, you ensure consistency between:

• The declaration and the definition.
• The declarations in different translation units.

The rule enforces the practice of declaring external objects or functions in header files.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Basic Concepts
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 3-2-3

7-59

MISRA C++:2008 Rule 3-2-4
An identifier with external linkage shall have exactly one definition

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis” (Polyspace Bug Finder Access).

Rule Definition

An identifier with external linkage shall have exactly one definition.

Rationale

If an identifier has multiple definitions or no definitions, it can lead to undefined behavior.

Polyspace Implementation

The checker is not raised on unused code such as

• Noninstantiated templates
• Uncalled static extern or functions
• Uncalled and undefined local functions
• Unused types and variables

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Multiple Definitions of Identifier

This example uses two files:

• file1.cpp:

typedef signed int int32_t;

namespace NS {
 extern int32_t a;

 void foo(){
 a = 0;

 }
};

• file2.cpp:

typedef signed int int32_t;

7 MISRA C++: 2008

7-60

typedef signed long long int64_t;

namespace NS {
 extern int64_t a; //Noncompliant
 void bar(){
 ++a;

 }
};

The same identifier a is defined in both files.

Check Information
Group: Basic Concepts
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 3-2-4

7-61

MISRA C++:2008 Rule 3-3-1
Objects or functions with external linkage shall be declared in a header file

Description
Rule Definition

Objects or functions with external linkage shall be declared in a header file.

Rationale

If you declare a function or object in a header file, it is clear that the function or object is meant to be
accessed in multiple translation units. If you intend to access the function or object from a single
translation unit, declare it static or in an unnamed namespace.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Declaration in Header File Missing

This example uses two files:

• decls.h:

extern int x;

• file.cpp:

#include "decls.h"

int x = 0;
int y = 0; //Noncompliant
static int z = 0;

In this example, the variable x is declared in a header file but the variable y is not. The variable z is
also not declared in a header file but it is declared with the static specifier and does not have
external linkage.

Check Information
Group: Basic Concepts
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

7 MISRA C++: 2008

7-62

Introduced in R2013b

 MISRA C++:2008 Rule 3-3-1

7-63

MISRA C++:2008 Rule 3-3-2
If a function has internal linkage then all re-declarations shall include the static storage class
specifier

Description
Rule Definition

If a function has internal linkage then all re-declarations shall include the static storage class
specifier.

Rationale

If a function declaration has the static storage class specifier, it has internal linkage. Subsequent
redeclarations of the function have internal linkage even without the static specifier.

However, if you do not specify the static keyword explicitly, it is not immediately clear from a
declaration whether the function has internal linkage.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Missing static Specifier from Redeclaration

static void func1 ();
static void func2 ();

void func1() {} //Noncompliant
static void func2() {}

In this example, the function func1 is declared static but defined without the static specifier.

Check Information
Group: Basic Concepts
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-64

MISRA C++:2008 Rule 3-4-1
An identifier declared to be an object or type shall be defined in a block that minimizes its visibility

Description
Rule Definition

An identifier declared to be an object or type shall be defined in a block that minimizes its visibility.

Rationale

Defining variables with the minimum possible block scope reduces the possibility that they might
later be accessed unintentionally.

For instance, if an object is meant to be accessed in one function only, declare the object local to the
function.

Polyspace Implementation

The rule checker determines if an object is used in one block only. If the object is used in one block
but defined outside the block, the checker raises a violation.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Use of Global Variable in Single Function

static int countReset; //Noncompliant

volatile int check;

void increaseCount() {
 int count = countReset;
 while(check%2) {
 count++;
 }
}

In this example, the variable countReset is declared global used in one function only. A compliant
solution declares the variable local to the function to reduce its visibility.

Check Information
Group: Basic Concepts
Category: Required

 MISRA C++:2008 Rule 3-4-1

7-65

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-66

MISRA C++:2008 Rule 3-9-1
The types used for an object, a function return type, or a function parameter shall be token-for-token
identical in all declarations and re-declarations

Description
Rule Definition

The types used for an object, a function return type, or a function parameter shall be token-for-token
identical in all declarations and re-declarations.

Rationale

If a redeclaration is not token-for-token identical to the previous declaration, it is not clear from
visual inspection which object or function is being redeclared.

Polyspace Implementation

The rule checker compares the current declaration with the last seen declaration.

Additional Message in Report

The types used for an object, a function return type, or a function parameter shall be token-for-token
identical in all declarations and re-declarations.

Variable varName is not compatible with previous declaration.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Identical Declarations That Do Not Match Token for Token

typedef int* intptr;

int* map;
extern intptr map; //Noncompliant

intptr table;
extern intptr table; //Compliant

In this example, the variable map is declared twice. The second declaration uses a typedef which
resolves to the type of the first declaration. Because of the typedef, the second declaration is not
token-for-token identical to the first.

Check Information
Group: Basic Concepts
Category: Required

 MISRA C++:2008 Rule 3-9-1

7-67

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-68

MISRA C++:2008 Rule 3-9-2
typedefs that indicate size and signedness should be used in place of the basic numerical types

Description
Rule Definition

typedefs that indicate size and signedness should be used in place of the basic numerical types.

Rationale

When the amount of memory being allocated is important, using specific-length types makes it clear
how much storage is being reserved for each object.

Polyspace Implementation

The rule checker does not raise violations in templates that are not instantiated.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Direct Use of Basic Numerical Types

typedef unsigned int uint32_t;

unsigned int x = 0; //Noncompliant
uint32_t y = 0; //Compliant

In this example, the declaration of x is noncompliant because it uses the basic type int directly.

Check Information
Group: Basic Concepts
Category: Advisory

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 3-9-2

7-69

MISRA C++:2008 Rule 3-9-3
The underlying bit representations of floating-point values shall not be used

Description
Rule Definition

The underlying bit representations of floating-point values shall not be used.

Rationale

The underlying bit representations of floating point values vary across compilers. If you directly use
the underlying representation of floating point values, your program is not portable across
implementations.

Polyspace Implementation

The rule checker flags conversions from pointers to floating point types into pointers to integer types,
and vice versa.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Using Underlying Representation of Floating-Point Values

float fabs2(float f) {
 unsigned int* ptr = reinterpret_cast <unsigned int*> (&f); //Noncompliant
 *(ptr + 3) &= 0x7f;
 return f;
}

In this example, the reinterpret_cast attempts to cast a floating-point value to an integer and
access the underlying bit representation of the floating point value.

Check Information
Group: Basic Concepts
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-70

MISRA C++:2008 Rule 4-5-1
Expressions with type bool shall not be used as operands to built-in operators other than the
assignment operator =, the logical operators &&, ||, !, the equality operators == and !=, the unary &
operator, and the conditional operator

Description
Rule Definition

Expressions with type bool shall not be used as operands to built-in operators other than the
assignment operator =, the logical operators &&, ||, !, the equality operators == and !=, the unary &
operator, and the conditional operator.

Rationale

Operators other than the ones mentioned in the rule do not produce meaningful results with bool
operands. Use of bool operands with these operators can indicate programming errors. For instance,
you intended to use the logical operator || but used the bitwise operator | instead.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Compliant and Noncompliant Uses of bool Operands

void boolOperations() {
 bool lhs = true;
 bool rhs = false;

 int res;

 if(lhs & rhs) {} //Noncompliant
 if(lhs < rhs) {} //Noncompliant
 if(~rhs) {} //Noncompliant
 if(lhs ^ rhs) {} //Noncompliant
 if(lhs == rhs) {} //Compliant
 if(!rhs) {} //Compliant
 res = lhs? -1:1; //Compliant
}

In this example, bool operands do not violate the rule when used with the ==, ! and the ? operators.

Check Information
Group: Standard Conversions
Category: Required

 MISRA C++:2008 Rule 4-5-1

7-71

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-72

MISRA C++:2008 Rule 4-5-2
Expressions with type enum shall not be used as operands to built- in operators other than the
subscript operator [], the assignment operator =, the equality operators == and !=, the unary &
operator, and the relational operators <, <=, >, >=

Description
Rule Definition

Expressions with type enum shall not be used as operands to built- in operators other than the
subscript operator [], the assignment operator =, the equality operators == and !=, the unary &
operator, and the relational operators <, <=, >, >=.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Standard Conversions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 4-5-2

7-73

MISRA C++:2008 Rule 4-5-3
Expressions with type (plain) char and wchar_t shall not be used as operands to built-in operators
other than the assignment operator =, the equality operators == and !=, and the unary & operator N

Description
Rule Definition

Expressions with type (plain) char and wchar_t shall not be used as operands to built-in operators
other than the assignment operator =, the equality operators == and !=, and the unary & operator. N

Rationale

The C++03 Standard only requires that the characters '0' to '9' have consecutive values. Other
characters do not have well-defined values. If you use these characters in operations other than the
ones mentioned in the rule, you implicitly use their underlying values and might see unexpected
results.

Additional Message in Report

Expressions with type (plain) char and wchar_t shall not be used as operands to built-in operators
other than the assignment operator =, the equality operators == and !=, and the unary & operator. N

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Compliant and Noncompliant Uses of Character Operands

void charManipulations (char ch) {

 char initChar = 'a'; //Compliant
 char finalChar = 'z'; //Compliant

 if(ch == initChar) {} //Compliant
 if((ch >= initChar) && (ch <= finalChar)) {} //Noncompliant
 else if((ch >= '0') && (ch <= '9')) {} //Compliant by exception
}

In this example, character operands do not violate the rule when used with the = and == operators.
Character operands can also be used with relational operators as long as the comparison is
performed with the digits '0' to '9'.

Check Information
Group: Standard Conversions
Category: Required

7 MISRA C++: 2008

7-74

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 4-5-3

7-75

MISRA C++:2008 Rule 4-10-1
NULL shall not be used as an integer value

Description
Rule Definition

NULL shall not be used as an integer value.

Rationale

In C++, you can use the literals 0 and NULL as both an integer and a null pointer constant. However,
use of 0 as a null pointer constant or NULL as an integer can cause developer confusion.

This rule restricts the use of NULL to null pointer constants. MISRA C++:2008 Rule 4-10-2
restricts the use of the literal 0 to integers.

Polyspace Implementation

The checker flags assignment of NULL to an integer variable or binary operations involving NULL
and an integer. Assignments can be direct or indirect such as passing NULL as integer argument to a
function.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Compliant and Noncompliant Uses of NULL

#include <cstddef>

void checkInteger(int);
void checkPointer(int *);

void main() {
 checkInteger(NULL); //Noncompliant
 checkPointer(NULL); //Compliant
}

In this example, the use of NULL as argument to the checkInteger function is noncompliant
because the function expects an int argument.

Check Information
Group: Standard Conversions
Category: Required

7 MISRA C++: 2008

7-76

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2018a

 MISRA C++:2008 Rule 4-10-1

7-77

MISRA C++:2008 Rule 4-10-2
Literal zero (0) shall not be used as the null-pointer-constant

Description
Rule Definition

Literal zero (0) shall not be used as the null-pointer-constant.

Rationale

In C++, you can use the literals 0 and NULL as both an integer and a null pointer constant. However,
use of 0 as a null pointer constant or NULL as an integer can cause developer confusion.

This rule restricts the use of the literal 0 to integers. MISRA C++:2008 Rule 4-10-1 restricts the
use of NULL to null pointer constants.

Polyspace Implementation

The checker flags assignment of 0 to a pointer variable or binary operations involving 0 and a pointer.
Assignments can be direct or indirect such as passing 0 as pointer argument to a function.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Compliant and Noncompliant Uses of Literal 0
#include <cstddef>

void checkInteger(int);
void checkPointer(int *);

void main() {
 checkInteger(0); //Compliant
 checkPointer(0); //Noncompliant
}

In this example, the use of 0 as argument to the checkPointer function is noncompliant because the
function expects an int * argument.

Check Information
Group: Standard Conversions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

7 MISRA C++: 2008

7-78

Introduced in R2018a

 MISRA C++:2008 Rule 4-10-2

7-79

MISRA C++:2008 Rule 5-0-1
The value of an expression shall be the same under any order of evaluation that the standard permits

Description
Rule Definition

The value of an expression shall be the same under any order of evaluation that the standard permits.

Rationale

If an expression results in different values depending on the order of evaluation, its value becomes
implementation-defined.

Polyspace Implementation

Polyspace raises a violation if an expression satisfies any of these conditions:

• The same variable is modified more than once in the expression or it is both read and written.
• The expression allows more than one order of evaluation.
• The expression contains a single volatile object that occurs multiple times.
• The expression contains more than one volatile object.

Because volatile objects can change their value at anytime, an expression containing multiple
volatile variables or multiple instances of the same volatile variable might have different
results depending on the order of evaluation.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Variable Modified More Than Once in Expression
int a[10], b[10];
#define COPY_ELEMENT(index) (a[(index)]=b[(index)]) // Non-compliant

void main () {
 int i=0, k=0;

 COPY_ELEMENT (k); // Compliant
 COPY_ELEMENT (i++); // Violation happens on this line but macro definition is flagged.
}

In this example, the rule is violated by the statement COPY_ELEMENT(i++) because i++ occurs twice
and the order of evaluation of the two expressions is unspecified. Because COPY_ELEMENT is a macro,
Polyspace flags the macro definition and highlights the line where the violation occurs.

Variable Modified and Used in Multiple Function Arguments

void f (unsigned int param1, unsigned int param2) {}

void main () {

7 MISRA C++: 2008

7-80

 unsigned int i=0;
 f (i++, i); // Noncompliant
}

In this example, the rule is violated because it is unspecified whether the operation i++ occurs before
or after the second argument is passed to f. The call f(i++,i) can translate to either f(0,0) or
f(0,1).

Multiple volatile Objects in an Expression

volatile int a, b;
int mathOp(int x, int y);

int foo(void){
 int temp = mathOp(5,a) + mathOp(6,b);//Noncompliant
 return temp * mathOp(a,a);//Noncompliant
}

In this example, this rule is violated twice.

• The declaration of temp uses two volatile objects in the expression. Because the value of
volatile objects might change at any time, the expression might evaluate to different values
depending on the order of evaluation. Polyspace flags the second volatile object in the
expression.

• The return statement uses the same volatile object twice. Because the expression might have
different results depending on the order of evaluation, Polyspace raises this defect.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-1

7-81

MISRA C++:2008 Rule 5-0-2
Limited dependence should be placed on C++ operator precedence rules in expressions

Description
Rule Definition

Limited dependence should be placed on C++ operator precedence rules in expressions.

Rationale

Use parentheses to clearly indicate the order of evaluation.

Depending on operator precedence can cause the following issues:

• If you or another code reviewer reviews the code, the intended order of evaluation is not
immediately clear.

• It is possible that the result of the evaluation does not meet your expectations. For instance:

• In the operation *p++, it is possible that you expect the dereferenced value to be incremented.
However, the pointer p is incremented before the dereference.

• In the operation (x == y | z), it is possible that you expect x to be compared with y | z.
However, the == operation happens before the | operation.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Evaluation Order Dependent on Operator Precedence Rules

#include <cstdio>

void showbits(unsigned int x) {
 for(int i = (sizeof(int) * 8) - 1; i >= 0; i--) {
 (x & 1u << i) ? putchar('1') : putchar('0'); // Noncompliant
 }
 printf("\n");
}

In this example, the checker flags the operation x & 1u << i because the statement relies on
operator precedence rules for the << operation to happen before the & operation. If this is the
intended order, the operation can be rewritten as x & (1u << i).

Check Information
Group: Expressions
Category: Advisory

7 MISRA C++: 2008

7-82

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-2

7-83

MISRA C++:2008 Rule 5-0-3
A cvalue expression shall not be implicitly converted to a different underlying type

Description
Rule Definition

A cvalue expression shall not be implicitly converted to a different underlying type.

Rationale

This rule ensures that the result of the expression does not overflow when converted to a different
type.

Polyspace Implementation

Expressions flagged by this checker follow the detailed specifications for cvalue expressions from the
MISRA C++ documentation.

The underlying data type of a cvalue expression is the widest of operand data types in the expression.
For instance, if you add two variables, one of type int8_t (typedef for char) and another of type
int32_t (typedef for int), the addition has underlying type int32_t. If you assign the sum to a
variable of type int8_t, the rule is violated.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Implicit Conversion of Cvalue Expression

#include<cstdint>

void func ()
 {
 int32_t s32;
 int8_t s8;
 s32 = s8 + s8; //Noncompliant
 s32 = s32 + s8; //Compliant
 }

In this example, the rule is violated when two variables of type int8_t are added and the result is
assigned to a variable of type int32_t. The underlying type of the addition does not take into
account the integer promotion involved and is simply the widest of operand data types, in this case,
int8_t.

The rule is not violated if one of the operands has type int32_t and the result is assigned to a
variable of type int32_t. In this case, the underlying data type of the addition is the same as the
type of the variable to which the result is assigned.

7 MISRA C++: 2008

7-84

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-3

7-85

MISRA C++:2008 Rule 5-0-4
An implicit integral conversion shall not change the signedness of the underlying type

Description
Rule Definition

An implicit integral conversion shall not change the signedness of the underlying type.

Rationale

Some conversions from signed to unsigned data types can lead to implementation-defined behavior.
You can see unexpected results from the conversion.

Polyspace Implementation

The checker flags implicit conversions from a signed to an unsigned integer data type or vice versa.

The checker assumes that ptrdiff_t is a signed integer.

Additional Message in Report

An implicit integral conversion shall not change the signedness of the underlying type.

Implicit conversion of one of the binary + operands whose underlying types are typename_1 and
typename_2.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Implicit Conversions that Change Signedness

typedef char int8_t;
typedef unsigned char uint8_t;

void func()
 {
 int8_t s8;
 uint8_t u8;

 s8 = u8; //Noncompliant
 u8 = s8 + u8; //Noncompliant
 u8 = static_cast< uint8_t > (s8) + u8; //Compliant
}

In this example, the rule is violated when a variable with a variable with signed data type is implicitly
converted to a variable with unsigned data type or vice versa. If the conversion is explicit, as in the
preceding example, the rule violation does not occur.

7 MISRA C++: 2008

7-86

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-4

7-87

MISRA C++:2008 Rule 5-0-5
There shall be no implicit floating-integral conversions

Description
Rule Definition

There shall be no implicit floating-integral conversions.

Rationale

If you convert from a floating point to an integer type, you lose information. Unless you explicitly cast
from floating point to an integer type, it is not clear whether the loss of information is intended.
Additionally, if the floating-point value cannot be represented in the integer type, the behavior is
undefined.

Conversion from an integer to floating-point type can result in an inexact representation of the value.
The error from conversion can accumulate over later operations and lead to unexpected results.

Polyspace Implementation

The checker flags implicit conversions between floating-point types (float and double) and integer
types (short, int, etc.).

This rule takes precedence over 5-0-4 and 5-0-6 if they apply at the same time.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Conversion Between Floating Point and Integer Types

typedef signed int int32_t;
typedef float float32_t;

void func ()
 {
 float32_t f32;
 int32_t s32;
 s32 = f32; //Noncompliant
 f32 = s32; //Noncompliant
 f32 = static_cast< float32_t > (s32); //Compliant
 }

In this example, the rule is violated when a floating-point type is implicitly converted to an integer
type. The violation does not occur if the conversion is explicit.

Check Information
Group: Expressions

7 MISRA C++: 2008

7-88

Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-5

7-89

MISRA C++:2008 Rule 5-0-6
An implicit integral or floating-point conversion shall not reduce the size of the underlying type

Description
Rule Definition

An implicit integral or floating-point conversion shall not reduce the size of the underlying type.

Rationale

A conversion that reduces the size of the underlying type can result in loss of information. Unless you
explicitly cast to the narrower type, it is not clear whether the loss of information is intended.

Polyspace Implementation

The checker flags implicit conversions that reduce the size of a type.

If the conversion is to a narrower integer with a different sign, then rule 5-0-4 takes precedence over
rule 5-0-6. Only rule 5-0-4 is shown.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Conversion That Reduces Size of Type
typedef signed short int16_t;
typedef signed int int32_t;

void func ()
 {
 int16_t s16;;
 int32_t s32;
 s16 = s32; //Noncompliant
 s16 = static_cast< int16_t > (s32); //Compliant
 }

In this example, the rule is violated when a type is implicitly converted to a narrower type. The
violation does not occur if the conversion is explicit.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

7 MISRA C++: 2008

7-90

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-6

7-91

MISRA C++:2008 Rule 5-0-7
There shall be no explicit floating-integral conversions of a cvalue expression

Description
Rule Definition

There shall be no explicit floating-integral conversions of a cvalue expression.

Rationale

Expressions flagged by this checker follow the detailed specifications for cvalue expressions from the
MISRA C++ documentation.

If you evaluate an expression and later cast the result to a different type, the cast has no effect on the
underlying type of the evaluation (the widest of operand data types in the expression). For instance,
in this example, the result of an integer division is then cast to a floating-point type.

short num;
short den;
float res;
res= static_cast<float> (num/den);

However, a developer or code reviewer can expect that the evaluation uses the data type to which the
result is cast later. For instance, one can expect a floating-point division because of the later cast.

Additional Message in Report

There shall be no explicit floating-integral conversions of a cvalue expression.

Complex expression of underlying type typeBeforeConversion may only be cast to narrower
integer type of same signedness, however the destination type is typeAfterconversion.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Conversion of Division Result from Integer to Floating Point
void func() {
 short num;
 short den;
 short res_short;
 float res_float;

 res_float = static_cast<float> (num/den); //Noncompliant

 res_short = num/den;
 res_float = static_cast<float> (res_short); //Compliant

}

7 MISRA C++: 2008

7-92

In this example, the first cast on the division result violates the rule but the second cast does not.

• The first cast can lead to the incorrect expectation that the expression is evaluated with an
underlying type float.

• The second cast makes it clear that the expression is evaluated with the underlying type short.
The result is then cast to the type float.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-7

7-93

MISRA C++:2008 Rule 5-0-8
An explicit integral or floating-point conversion shall not increase the size of the underlying type of a
cvalue expression

Description
Rule Definition

An explicit integral or floating-point conversion shall not increase the size of the underlying type of a
cvalue expression.

Rationale

Expressions flagged by this checker follow the detailed specifications for cvalue expressions from the
MISRA C++ documentation.

If you evaluate an expression and later cast the result to a different type, the cast has no effect on the
underlying type of the evaluation (the widest of operand data types in the expression). For instance,
in this example, the sum of two short operands is cast to the wider type int.

short op1;
short op2;
int res;
res= static_cast<int> (op1 + op2);

However, a developer or code reviewer can expect that the evaluation uses the data type to which the
result is cast later. For instance, one can expect a sum with the underlying type int because of the
later cast.

Additional Message in Report

An explicit integral or floating-point conversion shall not increase the size of the underlying type of a
cvalue expression.

Complex expression of underlying type typeBeforeConversion may only be cast to narrower
integer type of same signedness, however the destination type is typeAfterconversion.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Conversion of Sum to Wider Integer Type

void func() {
 short op1;
 short op2;
 int res;

 res = static_cast<int> (op1 + op2); //Noncompliant
 res = static_cast<int> (op1) + op2; //Compliant

7 MISRA C++: 2008

7-94

}

In this example, the first cast on the sum violates the rule but the second cast does not.

• The first cast can lead to the incorrect expectation that the sum is evaluated with an underlying
type int.

• The second cast first converts one of the operands to int so that the sum is actually evaluated
with the underlying type int.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-8

7-95

MISRA C++:2008 Rule 5-0-9
An explicit integral conversion shall not change the signedness of the underlying type of a cvalue
expression

Description
Rule Definition

An explicit integral conversion shall not change the signedness of the underlying type of a cvalue
expression.

Rationale

Expressions flagged by this checker follow the detailed specifications for cvalue expressions from the
MISRA C++ documentation.

If you evaluate an expression and later cast the result to a different type, the cast has no effect on the
underlying type of the evaluation (the widest of operand data types in the expression).. For instance,
in this example, the sum of two unsigned int operands is cast to the type int.

unsigned int op1;
unsigned int op2;
int res;
res= static_cast<int> (op1 + op2);

However, a developer or code reviewer can expect that the evaluation uses the data type to which the
result is cast later. For instance, one can expect a sum with the underlying type int because of the
later cast.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Conversion of Sum to Wider Integer Type

typedef int int32_t;
typedef unsigned int uint32_t;

void func() {
 uint32_t op1;
 uint32_t op2;
 int32_t res;

 res = static_cast<int32_t> (op1 + op2); //Noncompliant
 res = static_cast<int32_t> (op1) +
 static_cast<int32_t> (op2); //Compliant

}

In this example, the first cast on the sum violates the rule but the second cast does not.

7 MISRA C++: 2008

7-96

• The first cast can lead to the incorrect expectation that the sum is evaluated with an underlying
type int32_t.

• The second cast first converts each of the operands to int32_t so that the sum is actually
evaluated with the underlying type int32_t.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-9

7-97

MISRA C++:2008 Rule 5-0-10
If the bitwise operators ~ and << are applied to an operand with an underlying type of unsigned char
or unsigned short, the result shall be immediately cast to the underlying type of the operand

Description
Rule Definition

If the bitwise operators ~ and << are applied to an operand with an underlying type of unsigned char
or unsigned short, the result shall be immediately cast to the underlying type of the operand.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-98

MISRA C++:2008 Rule 5-0-11
The plain char type shall only be used for the storage and use of character values

Description
Rule Definition

The plain char type shall only be used for the storage and use of character values.

Polyspace Implementation

The checker raises a violation when a value of signed or unsigned integer type is implicitly converted
to the plain char type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2015a

 MISRA C++:2008 Rule 5-0-11

7-99

MISRA C++:2008 Rule 5-0-12
Signed char and unsigned char type shall only be used for the storage and use of numeric values

Description
Rule Definition

Signed char and unsigned char type shall only be used for the storage and use of numeric values.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2015a

7 MISRA C++: 2008

7-100

MISRA C++:2008 Rule 5-0-13
The condition of an if-statement and the condition of an iteration- statement shall have type bool

Description
Rule Definition

The condition of an if-statement and the condition of an iteration- statement shall have type bool.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-13

7-101

MISRA C++:2008 Rule 5-0-14
The first operand of a conditional-operator shall have type bool

Description
Rule Definition

The first operand of a conditional-operator shall have type bool.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-102

MISRA C++:2008 Rule 5-0-15
Array indexing shall be the only form of pointer arithmetic

Description
Rule Definition

Array indexing shall be the only form of pointer arithmetic.

Rationale

You can traverse an array in two ways:

• Increment or decrement an array index, and then use the array index to access an element.
• Increment or decrement a pointer to the array and then dereference the pointer.

The first method is clearer and less error-prone.

All other forms of explicit pointer arithmetic introduce the risk of accessing unintended memory
locations.

Polyspace Implementation

The checker flags:

• Arithmetic operations on all pointers, for instance p+I, I+p and p-I, where p is a pointer and I
an integer..

• Array indexing on nonarray pointers.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-15

7-103

MISRA C++:2008 Rule 5-0-16
A pointer operand and any pointer resulting from pointer arithmetic using that operand shall both
address elements of the same array.

Description
Rule Definition

A pointer operand and any pointer resulting from pointer arithmetic using that operand shall both
address elements of the same array.

Rationale

It is undefined behavior when the result of a pointer arithmetic operation that uses a pointer to an
array element does not point to either:

• An element of the array.
• One past the last element of the array. For instance:

int arr[3];
int* res;
res = arr+3; // res points to one beyond arr

The rule applies to these operations. ptr is a pointer to an array element and int_exp is an integer
expression.

• ptr + int_exp
• int_exp + ptr
• ptr - int_exp
• ptr + +
• ++ptr
• --ptr
• ptr--
• ptr [int_exp]

Polyspace Implementation

• Single objects that are not part of an array are considered arrays of one element. For instance, in
this code example, arr_one is equivalent to an array of one element. Polyspace does not flag the
increment of pointer ptr_to_one because it points to one past the last element of arr_one.

void f_incr(int* x){
 int* ptr_to_one = x;
 ++ptr_to_one; // Compliant
}

void func(){
 int arr_one=1; // Equivalent to array of one element
 f_incr(&arr_one);
}

7 MISRA C++: 2008

7-104

• Polyspace does not flag the use of pointer parameters in pointer arithmetic operations when those
pointers point to arrays. For instance, in this code snippet, the use of &a1[2] in f1 is compliant
when you pass an array to f1.

void f1(int* const a1){
 int* b= &a1[2]; // Compliant
}
void f2(){
 int arr[3] {};
 f1(arr);
}

• In structures with multiple elements, Polyspace does not flag the result of a pointer arithmetic
operation on an element that results in a pointer that points to a different element if the pointer
points within the allocated memory of the structure or to one past the last element of the
structure.

For instance, in this code snippet, the assignment to ptr_to_struct is compliant because it
remains inside myStruct, even if it points outside myStruct.elem1. Using an index larger than
the element dimension to access the content of that element is not compliant, even if the resulting
address is within the allocated memory of the structure.

void func(){
 struct {
 char elem1[10];
 char elem2[10];
 } myStruct;

 char* ptr_to_struct = &myStruct.elem1[11]; //Compliant
 // Address of myStruct.elem1[11] is inside myStruct
 char val_to_struct = myStruct.elem1[11]; // Non-compliant
}

• In multidimensional arrays, Polyspace flags any use of indices that are larger than a subarray
dimension to access an element of that subarray. Polyspace does not flag the assignment of the
address of that same subarray element if the address is inside the allocated memory of the top-
level array.

For example, in this code snippet, the assignment to pointer ptr_to_arr is compliant because
the pointer points to an address that is within the allocated memory of multi_arr. The
assignment to variable arr_val is not compliant because the index used to access the subarray
element (3) is larger than the dimension of the subarray (2).

void func(){
 int multi_arr[5][2];

 // Assigned memory is inside top level array
 int* ptr_to_arr = &multi_arr[2][3]; //Compliant

 // Use of index 3 with subarray of size 2
 int arr_val = multi_arr[2][3]; // Non-compliant
}

• Polyspace flags the dereference of a pointer when that pointer points to one past the last element
of an array. For instance, in this code snippet, the assignment of ptr is compliant, but the
dereference of ptr is not. tab+3 is one past the last element of tab.

void derefPtr(){
 int tab[3] {};

 MISRA C++:2008 Rule 5-0-16

7-105

 int* ptr = tab+3; //Compliant
 int res = *(tab+3); // Non-compliant
}

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Pointer Arithmetic by Using Pointers to Array Elements

void f_incr(int* x)
{
 int* ptr_to_one = x;
 ++ptr_to_one; // Compliant
}

void f1(int* const a1)
{
 int* b = &a1[2]; // Compliant
}

int main()
{

 int arr_one = 1; // Equivalent to array of one element
 f_incr(&arr_one);

 int arr[3] {};
 f1(arr);

 struct {
 char elem1[10];
 char elem2[10];
 } myStruct;

 char* ptr_to_struct = &myStruct.elem1[11]; // Compliant
 ptr_to_struct = &myStruct.elem2[11]; //Non-compliant

 int tab[3] {1, 2, 3};
 int* ptr = &tab[2];
 int res = tab[2];
 ++ptr; // Compliant
 res = *ptr; //Non-compliant

 return 0;
}

In this example:

• The increment of ptr_to_one inside f_incr() is compliant because the operation results in a
pointer that points to one past the last element of array x. The integer that is passed to f_incr()
is equivalent to an array of one element.

• The operation on pointer parameter a1 inside f1() is compliant because the pointer points to
array arr.

7 MISRA C++: 2008

7-106

• The first assignment of ptr_to_struct is compliant because elem1[11] is still inside
myStruct. The second assignment of ptr_to_struct is not compliant because the result of the
operation does not point to either inside myStruct or to one past the last element of myStruct.

• The increment of ptr is compliant because the result of the operation points to one past the last
element of tab. The dereference of ptr on the next line is not compliant.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2021a

 MISRA C++:2008 Rule 5-0-16

7-107

MISRA C++:2008 Rule 5-0-17
Subtraction between pointers shall only be applied to pointers that address elements of the same
array

Description
Rule Definition

Subtraction between pointers shall only be applied to pointers that address elements of the same
array.

Polyspace Implementation

Use Bug Finder for this checker. The rule checker performs the same checks as Subtraction or
comparison between pointers to different arrays. Code Prover can fail to detect some
violations.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-108

MISRA C++:2008 Rule 5-0-18
>, >=, <, <= shall not be applied to objects of pointer type, except where they point to the same
array

Description
Rule Definition

>, >=, <, <= shall not be applied to objects of pointer type, except where they point to the same
array.

Polyspace Implementation

Use Bug Finder for this checker. The rule checker performs the same checks as Subtraction or
comparison between pointers to different arrays. Code Prover can fail to detect some
violations.

The checker ignores casts when showing the violation on relational operator use with pointers types.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-18

7-109

MISRA C++:2008 Rule 5-0-19
The declaration of objects shall contain no more than two levels of pointer indirection

Description
Rule Definition

The declaration of objects shall contain no more than two levels of pointer indirection.

Rationale

If you use pointers with more than two levels of indirection, a developer reading the code might find
it difficult to understand the behavior of the code.

Polyspace Implementation

Polyspace flags all declarations of objects that contain more than two levels of pointer indirection.

• If you use type aliases, the checker includes pointer indirections from the alias in the evaluation of
the level of indirection. For instance, in this code snippet, the declaration of var is non-compliant.
The type of var is const pointer to a const pointer to a pointer to char, which is three levels of
pointer indirection. The declaration of var2 has two levels of pointer indirection and is compliant.
using ptrToChar = char*;

void func()
{
 ptrToChar* const* const var = nullptr; //Non-compliant, 3 levels of indirection
 char* const* const var2 = nullptr; //Compliant, 2 levels of indirection
 //...
}

• If you pass an array to a function, the conversion of the array to a pointer to the first element of
the array is included in the evaluation of the level of indirection. For instance, in this code snippet,
parameter arrParam is non-compliant. The type of arrParam is a pointer to a pointer to a pointer
to char (three levels of pointer indirection). The declaration of arrVar is compliant because
arrVar has type array of pointer to pointer to char (two levels of pointer indirection).

void func(char** arrParam[]) //Non-compliant
{
 //...
 char** arrVar[5]; //Compliant
}

This checker does not flag the use of objects with more than two levels of indirection. For instance, in
this code snippet, the declaration of var is non-compliant, but the evaluation of the size of var is
compliant.

#include<iostream>

using charToPtr = char*;

void func()
{
 charToPtr* const* const var = nullptr; //Non-compliant

7 MISRA C++: 2008

7-110

 std::cout << sizeof(var) << std::endl; //Compliant

}

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-19

7-111

MISRA C++:2008 Rule 5-0-20
Non-constant operands to a binary bitwise operator shall have the same underlying type

Description
Rule Definition

Non-constant operands to a binary bitwise operator shall have the same underlying type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-112

MISRA C++:2008 Rule 5-0-21
Bitwise operators shall only be applied to operands of unsigned underlying type

Description
Rule Definition

Bitwise operators shall only be applied to operands of unsigned underlying type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-21

7-113

MISRA C++:2008 Rule 5-2-1
Each operand of a logical && or || shall be a postfix-expression

Description
Rule Definition

Each operand of a logical && or || shall be a postfix-expression.

Rationale

This rule effectively requires that operands of a logical && or || operation be appropriately
parenthesized. For instance, instead of a + b || c, the rule requires (a + b) || c or a + (b
|| c). In both compliant cases, the left operand of ||, that is (a + b) or b, is a primary expression
and therefore also a postfix expression. For more information on postfix expressions, see the C++03
Standard (Section 5.2).

Enclosing operands in parentheses improves readability of code and makes sure that the operations
occur in the order that the developer intends.

Polyspace Implementation

The checker raises a violation if a logical && or || operand is not a postfix expression.

A postfix expression can be a primary expression such as a simple identifier or a combination of
identifiers enclosed in parentheses, but also one of the following:

• Function call such as func().
• Array element access such as arr[].
• Structure member access such as aStructVar.aMember.

For the complete list of postfix expressions, see the C++03 Standard (Section 5.2).

The checker allows exceptions on associative chains such as (a && b && c) or (a || b || c).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Noncompliant and Compliant Expressions Involving Logical Operations

bool Operations(bool a, bool b, bool c, bool priority) {
 bool res;
 if(priority) {
 res = a && b || c; //Noncompliant
 }
 else {
 res = a && (b || c); //Compliant
 }

7 MISRA C++: 2008

7-114

 return res;
}

In this example, the expression a && b || c violates the rule because the right operand of && and
the left operand of || are not postfix expressions.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-1

7-115

MISRA C++:2008 Rule 5-2-2
A pointer to a virtual base class shall only be cast to a pointer to a derived class by means of
dynamic_cast

Description
Rule Definition

A pointer to a virtual base class shall only be cast to a pointer to a derived class by means of
dynamic_cast.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-116

MISRA C++:2008 Rule 5-2-3
Casts from a base class to a derived class should not be performed on polymorphic types

Description
Rule Definition

Casts from a base class to a derived class should not be performed on polymorphic types.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Advisory

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-3

7-117

MISRA C++:2008 Rule 5-2-4
C-style casts (other than void casts) and functional notation casts (other than explicit constructor
calls) shall not be used

Description
Rule Definition

C-style casts (other than void casts) and functional notation casts (other than explicit constructor
calls) shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-118

MISRA C++:2008 Rule 5-2-5
A cast shall not remove any const or volatile qualification from the type of a pointer or reference

Description
Rule Definition

A cast shall not remove any const or volatile qualification from the type of a pointer or reference.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-5

7-119

MISRA C++:2008 Rule 5-2-6
A cast shall not convert a pointer to a function to any other pointer type, including a pointer to
function type

Description
Rule Definition

A cast shall not convert a pointer to a function to any other pointer type, including a pointer to
function type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-120

MISRA C++:2008 Rule 5-2-7
An object with pointer type shall not be converted to an unrelated pointer type, either directly or
indirectly

Description
Rule Definition

An object with pointer type shall not be converted to an unrelated pointer type, either directly or
indirectly.

Polyspace Implementation

The checker flags all pointer conversions including between a pointer to a struct object and a
pointer to the first member of the same struct type.

Indirect conversions from a pointer to non-pointer type are not detected.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-7

7-121

MISRA C++:2008 Rule 5-2-8
An object with integer type or pointer to void type shall not be converted to an object with pointer
type

Description
Rule Definition

An object with integer type or pointer to void type shall not be converted to an object with pointer
type.

Polyspace Implementation

The checker allows an exception on zero constants.

Objects with pointer type include objects with pointer-to-function type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-122

MISRA C++:2008 Rule 5-2-9
A cast should not convert a pointer type to an integral type

Description
Rule Definition

A cast should not convert a pointer type to an integral type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Advisory

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-9

7-123

MISRA C++:2008 Rule 5-2-10
The increment (++) and decrement (--) operators should not be mixed with other operators in an
expression

Description
Rule Definition

The increment (++) and decrement (--) operators should not be mixed with other operators in an
expression.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Advisory

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-124

MISRA C++:2008 Rule 5-2-11
The comma operator, && operator and the || operator shall not be overloaded

Description
Rule Definition

The comma operator, && operator and the || operator shall not be overloaded.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-11

7-125

MISRA C++:2008 Rule 5-2-12
An identifier with array type passed as a function argument shall not decay to a pointer

Description
Rule Definition

An identifier with array type passed as a function argument shall not decay to a pointer.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-126

MISRA C++:2008 Rule 5-3-1
Each operand of the ! operator, the logical && or the logical || operators shall have type bool

Description
Rule Definition

Each operand of the ! operator, the logical && or the logical || operators shall have type bool.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-3-1

7-127

MISRA C++:2008 Rule 5-3-2
The unary minus operator shall not be applied to an expression whose underlying type is unsigned

Description
Rule Definition

The unary minus operator shall not be applied to an expression whose underlying type is unsigned.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-128

MISRA C++:2008 Rule 5-3-3
The unary & operator shall not be overloaded

Description
Rule Definition

The unary & operator shall not be overloaded.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-3-3

7-129

MISRA C++:2008 Rule 5-3-4
Evaluation of the operand to the sizeof operator shall not contain side effects

Description
Rule Definition

Evaluation of the operand to the sizeof operator shall not contain side effects.

Polyspace Implementation

The checker does not show a warning on volatile accesses and function calls

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-130

MISRA C++:2008 Rule 5-8-1
The right hand operand of a shift operator shall lie between zero and one less than the width in bits
of the underlying type of the left hand operand

Description
Rule Definition

The right hand operand of a shift operator shall lie between zero and one less than the width in bits
of the underlying type of the left hand operand.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-8-1

7-131

MISRA C++:2008 Rule 5-14-1
The right hand operand of a logical && or || operator shall not contain side effects

Description
Rule Definition

The right hand operand of a logical && or || operator shall not contain side effects.

Rationale

When evaluated, an expression with side effect modifies at least one of the variables in the
expression. For instance, n++ is an expression with side effect.

The right-hand operand of a:

• Logical && operator is evaluated only if the left-hand operand evaluates to true.
• Logical || operator is evaluated only if the left-hand operand evaluates to false.

In other cases, the right-hand operands are not evaluated, so side effects of the expression do not
take place. If your program relies on the side effects, you might see unexpected results in those
cases.

Polyspace Implementation

The checker flags logical && or || operators whose right-hand operands are expressions with side
effects.

The checker does not consider volatile accesses and function calls as potential side effects.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-132

MISRA C++:2008 Rule 5-18-1
The comma operator shall not be used

Description
Rule Definition

The comma operator shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-18-1

7-133

MISRA C++:2008 Rule 5-19-1
Evaluation of constant unsigned integer expressions should not lead to wrap-around

Description
Rule Definition

Evaluation of constant unsigned integer expressions should not lead to wrap-around.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-134

MISRA C++:2008 Rule 6-2-1
Assignment operators shall not be used in sub-expressions

Description
Rule Definition

Assignment operators shall not be used in sub-expressions.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-2-1

7-135

MISRA C++:2008 Rule 6-2-2
Floating-point expressions shall not be directly or indirectly tested for equality or inequality

Description
Rule Definition

Floating-point expressions shall not be directly or indirectly tested for equality or inequality.

Polyspace Implementation

The checker detects the use of == or != with floating-point variables or expressions. The checker
does not detect indirectly testing of equality, for instance, using the <= operator.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-136

MISRA C++:2008 Rule 6-2-3
Before preprocessing, a null statement shall only occur on a line by itself; it may be followed by a
comment, provided that the first character following the null statement is a white - space character

Description
Rule Definition

Before preprocessing, a null statement shall only occur on a line by itself; it may be followed by a
comment, provided that the first character following the null statement is a white - space character.

Polyspace Implementation

The checker considers a null statement as a line where the first character excluding comments is a
semicolon. The checker flags situations where:

• Comments appear before the semicolon.

For instance:

/* wait for pin */ ;

• Comments appear immediately after the semicolon without a white space in between.

For instance:

;// wait for pin

The checker also shows a violation when a second statement appears on the same line following the
null statement.

For instance:

; count++;

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-2-3

7-137

MISRA C++:2008 Rule 6-3-1
The statement forming the body of a switch, while, do while or for statement shall be a compound
statement

Description
Rule Definition

The statement forming the body of a switch, while, do ... while or for statement shall be a compound
statement.

Rationale

A compound statement is included in braces.

If a block of code associated with an iteration or selection statement is not contained in braces, you
can make mistakes about the association. For example:

• You can wrongly associate a line of code with an iteration or selection statement because of its
indentation.

• You can accidentally place a semicolon following the iteration or selection statement. Because of
the semicolon, the line following the statement is no longer associated with the statement even
though you intended otherwise.

This checker enforces the practice of adding braces following a selection or iteration statement even
for a single line in the body. Later, when more lines are added, the developer adding them does not
need to note the absence of braces and include them.

Polyspace Implementation

The checker flags for loops where the first token following a for statement is not a left brace, for
instance:

for (i=init_val; i > 0; i--)
 if (arr[i] < 0)
 arr[i] = 0;

Similar checks are performed for switch, for and do..while statements.

The second line of the message on the Result Details pane indicates which statement is violating the
rule. For instance, in the preceding example, the second line of the message states that the for loop
is violating the rule.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

7 MISRA C++: 2008

7-138

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-3-1

7-139

MISRA C++:2008 Rule 6-4-1
An if (condition) construct shall be followed by a compound statement The else keyword shall be
followed by either a compound statement, or another if statement

Description
Rule Definition

An if (condition) construct shall be followed by a compound statement. The else keyword shall be
followed by either a compound statement, or another if statement.

Additional Message in Report

An if (condition) construct shall be followed by a compound statement. The else keyword shall be
followed by either a compound statement, or another if statement.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-140

MISRA C++:2008 Rule 6-4-2
All if else if constructs shall be terminated with an else clause

Description
Rule Definition

All if ... else if constructs shall be terminated with an else clause.

Additional Message in Report

All if ... else if constructs shall be terminated with an else clause.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-4-2

7-141

MISRA C++:2008 Rule 6-4-3
A switch statement shall be a well-formed switch statement

Description
Rule Definition

A switch statement shall be a well-formed switch statement.

Polyspace Implementation

The checker flags these situations:

• A statement occurs between the switch statement and the first case statement.

For instance:

switch(ch) {
 int temp;
 case 1:
 break;
 default:
 break;
}

• A label or a jump statement such as goto or return occurs in the switch block.
• A variable is declared in a case statement (outside any block).

For instance:

switch(ch) {
 case 1:
 int temp;
 break;
 default:
 break;
}

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

7 MISRA C++: 2008

7-142

Introduced in R2013b

 MISRA C++:2008 Rule 6-4-3

7-143

MISRA C++:2008 Rule 6-4-4
A switch-label shall only be used when the most closely-enclosing compound statement is the body of
a switch statement

Description
Rule Definition

A switch-label shall only be used when the most closely-enclosing compound statement is the body of
a switch statement.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-144

MISRA C++:2008 Rule 6-4-5
An unconditional throw or break statement shall terminate every non - empty switch-clause

Description
Rule Definition

An unconditional throw or break statement shall terminate every non - empty switch-clause.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-4-5

7-145

MISRA C++:2008 Rule 6-4-6
The final clause of a switch statement shall be the default-clause

Description
Rule Definition

The final clause of a switch statement shall be the default-clause.

Polyspace Implementation

The checker detects switch statements that do not have a final default clause.

The checker does not raise a violation if the switch variable is an enum with finite number of values
and you have a case clause for each value. For instance:

enum Colours { RED, BLUE, GREEN } colour;

switch (colour) {
 case RED:
 break;
 case BLUE:
 break;
 case GREEN:
 break;
}

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-146

MISRA C++:2008 Rule 6-4-7
The condition of a switch statement shall not have bool type

Description
Rule Definition

The condition of a switch statement shall not have bool type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-4-7

7-147

MISRA C++:2008 Rule 6-4-8
Every switch statement shall have at least one case-clause

Description
Rule Definition

Every switch statement shall have at least one case-clause.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-148

MISRA C++:2008 Rule 6-5-1
A for loop shall contain a single loop-counter which shall not have floating type

Description
Rule Definition

A for loop shall contain a single loop-counter which shall not have floating type.

Polyspace Implementation

The checker flags these situations:

• The for loop index has a floating point type.
• More than one loop counter is incremented in the for loop increment statement.

For instance:

for(i=0, j=0; i<10 && j < 10;i++, j++) {}

• A loop counter is not incremented in the for loop increment statement.

For instance:

for(i=0; i<10;) {}

Even if you increment the loop counter in the loop body, the checker still raises a violation.
According to the MISRA C++ specifications, a loop counter is one that is initialized in or prior to
the loop expression, acts as an operand to a relational operator in the loop expression and is
modified in the loop expression. If the increment statement in the loop expression is missing, the
checker cannot find the loop counter modification and considers as if a loop counter is not
present.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-5-1

7-149

MISRA C++:2008 Rule 6-5-2
If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall only be used
as an operand to <=, <, > or >=

Description
Rule Definition

If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall only be used
as an operand to <=, <, > or >=.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-150

MISRA C++:2008 Rule 6-5-3
The loop-counter shall not be modified within condition or statement

Description
Rule Definition

The loop-counter shall not be modified within condition or statement.

Rationale

The for loop has a specific syntax for modifying the loop counter. A code reviewer expects
modification using that syntax. Modifying the loop counter elsewhere can make the code harder to
review.

Polyspace Implementation

The checker flags modification of a for loop counter in the loop body or the loop condition (the
condition that is checked to see if the loop must be terminated).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-5-3

7-151

MISRA C++:2008 Rule 6-5-4
The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains constant for the
duration of the loop

Description
Rule Definition

The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains constant for the
duration of the loop.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-152

MISRA C++:2008 Rule 6-5-5
A loop-control-variable other than the loop-counter shall not be modified within condition or
expression

Description
Rule Definition

A loop-control-variable other than the loop-counter shall not be modified within condition or
expression.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-5-5

7-153

MISRA C++:2008 Rule 6-5-6
A loop-control-variable other than the loop-counter which is modified in statement shall have type
bool

Description
Rule Definition

A loop-control-variable other than the loop-counter which is modified in statement shall have type
bool.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-154

MISRA C++:2008 Rule 6-6-1
Any label referenced by a goto statement shall be declared in the same block, or in a block enclosing
the goto statement

Description
Rule Definition

Any label referenced by a goto statement shall be declared in the same block, or in a block enclosing
the goto statement.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-6-1

7-155

MISRA C++:2008 Rule 6-6-2
The goto statement shall jump to a label declared later in the same function body

Description
Rule Definition

The goto statement shall jump to a label declared later in the same function body.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-156

MISRA C++:2008 Rule 6-6-3
The continue statement shall only be used within a well-formed for loop

Description
Rule Definition

The continue statement shall only be used within a well-formed for loop.

Polyspace Implementation

The checker flags the use of continue statements in:

• for loops that are not well-formed, that is, loops that violate rules 6-5-x.
• while loops.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-6-3

7-157

MISRA C++:2008 Rule 6-6-4
For any iteration statement there shall be no more than one break or goto statement used for loop
termination

Description
Rule Definition

For any iteration statement there shall be no more than one break or goto statement used for loop
termination.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-158

MISRA C++:2008 Rule 6-6-5
A function shall have a single point of exit at the end of the function

Description
Rule Definition

A function shall have a single point of exit at the end of the function.

Rationale

This rule requires that a return statement must occur as the last statement in the function body.
Otherwise, the following issues can occur:

• Code following a return statement can be unintentionally omitted.
• If a function that modifies some of its arguments has early return statements, when reading the

code, it is not immediately clear which modifications actually occur.

Polyspace Implementation

The checker flags these situations:

• A function has more than one return statement.
• A non-void function has one return statement only but the return statement is not the last

statement in the function.

A void function need not have a return statement. If a return statement exists, it need not be the
last statement in the function.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Statements
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-6-5

7-159

MISRA C++:2008 Rule 7-1-1
A variable which is not modified shall be const qualified

Description
Rule Definition

A variable which is not modified shall be const qualified.

Rationale

Declaring a variable const reduces the chances that you modify the variable by accident.

Polyspace Implementation

The checker flags function parameters or local variables that are not const-qualified but never
modified in the function body. Function parameters of integer, float, enum and boolean types are not
flagged.

If a variable is passed to another function by reference or pointers, the checker assumes that the
variable can be modified. These variables are not flagged.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Unmodified Local Variable

#include <string.h>

char returnNthCharacter (int n) {
 char* pwd = "aXeWdf10fg" ; //Noncompliant
 char nthCharacter;

 for(int i=0; i < strlen(pwd); i++) {
 if(i==n)
 nthCharacter = pwd[i];
 }
 return nthCharacter;
}

In this example, the pointer pwd is not const-qualified. However, beyond initialization with a
constant, it is not reassigned anywhere in the returnNthCharacter function.

Check Information
Group: Declarations
Category: Required

7 MISRA C++: 2008

7-160

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2018a

 MISRA C++:2008 Rule 7-1-1

7-161

MISRA C++:2008 Rule 7-1-2
A pointer or reference parameter in a function shall be declared as pointer to const or reference to
const if the corresponding object is not modified

Description
Rule Definition

A pointer or reference parameter in a function shall be declared as pointer to const or reference to
const if the corresponding object is not modified.

Polyspace Implementation

The checker flags pointers where the underlying object is not const-qualified but never modified in
the function body.

If a variable is passed to another function by reference or pointers, the checker assumes that the
variable can be modified. Pointers that point to these variables are not flagged.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Declarations
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2018a

7 MISRA C++: 2008

7-162

MISRA C++:2008 Rule 7-3-1
The global namespace shall only contain main, namespace declarations and extern "C" declarations

Description
Rule Definition

The global namespace shall only contain main, namespace declarations and extern "C" declarations.

Rationale

The rule makes sure that all names found at global scope are part of a namespace. Adhering to this
rule avoids name clashes and ensures that developers do not reuse a variable name, resulting in
compilation/linking errors, or shadow a variable name, resulting in possibly unexpected issues later.

Polyspace Implementation

Other than the main function, the checker flags all names used at global scope that are not part of a
namespace.

The checker does not flag names at global scope if they are declared in extern "C" blocks (C code
included within C++ code). However, if you use the option Ignore link errors (-no-extern-
c), these names are also flagged.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Declarations
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 7-3-1

7-163

MISRA C++:2008 Rule 7-3-2
The identifier main shall not be used for a function other than the global function main

Description
Rule Definition

The identifier main shall not be used for a function other than the global function main.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Declarations
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-164

MISRA C++:2008 Rule 7-3-3
There shall be no unnamed namespaces in header files

Description
Rule Definition

There shall be no unnamed namespaces in header files.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Declarations
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 7-3-3

7-165

MISRA C++:2008 Rule 7-3-4
using-directives shall not be used

Description
Rule Definition

using-directives shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Declarations
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-166

MISRA C++:2008 Rule 7-3-5
Multiple declarations for an identifier in the same namespace shall not straddle a using-declaration
for that identifier

Description
Rule Definition

Multiple declarations for an identifier in the same namespace shall not straddle a using-declaration
for that identifier.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Declarations
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 7-3-5

7-167

MISRA C++:2008 Rule 7-3-6
using-directives and using-declarations (excluding class scope or function scope using-declarations)
shall not be used in header files

Description
Rule Definition

using-directives and using-declarations (excluding class scope or function scope using-declarations)
shall not be used in header files.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Declarations
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-168

MISRA C++:2008 Rule 7-4-2
Assembler instructions shall only be introduced using the asm declaration

Description
Rule Definition

Assembler instructions shall only be introduced using the asm declaration.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Declarations
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 7-4-2

7-169

MISRA C++:2008 Rule 7-4-3
Assembly language shall be encapsulated and isolated

Description
Rule Definition

Assembly language shall be encapsulated and isolated.

Polyspace Implementation

The checker flags asm statements unless they are encapsulated in a function call.

For instance, the noncompliant asm statement below is in regular C code while the compliant asm
statement is encapsulated in a call to the function Delay.

void Delay (void)
 {
 asm("NOP");//Compliant
 }
void fn (void)
 {
 DoSomething();
 Delay();// Assembler is encapsulated
 DoSomething();
 asm("NOP"); //Noncompliant
 DoSomething();
 }

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Declarations
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-170

MISRA C++:2008 Rule 7-5-1
A function shall not return a reference or a pointer to an automatic variable (including parameters),
defined within the function

Description
Rule Definition

A function shall not return a reference or a pointer to an automatic variable (including parameters),
defined within the function.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Declarations
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 7-5-1

7-171

MISRA C++:2008 Rule 7-5-2
The address of an object with automatic storage shall not be assigned to another object that may
persist after the first object has ceased to exist

Description
Rule Definition

The address of an object with automatic storage shall not be assigned to another object that may
persist after the first object has ceased to exist.

Rationale

If an object continues to point to another object after the latter object ceases to exist, dereferencing
the first object leads to undefined behavior.

Polyspace Implementation

The checker flags situations where the address of a local variable is assigned to a pointer defined at
global scope.

The checker does not raise violations of this rule if:

• A function returns the address of a local variable. MISRA C++:2008 Rule 7-5-1 covers this
situation.

• The address of a variable defined at block scope is assigned to a pointer that is defined with
greater scope, but not global scope.

For instance:

 void foobar (void)
 {
 char * ptr;
 {
 char var;
 ptr = &var;
 }
 }

Only if the pointer is defined at global scope is a rule violation raised. For instance, the rule
checker flags the assignment here:

char * ptr;
void foobar (void)
 {
 char var;
 ptr = &var;
 }

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

7 MISRA C++: 2008

7-172

Examples
Address of Local Variable Assigned to Global Pointer

char * ptr;

void foo (void) {
 char varInFoo;
 ptr = &varInFoo; //Noncompliant
}

void bar (void) {
 char varInBar = *ptr;
}

void main() {
 foo();
 bar();
}

The assignment ptr = &varInFoo is noncompliant because the global pointer ptr might be
dereferenced outside the function foo, where the variable varInFoo is no longer in scope. For
instance, in this example, ptr is dereferenced in the function bar, which is called after foo
completes execution.

Check Information
Group: Declarations
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 7-5-2

7-173

MISRA C++:2008 Rule 7-5-3
A function shall not return a reference or a pointer to a parameter that is passed by reference or
const reference

Description
Rule Definition

A function shall not return a reference or a pointer to a parameter that is passed by reference or
const reference.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Declarations
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-174

MISRA C++:2008 Rule 7-5-4
Functions should not call themselves, either directly or indirectly

Description
Rule Definition

Functions should not call themselves, either directly or indirectly.

Polyspace Implementation

The checker reports each function that calls itself, directly or indirectly. Even if several functions are
involved in one recursion cycle, each function is individually reported.

You can calculate the total number of recursion cycles using the code complexity metric Number of
Recursions. Note that unlike the checker, the metric also considers implicit calls, for instance, to
compiler-generated constructors during object creation.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Declarations
Category: Advisory

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 7-5-4

7-175

MISRA C++:2008 Rule 8-0-1
An init-declarator-list or a member-declarator-list shall consist of a single init-declarator or member-
declarator respectively

Description
Rule Definition

An init-declarator-list or a member-declarator-list shall consist of a single init-declarator or member-
declarator respectively.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Declarators
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-176

MISRA C++:2008 Rule 8-3-1
Parameters in an overriding virtual function shall either use the same default arguments as the
function they override, or else shall not specify any default arguments

Description
Rule Definition

Parameters in an overriding virtual function shall either use the same default arguments as the
function they override, or else shall not specify any default arguments.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Declarators
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 8-3-1

7-177

MISRA C++:2008 Rule 8-4-1
Functions shall not be defined using the ellipsis notation

Description
Rule Definition

Functions shall not be defined using the ellipsis notation.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Declarators
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-178

MISRA C++:2008 Rule 8-4-2
The identifiers used for the parameters in a re-declaration of a function shall be identical to those in
the declaration

Description
Rule Definition

The identifiers used for the parameters in a re-declaration of a function shall be identical to those in
the declaration.

Polyspace Implementation

The checker detects mismatch in parameter names between:

• A function declaration and the corresponding definition.
• Two declarations of a function, provided they occur in the same file.

If the declarations occur in different files, the checker does not raise a violation for mismatch in
parameter names. Redeclarations in different files are forbidden by MISRA C++:2008 Rule
3-2-3.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Declarators
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 8-4-2

7-179

MISRA C++:2008 Rule 8-4-3
All exit paths from a function with non- void return type shall have an explicit return statement with
an expression

Description
Rule Definition

All exit paths from a function with non- void return type shall have an explicit return statement with
an expression.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Declarators
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-180

MISRA C++:2008 Rule 8-4-4
A function identifier shall either be used to call the function or it shall be preceded by &

Description
Rule Definition

A function identifier shall either be used to call the function or it shall be preceded by &.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Declarators
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 8-4-4

7-181

MISRA C++:2008 Rule 8-5-1
All variables shall have a defined value before they are used

Description
Rule Definition

All variables shall have a defined value before they are used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Declarators
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-182

MISRA C++:2008 Rule 8-5-2
Braces shall be used to indicate and match the structure in the non- zero initialization of arrays and
structures

Description
Rule Definition

Braces shall be used to indicate and match the structure in the non- zero initialization of arrays and
structures.

Rationale

The use of nested braces in initializer lists to match the structures of nested objects in arrays, unions,
and structs encourages you to consider the order of initialization of complex data types and makes
your code more readable. For example, the use of nested braces in the initialization of ex1 makes it
easier to see how the nested arrays arr1 and arr2 in struct ex1 are initialized.

struct Example
{
 int num;
 int arr1[2];
 int arr2[3];
};

//....
struct Example ex1 {1, {2, 3}, {4, 5, 6}}; //Compliant

The rule does not require the use of nested braces if you zero initialize an array, a union, or a struct
with nested structures are the top-level, for instance:

struct Example ex1 {}; //Compliant

Polyspace Implementation

If you non-zero initialize an array, union, or struct that contains nested structures and you do not use
nested braces to reflect the nested structure, Polyspace flags the first element of the first nested
structure in the initializer list. For instance, in this code snippet, Polyspace flags the number 2
because it corresponds to the first element of nested structure arr1 inside struct ex1.

struct Example
{
 int num;
 int arr1[2];
 int arr2[3];
};

//....
struct Example ex1 {1, 2, 3, 4, 5, 6}; // Non-compliant

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

 MISRA C++:2008 Rule 8-5-2

7-183

Examples
Missing Nested Braces in Initializer of Two-Dimensional Arrays

char arr1[2][3] {'a', 'b', 'c', 'd', 'e', 'f'}; //Non-compliant
char arr2[2][3] {{'a', 'b', 'c'}, {'d', 'e', 'f'}}; //Compliant
char arr_top_level[2][3] { }; //Compliant
char arr_sub_level[2][3] { {}, {'d', 'e', 'f'}}; //Non-compliant

In this example, two-dimensional array arr1 is non-compliant because the initializer list does not
reflect the nested structure of this array (two arrays of three elements each). The initialization of
arr2 uses nested braces to reflect the nested structure of the array and is compliant. Similarly, the
initialization of arr_top_level is compliant because it zero initializes the array at the top level.
Note that the initialization of arr_sub_level is non-compliant because zero-initializes only the first
sub-array while explicitly initializing all the elements of the other sub-array.

Check Information
Group: Declarators
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-184

MISRA C++:2008 Rule 8-5-3
In an enumerator list, the = construct shall not be used to explicitly initialize members other than the
first, unless all items are explicitly initialized

Description
Rule Definition

In an enumerator list, the = construct shall not be used to explicitly initialize members other than the
first, unless all items are explicitly initialized.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Declarators
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 8-5-3

7-185

MISRA C++:2008 Rule 9-3-1
const member functions shall not return non-const pointers or references to class-data

Description
Rule Definition

const member functions shall not return non-const pointers or references to class-data.

Polyspace Implementation

The checker flags a rule violation only if a const member function returns a non-const pointer or
reference to a nonstatic data member. The rule does not apply to static data members.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Classes
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-186

MISRA C++:2008 Rule 9-3-2
Member functions shall not return non-const handles to class-data

Description
Rule Definition

Member functions shall not return non-const handles to class-data.

Polyspace Implementation

The checker flags a rule violation only if a member function returns a non-const pointer or reference
to a nonstatic data member. The rule does not apply to static data members.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Classes
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 9-3-2

7-187

MISRA C++:2008 Rule 9-3-3
If a member function can be made static then it shall be made static, otherwise if it can be made
const then it shall be made const

Description
Rule Definition

If a member function can be made static then it shall be made static, otherwise if it can be made
const then it shall be made const.

Rationale

const member functions cannot modify the data members of the class. static member function
cannot modify the nonstatic data members of the class. If a member function does not need to modify
the nonstatic data members of the class, limit their access to data by declaring the member functions
as const or static. Such declaration clearly expresses and enforces the design intent. That is, if
you inadvertently attempt to modify a data member through a const member function, the compiler
catches the error. Without the const declaration, this kind of inadvertent error might lead to bugs
that are difficult to find or debug.

Polyspace Implementation

The checker performs these checks in this order:

1 The checker first checks if a class member function accesses a data member of the class.
Functions that do not access data members can be declared static.

2 The checker then checks functions that access data members to determine if the function
modifies any of the data members. Functions that do not modify data members can be declared
const.

A violation on a const member function means that the function does not even access a data member
of the class and can be declared static.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Explicitly Restrict Access for Member Functions that Do Not Modify Data Members

#include<cstdint>
void Connector(void);
class A
{
public:
 int16_t foo () // Noncompliant
 {
 return m_i;
 }

7 MISRA C++: 2008

7-188

 int16_t foo2 () // Noncompliant
 {
 Connector();// Might have side-effect
 return m_i;
 }
 int16_t foo3 () // Noncompliant
 {
 return m_s;
 }
 int16_t inc_m () // Compliant
 {
 return ++m_i;
 }
 int16_t& getref()//Noncompliant
 {
 return m_i_ref;
 }
private:
 int16_t m_i;
 static int16_t m_s;
 int16_t& m_i_ref;
};

In this example, Polyspace flags the functions foo, foo2, foo3, and getref as noncompliant.

• The functions foo and foo3 do not modify any nonstatic data members. Because their data access
is not explicitly restricted by declaring them as const, Polyspace flags these functions. To fix
these defects, declare foo and foo3 as const.

• The function foo2 does not explicitly modify any of the data members. Because it is not declared
as const, Polyspace flags the function. foo2 calls the global function Connector, which might
have side effects. Do not declare foo2 as a const function. In C++11 or later, const member
functions are expected to be thread-safe, but foo2 might not be thread-safe because of the side
effects of Connector. To avoid data races, keep foo2 as a nonconst function. Justify the defect by
using review information or code comments.

• The function getref does not modify any data members. Because it is not declared as const,
Polyspace flags it. Declaring getref as const resolves this defect, but that is not enough to
restrict write access of getref because it returns a nonconst reference to m_i_ref. To restrict
getref from modifying m_i_ref, the return type of getref must also be const.

Check Information
Group: Classes
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2018a

 MISRA C++:2008 Rule 9-3-3

7-189

MISRA C++:2008 Rule 9-5-1
Unions shall not be used

Description
Rule Definition

Unions shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Classes
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-190

MISRA C++:2008 Rule 9-6-2
Bit-fields shall be either bool type or an explicitly unsigned or signed integral type

Description
Rule Definition

Bit-fields shall be either bool type or an explicitly unsigned or signed integral type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Classes
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 9-6-2

7-191

MISRA C++:2008 Rule 9-6-3
Bit-fields shall not have enum type

Description
Rule Definition

Bit-fields shall not have enum type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Classes
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-192

MISRA C++:2008 Rule 9-6-4
Named bit-fields with signed integer type shall have a length of more than one bit

Description
Rule Definition

Named bit-fields with signed integer type shall have a length of more than one bit.

Rationale

Variables with signed integer bit-field types of length one might have values that do not meet
developer expectations. For instance, signed integer types of fixed width such as std16_t (from
cstdint) have a two's complement representation. In this representation, a single bit is just the sign
bit and the value might be 0 or -1.

Polyspace Implementation

The checker flags declarations of named variables having signed integer bit field types of length
equal to one.

Bit field types of length zero are not flagged.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Compliant and Noncompliant Bit-Field Types

#include <cstdint>

typedef struct
{
 std::uint16_t IOFlag :1; //Compliant - unsigned type
 std::int16_t InterruptFlag :1; //Noncompliant
 std::int16_t Register1Flag :2; //Compliant - Length more than one bit
 std::int16_t : 1; //Compliant - Unnamed
 std::int16_t : 0; //Compliant - Unnamed
 std::uint16_t SetupFlag :1; //Compliant - unsigned type
} InterruptConfigbits_t;

In this example, only the second bit-field declaration is noncompliant. A named variable is declared
with a signed type of length one bit.

Check Information
Group: Classes
Category: Required

 MISRA C++:2008 Rule 9-6-4

7-193

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-194

MISRA C++:2008 Rule 10-1-1
Classes should not be derived from virtual bases

Description
Rule Definition

Classes should not be derived from virtual bases.

Rationale

The use of virtual bases can lead to many confusing behaviors.

For instance, in an inheritance hierarchy involving a virtual base, the most derived class calls the
constructor of the virtual base. Intermediate calls to the virtual base constructor are ignored.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Use of Virtual Bases

class Base {};
class Intermediate: public virtual Base {}; //Noncompliant
class Final: public Intermediate {};

In this example, the rule checker raises a violation when the Intermediate class is derived from the
class Base with the virtual keyword.

The following behavior can be a potential source of confusion. When you create an object of type
Final, the constructor of Final directly calls the constructor of Base. Any call to the Base
constructor from the Intermediate constructor are ignored. You might see unexpected results if
you do not take into account this behavior.

Check Information
Group: Derived Classes
Category: Advisory

See Also
MISRA C++:2008 Rule 10-1-2

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 10-1-1

7-195

MISRA C++:2008 Rule 10-1-2
A base class shall only be declared virtual if it is used in a diamond hierarchy

Description
Rule Definition

A base class shall only be declared virtual if it is used in a diamond hierarchy.

Rationale

This rule is less restrictive than MISRA C++:2008 Rule 10-1-1. Rule 10-1-1 forbids the use of a
virtual base anywhere in your code because a virtual base can lead to potentially confusing behavior.

Rule 10-1-2 allows the use of virtual bases in the one situation where they are useful, that is, as a
common base class in diamond hierarchies.

For instance, the following diamond hierarchy violates rule 10-1-1 but not rule 10-1-2.

class Base {};
class Intermediate1: public virtual Base {};
class Intermediate2: public virtual Base {};
class Final: public Intermediate1, public Intermediate2 {};

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Derived Classes
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-196

MISRA C++:2008 Rule 10-1-3
An accessible base class shall not be both virtual and non-virtual in the same hierarchy

Description
Rule Definition

An accessible base class shall not be both virtual and non-virtual in the same hierarchy.

Rationale

The checker flags situations where the same class is inherited as a virtual base class and a non-virtual
base class in the same derived class. These situations defeat the purpose of virtual inheritance and
causes multiple copies of the base class sub-object in the derived class object.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Base Class Both Virtual and Non-Virtual in Same Hierarchy

class Base {};
class Intermediate1: virtual public Base {};
class Intermediate2: virtual public Base {};
class Intermediate3: public Base {};
class Final: public Intermediate1, Intermediate2, Intermediate3 {}; //Noncompliant

In this example, the class Base is inherited in Final both as a virtual and non-virtual base class. The
Final object contains at least two copies of a Base sub-object.

Check Information
Group: Derived Classes
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 10-1-3

7-197

MISRA C++:2008 Rule 10-2-1
All accessible entity names within a multiple inheritance hierarchy should be unique

Description
Rule Definition

All accessible entity names within a multiple inheritance hierarchy should be unique.

Polyspace Implementation

The checker flags data members from different classes with conflicting names if the same class
derives from these classes. For instance:

class B1
 {
 public:
 int count;
 void foo ();
 };
class B2
 {
 public:
 int count;
 void foo ();
 };

class D : public B1, public B2
 {
 public:
 void Bar ()
 {
 ++B1::count;
 B1::foo ();
 }
 };

If the data member access in the derived class is ambiguous, the analysis reports this issue as a
compilation error and not a coding rule violation. For instance, a compilation error occurs in the
preceding example if the class D is rewritten as:

class D : public B1, public B2
 {
 public:
 void Bar ()
 {
 ++count; // Is that B1::count or B2::count?
 foo (); // Is that B1::foo() or B2::foo()?
 }
 };

The checker does not check for conflicts between entities of different kinds, for instance, member
functions against data members.

7 MISRA C++: 2008

7-198

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Derived Classes
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 10-2-1

7-199

MISRA C++:2008 Rule 10-3-1
There shall be no more than one definition of each virtual function on each path through the
inheritance hierarchy

Description
Rule Definition

There shall be no more than one definition of each virtual function on each path through the
inheritance hierarchy.

Rationale

The checker flags virtual member functions that have multiple definitions on the same path in an
inheritance hierarchy. If a function is defined multiple times, it can be ambiguous which
implementation is used in a given function call.

Polyspace Implementation

The checker also raises a violation if a base class member function is redefined in the derived class
without the virtual keyword.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Virtual Function Redefined in Derived Class

class Base {
 public:
 virtual void foo() {
 }
};

class Intermediate1: public virtual Base {
 public:
 virtual void foo() { //Noncompliant
 }
};

class Intermediate2: public virtual Base {
 public:
 void bar() {
 foo(); // Calls Base::foo()
 }
};

class Final: public Intermediate1, public Intermediate2 {
};

7 MISRA C++: 2008

7-200

void main() {
 Intermediate2 intermediate2Obj;
 intermediate2Obj.bar(); // Calls Base::foo()
 Final finalObj;
 finalObj.bar(); //Calls Intermediate1::foo()
 //but you might expect Base::foo()
}

In this example, the virtual function foo is defined in the base class Base and also in the derived
class Intermediate1.

A potential source of confusion can be the following. The class Final derives from Intermediate1
and also derives from Base through another path using Intermediate2.

• When an Intermediate2 object calls the function bar that calls the function foo, the
implementation of foo in Base is called. An Intermediate2 object does not know of the
implementation in Intermediate1.

• However, when a Final object calls the same function bar that calls the function foo, the
implementation of foo in Intermediate1 is called because of dominance of the more derived
class.

You might see unexpected results if you do not take this behavior into account.

To prevent this issue, declare a function as pure virtual in the base class. For instance, you can
declare the class Base as follows:

class Base {
 public:
 virtual void foo()=0;
};

void Base::foo() {
 //You can still define Base::foo()
}

Check Information
Group: Derived Classes
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 10-3-1

7-201

MISRA C++:2008 Rule 10-3-2
Each overriding virtual function shall be declared with the virtual keyword

Description
Rule Definition

Each overriding virtual function shall be declared with the virtual keyword.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Derived Classes
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-202

MISRA C++:2008 Rule 10-3-3
A virtual function shall only be overridden by a pure virtual function if it is itself declared as pure
virtual

Description
Rule Definition

A virtual function shall only be overridden by a pure virtual function if it is itself declared as pure
virtual.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Derived Classes
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 10-3-3

7-203

MISRA C++:2008 Rule 11-0-1
Member data in non- POD class types shall be private

Description
Rule Definition

Member data in non- POD class types shall be private.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Member Access Control
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-204

MISRA C++:2008 Rule 12-1-1
An object's dynamic type shall not be used from the body of its constructor or destructor

Description
Rule Definition

An object's dynamic type shall not be used from the body of its constructor or destructor.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Special Member Functions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 12-1-1

7-205

MISRA C++:2008 Rule 12-1-2
All constructors of a class should explicitly call a constructor for all of its immediate base classes and
all virtual base classes

Description
Rule Definition

All constructors of a class should explicitly call a constructor for all of its immediate base classes and
all virtual base classes.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Special Member Functions
Category: Advisory

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-206

MISRA C++:2008 Rule 12-1-3
All constructors that are callable with a single argument of fundamental type shall be declared
explicit

Description
Rule Definition

All constructors that are callable with a single argument of fundamental type shall be declared
explicit.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Special Member Functions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 12-1-3

7-207

MISRA C++:2008 Rule 12-8-1
A copy constructor shall only initialize its base classes and the non- static members of the class of
which it is a member

Description
Rule Definition

A copy constructor shall only initialize its base classes and the non- static members of the class of
which it is a member.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Special Member Functions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-208

MISRA C++:2008 Rule 12-8-2
The copy assignment operator shall be declared protected or private in an abstract class

Description
Rule Definition

The copy assignment operator shall be declared protected or private in an abstract class.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Special Member Functions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 12-8-2

7-209

MISRA C++:2008 Rule 14-5-1
A non-member generic function shall only be declared in a namespace that is not an associated
namespace

Description
Rule Definition

A non-member generic function shall only be declared in a namespace that is not an associated
namespace.

Rationale

This rule forbids placing generic functions in the same namespace as class (struct) type, enum type,
or union type declarations. If the class, enum or union types are used as template parameters, the
presence of generic functions in the same namespace can cause unexpected call resolutions. Place
generic functions only in namespaces that cannot be associated with a class, enum or union type.

Consider the namespace NS that combines a class B and a generic form of operator==:

namespace NS {
 class B {};
 template <typename T> bool operator==(T, std::int32_t);
}

If you use class B as a template parameter for another generic class, such as this template class A:

template <typename T> class A {
 public:
 bool operator==(std::int64_t);
}

template class A<NS::B>;

the entire namespace NS is used for overload resolution when operators of class A are called. For
instance, if you call operator== with an int32_t argument, the generic operator== in the
namespace NS with an int32_t parameter is used instead of the operator== in the original
template class A with an int64_t parameter. You or another developer or code reviewer might
expect the operator call to resolve to the operator== in the original template class A.

Polyspace Implementation

For each generic function, the rule checker determines if the containing namespace also contains
declarations of class types, enum types, or union types. If such a declaration is found, the checker
flags a rule violation on the operator itself.

The checker also flags generic functions defined in the global namespace if the global namespace also
has class, enum or union declarations.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

7 MISRA C++: 2008

7-210

Examples
Generic Operator in Same Namespace as Class Type

#include <cstdint>

template <typename T> class Pair {
 std::int32_t item1;
 std::int32_t item2;
 public:
 bool operator==(std::int64_t ItemToCompare);
 bool areItemsEqual(std::int32_t itemValue) {
 return (*this == itemValue);
 }
};

namespace Operations {
 class Data {};
 template <typename T> bool operator==(T, std::int32_t); //Noncompliant
}

namespace Checks {
 bool checkConsistency();
 template <typename T> bool operator==(T, std::int32_t); //Compliant
}

template class Pair<Operations::Data>;

In this example, the namespace Operations violates the rule because it contains the class type Data
alongside the generic operator==. The namespace Checks does not violate the rule because the
only other declaration in the namespace, besides the generic operator==, is a function declaration.

In the method areItemsEqual in template class Pair<Operations::Data>, the == operation
invokes the generic operator== method in the Operations namespace. The invocation resolves to
this operator== method based on the argument data type (std_int32_t). This method is a better
match compared to the operator== method in the original template class Pair.

Check Information
Group: Templates
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 MISRA C++:2008 Rule 14-5-1

7-211

MISRA C++:2008 Rule 14-5-2
A copy constructor shall be declared when there is a template constructor with a single parameter
that is a generic parameter

Description
Rule Definition

A copy constructor shall be declared when there is a template constructor with a single parameter
that is a generic parameter.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Templates
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-212

MISRA C++:2008 Rule 14-5-3
A copy assignment operator shall be declared when there is a template assignment operator with a
parameter that is a generic parameter

Description
Rule Definition

A copy assignment operator shall be declared when there is a template assignment operator with a
parameter that is a generic parameter.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Templates
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 14-5-3

7-213

MISRA C++:2008 Rule 14-6-1
In a class template with a dependent base, any name that may be found in that dependent base shall
be referred to using a qualified-id or this->

Description
Rule Definition

In a class template with a dependent base, any name that may be found in that dependent base shall
be referred to using a qualified-id or this->

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Templates
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-214

MISRA C++:2008 Rule 14-6-2
The function chosen by overload resolution shall resolve to a function declared previously in the
translation unit

Description
Rule Definition

The function chosen by overload resolution shall resolve to a function declared previously in the
translation unit.

Rationale

In general, you cannot call a function before it is declared, so you expect a function call to resolve to
a previously declared function. However, in case of overload resolution of a function call inside a
template, this expectation might not be satisfied. The resolution of this overload occurs at the point of
template instantiation, not at the point of template definition. So, the call might resolve to a function
that is declared after the template definition and lead to unexpected results. See examples below.

To satisfy the expectation that a function call always resolves to a previously declared function,
declare the overloads of a function prior to calling it. Alternatively, use the scope resolution
operator :: or parenthesis to explicitly call a specific previously declared function and bypass the
overload resolution mechanism.

Polyspace Implementation

The checker flags a call to a function or operator in a function template definition if the function or
operator is declared after the template definition.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Function Call Resolves to Function Declared Later

void show (int);

namespace helpers {
 struct params {
 operator int () const;
 };
}

template <typename T> void displayParams(T const & arg) {
 show(arg); //Non-compliant
 :show(arg); //Compliant
 (show)(arg); //Compliant
}

namespace helpers {

 MISRA C++:2008 Rule 14-6-2

7-215

 void show (params const &);
}

void main() {
 helpers::params aParam;
 displayParams(aParam);
}

In this example, the call show(arg) in the template displayParams resolves to
helpers::show(), but a developer or code reviewer might not expect this call resolution, since
helpers::show() is declared later. Polyspace flags this call.

The calls ::show(arg) and (show)(arg) explicitly indicate the previously declared function
show() declared in the global namespace. Polyspace does not flag these calls.

Check Information
Group: Templates
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-216

MISRA C++:2008 Rule 14-7-3
All partial and explicit specializations for a template shall be declared in the same file as the
declaration of their primary template

Description
Rule Definition

All partial and explicit specializations for a template shall be declared in the same file as the
declaration of their primary template.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Templates
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 14-7-3

7-217

MISRA C++:2008 Rule 14-8-1
Overloaded function templates shall not be explicitly specialized

Description
Rule Definition

Overloaded function templates shall not be explicitly specialized.

Polyspace Implementation

The checker first checks within file scope to find overloads. The checker later looks for call to a
specialized template function later. As a result, the checker flags all specializations of overloaded
templates even if overloading occurs after the call.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Templates
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-218

MISRA C++:2008 Rule 14-8-2
The viable function set for a function call should either contain no function specializations, or only
contain function specializations

Description
Rule Definition

The viable function set for a function call should either contain no function specializations, or only
contain function specializations.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Templates
Category: Advisory

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 14-8-2

7-219

MISRA C++:2008 Rule 15-0-2
An exception object should not have pointer type

Description
Rule Definition

An exception object should not have pointer type.

Polyspace Implementation

The checker raises a violation if a throw statement throws an exception of pointer type.

The checker does not raise a violation if a NULL pointer is thrown as exception. Throwing a NULL
pointer is forbidden by MISRA C++:2008 Rule 15-1-2.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Exception Handling
Category: Advisory

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-220

MISRA C++:2008 Rule 15-0-3
Control shall not be transferred into a try or catch block using a goto or a switch statement

Description
Rule Definition

Control shall not be transferred into a try or catch block using a goto or a switch statement.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Exception Handling
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 15-0-3

7-221

MISRA C++:2008 Rule 15-1-1
The assignment-expression of a throw statement shall not itself cause an exception to be thrown

Description
Rule Definition

The assignment-expression of a throw statement shall not itself cause an exception to be thrown.

Rationale

In C++, you can use a throw statement to raise exceptions explicitly. The compiler executes such a
throw statement in two steps:

• First, it creates the argument for the throw statement. The compiler might call a constructor or
evaluate an assignment expression to create the argument object.

• Then, it raises the created object as an exception. The compiler tries to match the exception object
to a compatible handler.

If an unexpected exception is raised when the compiler is creating the expected exception in a throw
statement, the unexpected exception is raised instead of the expected one. Consider this code where
a throw statement raises an explicit exception of class myException.

class myException{
 myException(){
 msg = new char[10];
 //...
 }
 //...
};

foo(){
 try{
 //..
 throw myException();
 }
 catch(myException& e){
 //...
 }
}

During construction of the temporary myException object, the new operator can raise a bad_alloc
exception. In such a case, the throw statement raises a bad_alloc exception instead of
myException. Because myException was the expected exception, the catch block is incompatible
with bad_alloc. The bad_alloc exception becomes an unhandled exception. It might cause the
program to abort abnormally without unwinding the stack, leading to resource leak and security
vulnerabilities.

Unexpected exceptions arising from the argument of a throw statement can cause resource leaks
and security vulnerabilities. To prevent such unwanted outcome, avoid using expressions that might
raise exceptions as argument in a throw statement.

7 MISRA C++: 2008

7-222

Polyspace Implementation

Polyspace flags the expressions in throw statements that can raise an exception. Expressions that
can raise exceptions can include:

• Functions that are specified as noexcept(false)
• Functions that contain one or more explicit throw statements
• Constructors that perform memory allocation operations
• Expressions that involve dynamic casting

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Avoid Expressions That Can Raise Exceptions in throw Statements

This example shows how Polyspace flags the expressions in throw statements that can raise
unexpected exceptions.

int f_throw() noexcept(false);

class WithDynamicAlloc {
public:
 WithDynamicAlloc(int n) {
 m_data = new int[n];
 }
 ~WithDynamicAlloc() {
 delete[] m_data;
 }
private:
 int* m_data;
};

class MightThrow {
public:
 MightThrow(bool b) {
 if (b) {
 throw 42;
 }
 }
};

class Base {
 virtual void bar() =0;
};
class Derived: public Base {
 void bar();
};
class UsingDerived {
public:
 UsingDerived(const Base& b) {
 m_d =
 dynamic_cast<const Derived&>(b);

 MISRA C++:2008 Rule 15-1-1

7-223

 }
private:
 Derived m_d;
};
class CopyThrows {
public:
 CopyThrows() noexcept(true);
 CopyThrows(const CopyThrows& other) noexcept(false);
};
int foo(){
 try{
 //...
 throw WithDynamicAlloc(10); //Noncompliant
 //...
 throw MightThrow(false);//Noncompliant
 throw MightThrow(true);//Noncompliant
 //...
 Derived d;
 throw UsingDerived(d);// Noncompliant
 //...
 throw f_throw(); //Noncompliant
 CopyThrows except;
 throw except;//Noncompliant
 }
 catch(WithDynamicAlloc& e){
 //...
 }
 catch(MightThrow& e){
 //...
 }
 catch(UsingDerived& e){
 //...
 }
}

• When constructing a WithDyamicAlloc object by calling the constructor
WithDynamicAlloc(10), exceptions can be raised during dynamic memory allocation. Because
the expression WithDynamicAlloc(10) can raise an exception, Polyspace flags the throw
statement throw WithDynamicAlloc(10);

• When constructing a UsingDerived object by calling the constructor UsingDervide(),
exceptions can be raised during the dynamic casting operation. Because the expression
UsingDerived(d) can raise exceptions, Polyspace flags the statement throw
UsingDerived(d).

• In the function MightThrow(), exceptions can be raised depending on the input to the function.
Because Polyspace analyzes functions statically, it assumes that the function MightThrow() can
raise exceptions. Polyspace flags the statements throw MightThrow(false) and throw
MightThrow(true).

• In the statement throw except, the object except is copied by implicitly calling the copy
constructor of the class CopyThrows. Because the copy constructor is specified as
noexcept(false), Polyspace assumes that the copy operation might raise exceptions. Polyspace
flags the statement throw except

• Because the function f_throw() is specified as noexcept(false), Polyspace assumes that it
can raise exceptions. Polyspace flags the statement throw f_throw().

7 MISRA C++: 2008

7-224

Check Information
Group: Exception Handling
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 MISRA C++:2008 Rule 15-1-1

7-225

MISRA C++:2008 Rule 15-1-2
NULL shall not be thrown explicitly

Description
Rule Definition

NULL shall not be thrown explicitly.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Exception Handling
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-226

MISRA C++:2008 Rule 15-1-3
An empty throw (throw;) shall only be used in the compound- statement of a catch handler

Description
Rule Definition

An empty throw (throw;) shall only be used in the compound- statement of a catch handler.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Exception Handling
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 15-1-3

7-227

MISRA C++:2008 Rule 15-3-1
Exceptions shall be raised only after start-up and before termination of the program

Description
Rule Definition

Exceptions shall be raised only after start-up and before termination of the program.

Rationale

In c++, the process of exception handling runs during execution of main(), where exceptions arising
in different scopes are handled by exception handlers in the same or adjacent scopes. Before starting
the execution of main(), the compiler is in startup phase, and after finishing the execution of
main(), the compiler is in termination phase. During these two phases, the compiler performs a set
of predefined operations but does not execute any code.

If an exception is raised during either the startup phase or the termination phase, you cannot write
an exception handler that the compiler can execute in those phases. For instance, you might
implement main() as a function-try-catch block to handle exceptions. The catch blocks in
main() can handle only the exceptions raised in main(). None of the catch blocks can handle
exceptions raised during startup or termination phase. When such exceptions are raised, the compiler
might abnormally terminate the code execution without unwinding the stack. Consider this code
where the construction and destruction of the static object obj might cause an exception.

class A{
 A(){throw(0);}
 ~A(){throw(0)}
};

static A obj;

main(){
 //...
}

The static object obj is constructed by calling A() before main() starts, and it is destroyed by
calling ~A() after main() ends. When A() or ~A() raises an exception, no exception handler can be
matched with them. Based on the implementation, such an exception can result in program
termination without stack unwinding, leading to memory leak and security vulnerabilities.

Avoid operations that might raise an exception in the parts of your code that might be executed
before startup or after termination of the program. For instance, avoid operations that might raise
exceptions in the constructor and destructor of static or global objects.

Polyspace Implementation

Polyspace flags global or static variable declaration that uses a callable entity that might raise an
exception. For instance:

• Functions: When you call an initializer function or constructor directly to initialize a global or
static variable, Polyspace checks whether the function raises an exception and flags the variable

7 MISRA C++: 2008

7-228

declaration if the function might raise an exception. Polyspace deduces whether a function might
raise an exception regardless of its exception specification. For instance, If a noexcept
constructor raises an exception, Polyspace flags it. If the initializer or constructor calls another
function, Polyspace assumes the called function might raise an exception only if it is specified as
noexcept(<false>). Some standard library functions, such as the constructor of std::string,
uses pointers to functions to perform memory allocation, which might raise exceptions. Polyspace
does not flag the variable declaration when these functions are used.

• External function: When you call external functions to initialize a global or static variable,
Polyspace flags the declaration if the external function is specified as noexcept(<false>).

• Virtual function: When you call a virtual function to initialize a global or static variable, Polyspace
flags it if the virtual function is specified as noexcept(<false>) in any derived class. For
instance, if you use a virtual initializer function that is declared as noexcept(<true>) in the
base class, and noexcept(<false>) in a subsequent derived class, Polyspace flags it.

• Pointers to function: When you use a pointer to a function to initialize a global or static variable,
Polyspace assumes that pointer to function do not raise exceptions.

Polyspace ignores:

• Exceptions raised in destructors
• Exceptions raised in atext() operations

Polyspace also ignores the dynamic context when checking for exceptions. For instance, you might
initialize a global or static variable by using function that raises exceptions only in certain dynamic
context. Polyspace flags such a declaration even if the exception might never be raised. You can
justify such a violation using comments in Polyspace.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Avoid Exceptions Before main() Starts

This example shows how Polyspace flags construction or initialization of a global or static variable
that might raise an exception. Consider this code where static and global objects are initialized by
using various callable entities.

#include <stdexcept>
#include <string>
class C
{
public:
 C (){throw (0);}
 ~C (){throw (0);}
};
int LibraryFunc();
int LibraryFunc_noexcept_false() noexcept(false);
int LibraryFunc_noexcept_true() noexcept(true);
int g() noexcept {
 throw std::runtime_error("dead code");
 return 0;
}

 MISRA C++:2008 Rule 15-3-1

7-229

int f() noexcept {
 return g();
}
int init(int a) {
 if (a>10) {
 throw std::runtime_error("invalid case");
 }
 return a;
}
void* alloc(size_t s) noexcept {
 return new int[s];
}
int a = LibraryFunc() +
LibraryFunc_noexcept_true(); // Compliant
int c =
LibraryFunc_noexcept_false() + // Noncompliant
LibraryFunc_noexcept_true();
static C static_c; //Noncompliant
static C static_d; //Compliant
C &get_static_c(){
 return static_c;
}
C global_c; //Noncompliant
int a3 = f(); //Compliant
int b3 = g(); //Noncompliant
int a4 = init(5); //Noncompliant
int b5 = init(20); //Noncompliant
int* arr = (int*)alloc(5); //Noncompliant

int main(){
 //...
}

• The global pointer arr is initialized by using the function alloc(). Because alloc() uses new to
allocate memory, it can raise an exception when initializing arr during the startup of the program.
Polyspace flags the declaration of arr and highlights the use of new in the function alloc().

• The integer variable b3 is initialized by calling the function g(), which is specified as noexcept.
Polyspace deduces that the correct exception specification of g() is noexcept(false) because
it contains a throw() statement. Initializing the global variable b3 by using g() might raise an
exception when initializing arr during the startup of the program. Polyspace flags the declaration
of b3 and highlights the throw statement in g(). The declaration of a3 by calling f() is not
flagged. Because f() is a noexcept function that does not throw, and calls another noexcept
function, Polyspace deduces that f() does not raise an exception.

• The global variables a4 and b5 are initialized by calling the function init(). The function
init() might raise an exception in certain cases, depending on the context. Because Polyspace
deduces the exception specification of a function statically, it assumes that init() might raise an
exception regardless of context. Consequently, Polyspace flags the declarations of both a4 and b5,
even though init() raises an exception only when initializing b5.

• The global variable global_int is initialized by calling two external functions. The external
function LibraryFunc_noexcept_false() is specified as noexcept(false) and Polyspace
assumes that this external function might raise an exception. Polyspace flags the declaration of
global_int. Polyspace does not flag the declaration of a because it is initialized by calling
external functions that are not specified as noexcept(false).

7 MISRA C++: 2008

7-230

• The static variable static_c and the nonstatic global variable global_cis declared and
initialized by using the constructor of the class C, which might raise an exception. Polyspace flags
the declarations of these variables and highlights the throw() statement in the constructor of
class C. Polyspace does not flag the declaration of the unused static variable static_d, even
though its constructor might raise an exception. Because it is unused, static_d is not initialized
and its constructor is not called. Its declaration does not raise any exception.

Check Information
Group: Templates
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 MISRA C++:2008 Rule 15-3-1

7-231

MISRA C++:2008 Rule 15-3-2
There should be at least one exception handler to catch all otherwise unhandled exceptions

Description
Rule Definition

There should be at least one exception handler to catch all otherwise unhandled exceptions.

Polyspace Implementation

The checker shows a violation if there is no try/catch in the main function or the catch does not
handle all exceptions (with ellipsis ...). The rule is not checked if a main function does not exist.

The checker does not determine if an exception of an unhandled type actually propagates to main.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce different
results.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Exception Handling
Category: Advisory

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-232

MISRA C++:2008 Rule 15-3-3
Handlers of a function-try-block implementation of a class constructor or destructor shall not
reference non-static members from this class or its bases

Description
Rule Definition

Handlers of a function-try-block implementation of a class constructor or destructor shall not
reference non-static members from this class or its bases.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Exception Handling
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 15-3-3

7-233

MISRA C++:2008 Rule 15-3-4
Each exception explicitly thrown in the code shall have a handler of a compatible type in all call paths
that could lead to that point

Description
Rule Definition

Each exception explicitly thrown in the code shall have a handler of a compatible type in all call paths
that could lead to that point.

Rationale

In C++, when an operation raises an exception, the compiler tries to match the exception with a
compatible exception handler in the current and adjacent scopes. If no compatible exception handler
for a raised exception exists, the compiler invokes the function std::terminate() implicitly. The
function std::terminate() terminates the program execution in an implementation-defined
manner. That is, the exact process of program termination depends on the particular set of software
and hardware that you use. For instance, std::terminate() might invoke std::abort() to
abnormally abort the execution without unwinding the stack. If the stack is not unwound before
program termination, then the destructors of the variables in the stack are not invoked, leading to
resource leak and security vulnerabilities.

Consider this code where multiple exceptions are raised in the try block of code.

class General{/*... */};
class Specific : public General{/*...*/};
class Different{}
void foo() noexcept
{
 try{
 //...
 throw(General e);
 //..
 throw(Specific e);
 // ...
 throw(Different e);
 }
 catch (General& b){

 }
}

The catch block of code accepts references to the base class General. This catch block is compatible
with exceptions of the base class General and the derived class Specific. The exception of class
Different does not have a compatible handler. This unhandled exception violates this rule and
might result in resource leaks and security vulnerabilities.

Because unhandled exceptions can lead to resource leak and security vulnerabilities, match the
explicitly raised exceptions in your code with a compatible handler.

7 MISRA C++: 2008

7-234

Polyspace Implementation

• Polyspace flags a throw statement in a function if a compatible catch statement is absent in the
call path of the function. If the function is not specified as noexcept, Polyspace ignores it if its
call path lacks an entry point like main().

• Polyspace flags a throw statement that uses a catch(…) statement to handle the raised
exceptions.

• Polyspace does not flag rethrow statements, that is, throw statements within catch blocks.
• You might have compatible catch blocks for the throw statements in your function in a nested try-

catch block Polyspace ignores nested try-catch blocks. Justify throw statements that have
compatible catch blocks in a nested structure by using comments. Alternatively, use a single level
of try-catch in your functions.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Match throw Statements with Compatible Catch Blocks

This example shows how Polyspace flags operations that raise exceptions without any compatible
handler. Consider this code.

#include <stdexcept>

class MyException : public std::runtime_error {
public:
 MyException() : std::runtime_error("MyException") {}
};

void ThrowingFunc() {
 throw MyException(); //Noncompliant
}

void CompliantCaller() {
 try {
 ThrowingFunc();
 } catch (std::exception& e) {
 /* ... */
 }
}

void NoncompliantCaller() {
 ThrowingFunc();
}

int main(void) {
 CompliantCaller();
 NoncompliantCaller();
}

void GenericHandler() {
 try {
 throw MyException(); //Noncompliant

 MISRA C++:2008 Rule 15-3-4

7-235

 } catch (...) {
 /* ... */
 }
}

void TrueNoexcept() noexcept {
 try {
 throw MyException();//Compliant
 } catch (std::exception& e) {
 /* ... */
 }
}

void NotNoexcept() noexcept {
 try {
 throw MyException(); //Noncompliant
 } catch (std::logic_error& e) {
 /* ... */
 }
}

• The function ThrowingFunc() raises an exception. This function has multiple call paths:

• main()->CompliantCaller()->ThrowingFunc(): In this call path, the function
CompliantCaller() has a catch block that is compatible with the exception raised by
ThrowingFunc(). This call path is compliant with the rule.

• main()->NoncompliantCaller()->ThrowingFunc(): In this call path, there are no
compatible handlers for the exception raised by ThrowingFunc(). Polyspace flags the throw
statement in ThrowingFunc() and highlights the call path in the code.

The function main() is the entry point for both of these call paths. If main() is commented out,
Polyspace ignores both of these call paths. If you want to analyze a call path that lacks an entry
point, specify the top most calling function as noexcept.

• The function GenericHandler() raises an exception by using a throw statement and handles
the raised exception by using a generic catch-all block. Because Polyspace considers such catch-
all handler to be incompatible with exceptions that are raised by explicit throw statements,
Polyspace flags the throw statement in GenericHandler().

• The noexcept function TrueNoexcept() contains an explicit throwstatement and a catch block
of compatible type. Because this throw statement is matched with a compatible catch block, it is
compliant with the rule.

• The noexcept function NotNoexcept() contains an explicit throw statement, but the catch
block is not compatible with the raised exception. Because this throw statement is not matched
with a compatible catch block, Polyspace flags the throw statement in NotNoexcept().

Check Information
Group: Exception Handling
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

7 MISRA C++: 2008

7-236

Introduced in R2020b

 MISRA C++:2008 Rule 15-3-4

7-237

MISRA C++:2008 Rule 15-3-5
A class type exception shall always be caught by reference

Description
Rule Definition

A class type exception shall always be caught by reference.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Exception Handling
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-238

MISRA C++:2008 Rule 15-3-6
Where multiple handlers are provided in a single try-catch statement or function-try-block for a
derived class and some or all of its bases, the handlers shall be ordered most-derived to base class

Description
Rule Definition

Where multiple handlers are provided in a single try-catch statement or function-try-block for a
derived class and some or all of its bases, the handlers shall be ordered most-derived to base class.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Exception Handling
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 15-3-6

7-239

MISRA C++:2008 Rule 15-3-7
Where multiple handlers are provided in a single try-catch statement or function-try-block, any
ellipsis (catch-all) handler shall occur last

Description
Rule Definition

Where multiple handlers are provided in a single try-catch statement or function-try-block, any
ellipsis (catch-all) handler shall occur last.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Exception Handling
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-240

MISRA C++:2008 Rule 15-4-1
If a function is declared with an exception-specification, then all declarations of the same function (in
other translation units) shall be declared with the same set of type-ids

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis” (Polyspace Bug Finder Access).

Rule Definition

If a function is declared with an exception-specification, then all declarations of the same function (in
other translation units) shall be declared with the same set of type-ids.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Exception Handling
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 15-4-1

7-241

MISRA C++:2008 Rule 15-5-1
A class destructor shall not exit with an exception

Description
Rule Definition

A class destructor shall not exit with an exception.

Polyspace Implementation

The checker flags exceptions thrown in the body of the destructor. If the destructor calls another
function, the checker does not detect if that function throws an exception.

The checker does not detect these situations:

• A catch statement does not catch exceptions of all types that are thrown.

The checker considers the presence of a catch statement corresponding to a try block as
indication that an exception is caught.

• throw statements inside catch blocks

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Exception Handling
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-242

MISRA C++:2008 Rule 15-5-2
Where a function's declaration includes an exception-specification, the function shall only be capable
of throwing exceptions of the indicated type(s)

Description
Rule Definition

Where a function's declaration includes an exception-specification, the function shall only be capable
of throwing exceptions of the indicated type(s).

Polyspace Implementation

The checker flags situations where the data type of the exception thrown does not match the
exception type listed in the function specification.

For instance:

void goo () throw (Exception)
 {
 throw 21; // Non-compliant - int is not listed
 }

The checker limits detection to throw statements that are in the body of the function. If the function
calls another function, the checker does not detect if the called function throws an exception.

The checker does not detect throw statements inside catch blocks.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Exception Handling
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 15-5-2

7-243

MISRA C++:2008 Rule 15-5-3
The terminate() function shall not be called implicitly

Description
Rule Definition

The terminate() function shall not be called implicitly.

Polyspace Implementation

The checker flags these situations when the terminate() function can be called implicitly:

• An exception escapes uncaught. This also violates MISRA C++:2008 Rule 15-3-2. For
instance:

• Before an exception is caught, it escapes through another function that throws an uncaught
exception. For instance, a catch statement or exception handler invokes a copy constructor
that throws an uncaught exception.

• A throw expression with no operand rethrows an uncaught exception.
• A class destructor throws an exception. This also violates MISRA C++:2008 Rule 15-5-1.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Exception Handling
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2018a

7 MISRA C++: 2008

7-244

MISRA C++:2008 Rule 16-0-1
#include directives in a file shall only be preceded by other preprocessor directives or comments

Description
Rule Definition

#include directives in a file shall only be preceded by other preprocessor directives or comments.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 16-0-1

7-245

MISRA C++:2008 Rule 16-0-2
Macros shall only be #define 'd or #undef 'd in the global namespace

Description
Rule Definition

Macros shall only be #define 'd or #undef 'd in the global namespace.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-246

MISRA C++:2008 Rule 16-0-3
#undef shall not be used

Description
Rule Definition

#undef shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 16-0-3

7-247

MISRA C++:2008 Rule 16-0-4
Function-like macros shall not be defined

Description
Rule Definition

Function-like macros shall not be defined.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-248

MISRA C++:2008 Rule 16-0-5
Arguments to a function-like macro shall not contain tokens that look like preprocessing directives

Description
Rule Definition

Arguments to a function-like macro shall not contain tokens that look like preprocessing directives.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 16-0-5

7-249

MISRA C++:2008 Rule 16-0-6
In the definition of a function-like macro, each instance of a parameter shall be enclosed in
parentheses, unless it is used as the operand of # or ##

Description
Rule Definition

In the definition of a function-like macro, each instance of a parameter shall be enclosed in
parentheses, unless it is used as the operand of # or ##.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-250

MISRA C++:2008 Rule 16-0-7
Undefined macro identifiers shall not be used in #if or #elif preprocessor directives, except as
operands to the defined operator

Description
Rule Definition

Undefined macro identifiers shall not be used in #if or #elif preprocessor directives, except as
operands to the defined operator.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 16-0-7

7-251

MISRA C++:2008 Rule 16-0-8
If the # token appears as the first token on a line, then it shall be immediately followed by a
preprocessing token

Description
Rule Definition

If the # token appears as the first token on a line, then it shall be immediately followed by a
preprocessing token.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-252

MISRA C++:2008 Rule 16-1-1
The defined preprocessor operator shall only be used in one of the two standard forms

Description
Rule Definition

The defined preprocessor operator shall only be used in one of the two standard forms.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 16-1-1

7-253

MISRA C++:2008 Rule 16-1-2
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if or #ifdef
directive to which they are related

Description
Rule Definition

All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if or #ifdef
directive to which they are related.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-254

MISRA C++:2008 Rule 16-2-1
The preprocessor shall only be used for file inclusion and include guards

Description
Rule Definition

The preprocessor shall only be used for file inclusion and include guards.

Polyspace Implementation

The checker flags #ifdef and #define statements in files that are not include files.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 16-2-1

7-255

MISRA C++:2008 Rule 16-2-2
C++ macros shall only be used for: include guards, type qualifiers, or storage class specifiers

Description
Rule Definition

C++ macros shall only be used for: include guards, type qualifiers, or storage class specifiers.

Polyspace Implementation

The checker flags #define statements where the macros expand to something other than include
guards, type qualifiers or storage class specifiers such as static, inline, volatile, auto,
register and const.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-256

MISRA C++:2008 Rule 16-2-3
Include guards shall be provided

Description
Rule Definition

Include guards shall be provided.

Polyspace Implementation

The checker raises a violation if a header file does not contain an include guard.

For instance, this code uses an include guard for the #define and #include statements and does
not violate the rule:

// Contents of a header file
#ifndef FILE_H

#define FILE_H
#include "libFile.h"

#endif

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 16-2-3

7-257

MISRA C++:2008 Rule 16-2-4
The ', ", /* or // characters shall not occur in a header file name

Description
Rule Definition

The ', ", /* or // characters shall not occur in a header file name.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-258

MISRA C++:2008 Rule 16-2-5
The \ character should not occur in a header file name

Description
Rule Definition

The \ character should not occur in a header file name.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Advisory

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 16-2-5

7-259

MISRA C++:2008 Rule 16-2-6
The #include directive shall be followed by either a <filename> or "filename" sequence

Description
Rule Definition

The #include directive shall be followed by either a <filename> or "filename" sequence.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-260

MISRA C++:2008 Rule 16-3-1
There shall be at most one occurrence of the # or ## operators in a single macro definition

Description
Rule Definition

There shall be at most one occurrence of the # or ## operators in a single macro definition.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 16-3-1

7-261

MISRA C++:2008 Rule 16-3-2
The # and ## operators should not be used

Description
Rule Definition

The # and ## operators should not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Advisory

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-262

MISRA C++:2008 Rule 16-6-1
All uses of the #pragma directive shall be documented

Description
Rule Definition

All uses of the #pragma directive shall be documented.

Polyspace Implementation

To check this rule, you must list the pragmas that are allowed in source files by using the option
Allowed pragmas (-allowed-pragmas). If Polyspace finds a pragma not in the allowed pragma
list, a violation is raised.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Preprocessing Directives
Category: Document

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2016b

 MISRA C++:2008 Rule 16-6-1

7-263

MISRA C++:2008 Rule 17-0-1
Reserved identifiers, macros and functions in the Standard Library shall not be defined, redefined or
undefined

Description
Rule Definition

Reserved identifiers, macros and functions in the Standard Library shall not be defined, redefined or
undefined.

Rationale

Redefining or undefining reserved identifiers, macros and functions from the Standard Library is not
good practice. In some cases, these actions can lead to undefined behavior.

Polyspace Implementation

The checker raises a violation if identifiers and macros from the Standard Library are defined,
redefined or undefined.

In general, the checker considers identifiers and macros that begin with an underscore followed by
an uppercase letter as reserved for the Standard Library.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Library Introduction
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-264

MISRA C++:2008 Rule 17-0-2
The names of standard library macros and objects shall not be reused

Description
Rule Definition

The names of standard library macros and objects shall not be reused.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Library Introduction
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 17-0-2

7-265

MISRA C++:2008 Rule 17-0-3
The names of standard library functions shall not be overridden

Description
Rule Definition

The names of standard library functions shall not be overridden.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Library Introduction
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2018a

7 MISRA C++: 2008

7-266

MISRA C++:2008 Rule 17-0-5
The setjmp macro and the longjmp function shall not be used

Description
Rule Definition

The setjmp macro and the longjmp function shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Library Introduction
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 17-0-5

7-267

MISRA C++:2008 Rule 18-0-1
The C library shall not be used

Description
Rule Definition

The C library shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Language Support Library
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-268

MISRA C++:2008 Rule 18-0-2
The library functions atof, atoi and atol from library <cstdlib> shall not be used

Description
Rule Definition

The library functions atof, atoi and atol from library <cstdlib> shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Language Support Library
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 18-0-2

7-269

MISRA C++:2008 Rule 18-0-3
The library functions abort, exit, getenv and system from library <cstdlib> shall not be used

Description
Rule Definition

The library functions abort, exit, getenv and system from library <cstdlib> shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Language Support Library
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-270

MISRA C++:2008 Rule 18-0-4
The time handling functions of library <ctime> shall not be used

Description
Rule Definition

The time handling functions of library <ctime> shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Language Support Library
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 18-0-4

7-271

MISRA C++:2008 Rule 18-0-5
The unbounded functions of library <cstring> shall not be used

Description
Rule Definition

The unbounded functions of library <cstring> shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Language Support Library
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-272

MISRA C++:2008 Rule 18-2-1
The macro offsetof shall not be used

Description
Rule Definition

The macro offsetof shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Language Support Library
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 18-2-1

7-273

MISRA C++:2008 Rule 18-4-1
Dynamic heap memory allocation shall not be used

Description
Rule Definition

Dynamic heap memory allocation shall not be used.

Rationale

Dynamic memory allocation uses heap memory, which can lead to issues such as memory leaks, data
inconsistency, memory exhaustion, and nondeterministic behavior.

Polyspace Implementation

The checker flags uses of the malloc, calloc, realloc and free functions, and non-placement
versions of the new and delete operator.

The checker also flags uses of the alloca function. Though memory leak cannot happen with the
alloca function, other issues associated with dynamic memory allocation can still occur.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Language Support Library
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

7 MISRA C++: 2008

7-274

MISRA C++:2008 Rule 18-7-1
The signal handling facilities of <csignal> shall not be used

Description
Rule Definition

The signal handling facilities of <csignal> shall not be used.

Rationale

Signal handling functions such as signal contains undefined and implementation-specific behavior.

You have to be very careful when using signal to avoid these behaviors.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Check Information
Group: Language Support Library
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 18-7-1

7-275

MISRA C++:2008 Rule 19-3-1
The error indicator errno shall not be used

Description
Rule Definition

The error indicator errno shall not be used.

Rationale

Observing this rule encourages the good practice of not relying on errno to check error conditions.

Checking errno is not sufficient to guarantee absence of errors. Functions such as fopen might not
set errno on error conditions. Often, you have to check the return value of such functions for error
conditions.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Use of errno

#include <cstdlib>
#include <cerrno>

void func (const char* str) {
 errno = 0; // Noncompliant
 int i = atoi(str);
 if(errno != 0) { // Noncompliant
 //Handle Error
 }
}

The use of errno violates this rule. The function atoi is not required to set errno if the input string
cannot be converted to an integer. Checking errno later does not safeguard against possible failures
in conversion.

Check Information
Group: Diagnostic Library
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

7 MISRA C++: 2008

7-276

Introduced in R2013b

 MISRA C++:2008 Rule 19-3-1

7-277

MISRA C++:2008 Rule 27-0-1
The stream input/output library <cstdio> shall not be used

Description
Rule Definition

The stream input/output library <cstdio> shall not be used.

Rationale

Functions in cstdio such as gets, fgetpos, fopen, ftell, etc. have unspecified, undefined and
implementation-defined behavior.

For instance:

• The gets function:

char * gets (char * buf);

does not check if the number of characters provided at the standard input exceeds the buffer buf.
The function can have unexpected behavior when the input exceeds the buffer.

• The fopen function has implementation-specific behavior related to whether it sets errno on
errors or whether it accepts additional characters following the standard mode specifiers.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not Displayed”.

Examples
Use of gets
#include <cstdio>

void func()
{
 char array[10];
 fgets(array, sizeof array, stdin); //Noncompliant
}

The use of fgets violates this rule.

Check Information
Group: Input/output Library
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

7 MISRA C++: 2008

7-278

Introduced in R2013b

 MISRA C++:2008 Rule 27-0-1

7-279

Code Metrics

8

Comment Density
Ratio of number of comments to number of statements

Description
The metric specifies the ratio of comments to statements expressed as a percentage.

Based on HIS specifications:

• Multi-line comments count as one comment.

For instance, the following constitutes one comment:

// This function implements
// regular maintenance on an internal database

• Comments that start with the source code line do not count as comments.

For instance, this comment does not count as a comment for the metric but counts as a statement
instead:

 remove(i); // Remove employee record
• A statement typically ends with a semi-colon with some exceptions. Exceptions include semi-

colons in for loops or structure field declarations.

For instance, the initialization, condition and increment within parentheses in a for loop is
counted as one statement. The following counts as one statement:

for(i=0; i <100; i++)

If you also declare the loop counter at initialization, it counts as two statements.

The recommended lower limit for this metric is 20. For better readability of your code, try to place at
least one comment for every five statements.

To enforce limits on metrics:

• In the Polyspace user interface, see “Compute Code Complexity Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software Quality

Objectives”.

Examples
Comment Density Calculation

 struct record {
 char name[40];
 long double salary;
 int isEmployed;
};

struct record dataBase[100];

8 Code Metrics

8-2

struct record fetch(void);
void remove(int);

void maintenanceRoutines() {
// This function implements
// regular maintenance on an internal database
 int i;
 struct record tempRecord;

 for(i=0; i <100; i++) {
 tempRecord = fetch(); // This function fetches a record
 // from the database
 if(tempRecord.isEmployed == 0)
 remove(i); // Remove employee record
 //from the database
 }
}

In this example, the comment density is 38. The calculation is done as follows:

Code Running Total
of Comments

Running Total
of
Statements

struct record {
 char name[40];
 long double salary;
 int isEmployed;
};

0 1

struct record dataBase[100];
struct record fetch(void);
void remove(int);

0 4

void maintenanceRoutines() { 0 4
// This function implements
// regular maintenance on an internal database

1 4

int i;
struct record tempRecord;

1 6

for(i=0; i <100; i++) { 1 6
 tempRecord = fetch(); // This
 function fetches a record
 // from the database

2 7

if(tempRecord.isEmployed == 0)
 remove(i);
 // Remove employee record
 //from the database
 }
}

3 8

There are 3 comments and 8 statements. The comment density is 3/8*100 = 38.

 Comment Density

8-3

Metric Information
Group: File
Acronym: COMF
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

8 Code Metrics

8-4

Cyclomatic Complexity
Number of linearly independent paths in function body

Description
This metric calculates the number of decision points in a function and adds one to the total. A
decision point is a statement that causes your program to branch into two paths.

The recommended upper limit for this metric is 10. If the cyclomatic complexity is high, the code is
both difficult to read and can cause more orange checks. Therefore, try to limit the value of this
metric.

To enforce limits on metrics:

• In the Polyspace user interface, see “Compute Code Complexity Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software Quality

Objectives”.

Computation Details

The metric calculation uses the following rules to identify decision points:

• An if statement is one decision point.
• The statements for and while count as one decision point, even when no condition is evaluated,

for example, in infinite loops.
• Boolean combinations (&&, ||) do not count as decision points.
• case statements do not count as decision points unless they are followed by a break statement.

For instance, this code has a cyclomatic complexity of two:

switch(num) {
 case 0:
 case 1:
 case 2:
 break;
 case 3:
 case 4:
 }

• The calculation is done after preprocessing:

• Macros are expanded.
• Conditional compilation is applied. The blocks hidden by preprocessing directives are ignored.

Examples
Function with Nested if Statements

int foo(int x,int y)
{

 Cyclomatic Complexity

8-5

 int flag;
 if (x <= 0)
 /* Decision point 1*/
 flag = 1;
 else
 {
 if (x < y)
 /* Decision point 2*/
 flag = 1;
 else if (x==y)
 /* Decision point 3*/
 flag = 0;
 else
 flag = -1;
 }
 return flag;
}

In this example, the cyclomatic complexity of foo is 4.

Function with ? Operator

int foo (int x, int y) {
 if((x <0) ||(y < 0))
 /* Decision point 1*/
 return 0;
 else
 return (x > y ? x: y);
 /* Decision point 2*/
}

In this example, the cyclomatic complexity of foo is 3. The ? operator is the second decision point.

Function with switch Statement

#include <stdio.h>

int foo(int x,int y, int ch)
{
 int val = 0;
 switch(ch) {
 case 1:
 /* Decision point 1*/
 val = x + y;
 break;
 case 2:
 /* Decision point 2*/
 val = x - y;
 break;
 default:
 printf("Invalid choice.");
 }
 return val;
}

In this example, the cyclomatic complexity of foo is 3.

8 Code Metrics

8-6

Function with Nesting of Different Control-Flow Statements

int foo(int x,int y, int bound)
{
 int count = 0;
 if (x <= y)
 /* Decision point 1*/
 count = 1;
 else
 while(x>y) {
 /* Decision point 2*/
 x--;
 if(count< bound) {
 /* Decision point 3*/
 count++;
 }
 }
 return count;
}

In this example, the cyclomatic complexity of foo is 4.

Metric Information
Group: Function
Acronym: VG
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

 Cyclomatic Complexity

8-7

Estimated Function Coupling
Measure of complexity between levels of call tree

Description
This metric provides an approximate measure of complexity between different levels of the call tree.
The metric is defined as:

number of call occurrences – number of function definitions + 1

If there are more function definitions than function calls, the estimated function coupling result is
negative.

This metric:

• Counts function calls and function definitions in the current file only.

It does not count function definitions in a header file included in the current file.
• Treats static and inline functions like any other function.

Examples
Same Function Called Multiple Times

void checkBounds(int *);
int getUnboundedValue();

int getBoundedValue(void) {
 int num = getUnboundedValue();
 checkBounds(&num);
 return num;
}

void main() {
 int input1=getBoundedValue(), input2= getBoundedValue(), prod;
 prod = input1 * input2;
 checkBounds(&prod);
}

In this example, there are:

• 5 call occurrences. Both getBoundedValue and checkBounds are called twice and
getUnboundedValue is called once.

• 2 function definitions. main and getBoundedValue are defined.

Therefore, the Estimated function coupling is 5 - 2 + 1 = 4.

Negative Estimated Function Coupling

int foobar(int a, int b){

8 Code Metrics

8-8

 return a+b;
}

int bar(int b){
 return b+2;
}

int foo(int a){
 return a<<2;
}

int main(int x){
 foobar(x,x+2);
 return 0;
}

This example shows how you can get a negative estimated function coupling result. In this example,
you see:

• 1 function call in main.
• 4 defined functions: foobar, bar, foo, and main.

Therefore, the estimated function coupling is 1 - 4 + 1 = -2.

Metric Information
Group: File
Acronym: FCO
HIS Metric: No

See Also
Number of Call Occurrences | Calculate code metrics (-code-metrics)

 Estimated Function Coupling

8-9

Higher Estimate of Local Variable Size
Total size of all local variables in function

Description
This metric provides a conservative estimate of the total size of local variables in a function. The
metric is the sum of the following sizes in bytes:

• Size of function return value
• Sizes of function parameters
• Sizes of local variables
• Additional padding introduced for memory alignment

Your actual stack usage due to local variables can be different from the metric value.

• Some of the variables are stored in registers instead of on the stack.
• Your compiler performs variable liveness analysis to enable certain memory optimizations. For

instance, compilers store the address to which the execution returns following the function call.
When computing this metric, Polyspace does not consider these optimizations.

• Your compiler uses additional memory during a function call. When computing this metric,
Polyspace does not consider this hidden memory usage.

However, the metric provides a reasonable estimate of the stack usage due to local variables.

To determine the sizes of basic types, the software uses your specifications for Target processor
type (-target). The metric also takes into account #pragma pack directives in your code.

Examples
All Variables of Same Type

int flag();

int func(int param) {
 int var_1;
 int var_2;
 if (flag()) {
 int var_3;
 int var_4;
 } else {
 int var_5;
 }
}

In this example, assuming 4 bytes for int, the higher estimate of local variable size for funcis 28.
The breakup of the size is shown in this table.

8 Code Metrics

8-10

Variable Size (in Bytes) Running Total
Return value 4 4
Parameter param 4 8
Local variables var_1 and
var_2

4+4=8 16

Local variables defined in the if
condition

(4+4)+4=12

The size of variables in the first
branch is eight bytes. The size
in the second branch is four
bytes. The sum of the two
branches is 12 bytes.

28

No padding is introduced for memory alignment because all the variables involved have the same
type.

Variables of Different Types

char func(char param) {
 int var_1;
 char var_2;
 double var_3;
}

In this example, assuming one byte for char, four bytes for int and eight bytes for double and four
bytes for alignment, the higher estimate of local variable size for func is 20. The alignment is usually
the word size on your platform. In your Polyspace project, you specify the alignment through your
target processor. For more information, see the Alignment column in Target processor type (-
target).

The breakup of the size is shown in this table.

Variable Size (in Bytes) Running Total
Return value 1 1
Additional padding introduced
before param is stored

0

No memory alignment is
required because the next
variable param has the same
size.

1

Parameter param 1 2
Additional padding introduced
before var_1 is stored

2

Memory must be aligned using
padding because the next
variable var_1 requires four
bytes. The storage must start
from a memory address at a
multiple of four.

4

 Higher Estimate of Local Variable Size

8-11

Variable Size (in Bytes) Running Total
var_1 4 8
Additional padding introduced
before var_2 is stored

0

No memory alignment is
required because the next
variable var_2 has smaller size.

8

var_2 1 9
Additional padding introduced
before var_3 is stored

3

Memory must be aligned using
padding because the next
variable var_3 has eight bytes.
The storage must start from a
memory address at a multiple of
the alignment, four bytes.

12

var_3 8 20

The rules for the amount of padding are:

• If the next variable stored has the same or smaller size, no padding is required.
• If the next variable has a greater size:

• If the variable size is the same as or less than the alignment on the platform, the amount of
padding must be sufficient so that the storage address is a multiple of its size.

• If the variable size is greater than the alignment on the platform, the amount of padding must
be sufficient so that the storage address is a multiple of the alignment.

C++ Methods and Objects

class MySimpleClass {
 public:

 MySimpleClass() {};

 MySimpleClass(int) {};

 ~MySimpleClass() {};
};

int main() {
 MySimpleClass c;
 return 0;
}

In this example, the estimated local variable sizes are:

• Constructor MySimpleClass::MySimpleClass(): Four bytes.

The size comes from the this pointer, which is an implicit argument to the constructor. You
specify the pointer size using the option Target processor type (-target).

8 Code Metrics

8-12

• Constructor MySimpleClass::MySimpleClass(int): Eight bytes.

The size comes from the this pointer and the int argument.
• Destructor MySimpleClass::~MySimpleClass(): Four bytes.

The size comes from the this pointer.
• main(): Five bytes.

The size comes from the int return value and the size of object c. The minimum size of an object
is the alignment that you specify using the option Target processor type (-target).

C++ Functions with Object Arguments

class MyClass {
 public:
 MyClass() {};
 MyClass(int) {};
 ~MyClass() {};
 private:
 int i[10];
};
void func1(const MyClass& c) {
}

void func2() {
 func1(4);
}

In this example, the estimated local variable size for func2 is 40 bytes. When func2 calls func1, a
temporary object of the class MyClass is created. The object has ten int variables, each with a size
of four bytes.

Metric Information
Group: Function
Acronym: LOCAL_VARS_MAX
HIS Metric: No

See Also
Lower Estimate of Local Variable Size | Calculate code metrics (-code-metrics)

Introduced in R2016b

 Higher Estimate of Local Variable Size

8-13

Language Scope
Language scope

Description
This metric measures the cost of maintaining or changing a function. It is calculated as:

(N1 + N2)/(n1 + n2)

Where:

• N1 is the number of occurrences of operators.

Other than identifiers (variable or function names) and literal constants, everything else counts as
operators.

• N2 is the number of occurrences of operands.
• n1 is the number of distinct operators.
• n2 is the number of distinct operands.

The metric considers a literal constant with a suffix as different from the constant without the
suffix. For instance, 0 and 0U are considered different.

When reporting this metric, Polyspace rounds the calculated language scope to the first decimal
place. Because the intent of this metric is to indicate the maintainability of a function, language scope
of functions defined within local classes are not computed.

Tip To find N1 + N2, count the total number of tokens. To find n1 + n2, count the number of unique
tokens.

The recommended upper limit for this metric is 4. For lower maintenance cost for a function, try to
enforce an upper limit on this metric. For instance, if the same operand occurs many times, to change
the operand name, you have to make many substitutions.

To enforce limits on metrics:

• In the Polyspace user interface, see “Compute Code Complexity Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software Quality

Objectives”.

Examples
Language Scope Calculation

int g(int);
int f(int i)
{
 if (i == 1)
 return i;

8 Code Metrics

8-14

 else
 return i * g(i-1);
}

In this example:

• N1 = 19.
• N2 = 9.
• n1 = 12.

The distinct operators are int, (,), {, if, ==, return, else, *, -, ;, }.
• n2 = 4.

The distinct operands are f, i, 1 and g.

The language scope of f is (19 + 9) / (12 + 4) = 1.8.

C++ Namespaces in Language Scope Calculation

namespace std {
 int func2() {
 return 123;
 }
};

namespace my_namespace {
 using namespace std;

 int func1(int a, int b) {
 return func2();
 }
};

In this example, the namespace std is implicitly associated with func2. The language scope
computation treats func2() as std::func2(). Likewise, the computation treats func1() as
my_namespace::func1().

For instance, the language scope value for func1 is 1.3. To break down this calculation:

• N1 + N2 = 20.
• n1 + n2 = 15.

The distinct operators are int, ::, (, comma,), {, return, ;, and }.

The distinct operands are my_namespace, func1, a, b, std, and func2.

Metric Information
Group: Function
Acronym: VOCF
HIS Metric: Yes

 Language Scope

8-15

See Also
Calculate code metrics (-code-metrics)

8 Code Metrics

8-16

Lower Estimate of Local Variable Size
Total size of local variables in function taking nested scopes into account

Description
This metric provides an optimistic estimate of the total size of local variables in a function. The metric
is the sum of the following sizes in bytes:

• Size of function return value
• Sizes of function parameters
• Sizes of local variables

Suppose that the function has variable definitions in nested scopes as follows:

type func (type param_1, ...) {

 {
 /* Scope 1 */
 type var_1, ...;
 }
 {
 /* Scope 2 */
 type var_2, ...;
 }
}

The software computes the total variable size in each scope and uses whichever total is greatest.
For instance, if a conditional statement has variable definitions, the software computes the total
variable size in each branch, and then uses whichever total is greatest. If a nested scope itself has
further nested scopes, the same process is repeated for the inner scopes.

A variable defined in a nested scope is not visible outside the scope. Therefore, some compilers
reuse stack space for variables defined in separate scopes. This metric provides a more accurate
estimate of stack usage for such compilers. Otherwise, use the metric Higher Estimate of
Local Variable Size. This metric adds the size of all local variables, whether or not they are
defined in nested scopes.

• Additional padding introduced for memory alignment

Your actual stack usage due to local variables can be different from the metric value.

• Some of the variables are stored in registers instead of on the stack.
• Your compiler performs variable liveness analysis to enable certain memory optimizations. When

computing this metric, Polyspace does not consider these optimizations.
• Your compiler uses additional memory during a function call. For instance, compilers store the

address to which the execution returns following the function call. When computing this metric,
Polyspace does not consider this hidden memory usage.

However, the metric provides a reasonable estimate of the stack usage due to local variables.

To determine the sizes of basic types, the software uses your specifications for Target processor
type (-target). The metric also takes into account #pragma pack directives in your code.

 Lower Estimate of Local Variable Size

8-17

Examples
All Variables of Same Type

int flag();

int func(int param) {
 int var_1;
 int var_2;
 if (flag()) {
 int var_3;
 int var_4;
 } else {
 int var_5;
 }
}

In this example, assuming four bytes for int, the lower estimate of local variable size is 24. The
breakup of the metric is shown in this table.

Variable Size (in Bytes) Running Total
Return value 4 4
Parameter param 4 8
Local variables var_1 and
var_2

4+4=8 16

Local variables defined in the if
condition

max(4+4,4)= 8

The size of variables in the first
branch is eight bytes. The size
in the second branch is four
bytes. The maximum of the two
branches is eight bytes.

24

No padding is introduced for memory alignment because all the variables involved have the same
type.

Variables of Different Types

char func(char param) {
 int var_1;
 char var_2;
 double var_3;
}

In this example, assuming one byte for char, four bytes for int, eight bytes for double and four
bytes for alignment, the lower estimate of local variable size is 20. The alignment is usually the word
size on your platform. In your Polyspace project, you specify the alignment through your target
processor. For more information, see the Alignment column in Target processor type (-
target).

The breakup of the size is shown in this table.

8 Code Metrics

8-18

Variable Size (in Bytes) Running Total
Return value 1 1
Additional padding introduced
before param is stored

0

No memory alignment is
required because the next
variable param has the same
size.

1

Parameter param 1 2
Additional padding introduced
before var_1 is stored

2

Memory must be aligned using
padding because the next
variable var_1 requires four
bytes. The storage must start
from a memory address at a
multiple of four.

4

var_1 4 8
Additional padding introduced
before var_2 is stored

0

No memory alignment is
required because the next
variable var_2 has smaller size.

8

var_2 1 9
Additional padding introduced
before var_3 is stored

3

Memory must be aligned using
padding because the next
variable var_3 requires eight
bytes. The storage must start
from a memory address at a
multiple of the alignment, four
bytes.

12

var_3 8 20

The rules for the amount of padding are:

• If the next variable stored has the same or smaller size, no padding is required.
• If the next variable has a greater size:

• If the variable size is the same as or less than the alignment on the platform, the amount of
padding must be sufficient so that the storage address is a multiple of its size.

• If the variable size is greater than the alignment on the platform, the amount of padding must
be sufficient so that the storage address is a multiple of the alignment.

C++ Methods and Objects

class MySimpleClass {
 public:

 Lower Estimate of Local Variable Size

8-19

 MySimpleClass() {};

 MySimpleClass(int) {};

 ~MySimpleClass() {};
};

int main() {
 MySimpleClass c;
 return 0;
}

In this example, the estimated local variable sizes are:

• Constructor MySimpleClass::MySimpleClass(): Four bytes.

The size comes from the this pointer, which is an implicit argument to the constructor. You
specify the pointer size using the option Target processor type (-target).

• Constructor MySimpleClass::MySimpleClass(int): Eight bytes.

The size comes from the this pointer and the int argument.
• Destructor MySimpleClass::~MySimpleClass(): Four bytes.

The size comes from the this pointer.
• main(): Five bytes.

The size comes from the int return value and the size of object c. The minimum size of an object
is the alignment that you specify using the option Target processor type (-target).

C++ Functions with Object Arguments

class MyClass {
 public:
 MyClass() {};
 MyClass(int) {};
 ~MyClass() {};
 private:
 int i[10];
};
void func1(const MyClass& c) {
}

void func2() {
 func1(4);
}

In this example, the estimated local variable size for func2() is 40 bytes. When func2() calls
func1(), a temporary object of the class MyClass is created. The object has ten int variables, each
with a size of four bytes.

8 Code Metrics

8-20

Metric Information
Group: Function
Acronym: LOCAL_VARS_MIN
HIS Metric: No

See Also
Higher Estimate of Local Variable Size | Calculate code metrics (-code-metrics)

Introduced in R2016b

 Lower Estimate of Local Variable Size

8-21

Maximum Stack Usage
Total size of local variables in function plus maximum stack usage from callees

Description
This metric is reported in a Code Prover analysis only.

This metric provides a conservative estimate of the stack usage by a function. The metric is the sum
of these sizes in bytes:

• Higher Estimate of Local Variable Size
• Maximum value from the stack usages of the function callees. The computation uses the maximum

stack usage of each callee.

For instance, in this example, the maximum stack usage of func is the same as the maximum
stack usage of func1 or func2, whichever is greater.

void func(void) {
 func1();
 func2();
}

If the function calls are in different branches of a conditional statement, this metric considers the
branch with the greatest stack usage.

The analysis does the stack size estimation later on when it has resolved which function calls
actually occur. For instance, if a function call occurs in unreachable code, the stack size does not
take the call into account. The analysis can also take into account calls through function pointers.

Your actual stack usage can be different from the metric value.

• Some of the variables are stored in registers instead of on the stack.
• Your compiler performs variable liveness analysis to enable certain memory optimizations. When

estimating this metric, Polyspace does not consider these optimizations.
• Your compiler uses additional memory during a function call. For instance, compilers store the

address to which the execution returns following the function call. When estimating this metric,
Polyspace does not consider this hidden memory usage.

However, the metric provides a reasonable estimate of the stack usage.

To determine the sizes of basic types, the software uses your specifications for Target processor
type (-target). The metric takes into account #pragma pack directives in your code.

Examples
Function with One Callee

double func(int);
double func2(int);

8 Code Metrics

8-22

double func(int status) {
 double res = func2(status);
 return res;
}

double func2(int status) {
 double res;
 if(status == 0) {
 int temp;
 res = 0.0;
 }
 else {
 double temp;
 res = 1.0;
 }
 return res;
}

In this example, assuming four bytes for int and eight bytes for double, the maximum stack usages
are:

• func2: 32 bytes

This value includes the sizes of its parameter (4 bytes), local variable res (8 bytes), local variable
temp counted twice (4+8=12 bytes), and return value (8 bytes).

The metric does not take into account that the first temp is no longer live when the second temp
is defined.

• func: 52 bytes

This value includes the sizes of its parameter, local variable res, and return value, a total of 20
bytes. This value includes the 32 bytes of maximum stack usage by its callee, func2.

Function with Multiple Callees

void func1(int);
void func2(void);

void func(int status) {
 func1(status);
 func2();
}

void func1(int status) {
 if(status == 0) {
 int val;
 }
 else {
 double val2;
 }
}

 Maximum Stack Usage

8-23

void func2(void) {
 double val;
}

In this example, assuming four bytes for int and eight bytes for double, the maximum stack usages
are:

• func1: 16 bytes

This value includes the sizes of its parameter (4 bytes) and local variables val and val2 (4+8=12
bytes).

• func2: 8 bytes
• func: 20 bytes

This value includes the sizes of its parameter (4 bytes) and the maximum of stack usages of func1
and func2 (16 bytes).

Function with Multiple Callees in Different Branches

void func1(void);
void func2(void);

void func(int status) {
 if(status==0)
 func1();
 else
 func2();
}

void func1(void) {
 double val;
}

void func2(void) {
 int val;
}

In this example, assuming four bytes for int and eight bytes for double, the maximum stack usages
are:

• func1: 8 bytes
• func2: 4 bytes
• func: 12 bytes

This value includes the sizes of its parameter (4 bytes) and the maximum stack usage from the two
branches (8 bytes).

Functions with Variable Number of Parameters (Variadic Functions)

#include <stdarg.h>

void fun_vararg(int x, ...) {
 va_list ap;

8 Code Metrics

8-24

 va_start(ap, x);
 int i;
 for (i=0; i<x; i++) {
 int j = va_arg(ap, int);
 }
 va_end(ap);
}

void call_fun_vararg1(void) {
 long long int l = 0;
 fun_vararg(3, 4, 5, 6, l);
}

void call_fun_vararg2(void) {
 fun_vararg(1,0);
}

In this function, fun_vararg is a function with variable number of parameters. The maximum stack
usage of fun_vararg takes into account the call to fun_vararg with the maximum number of
arguments. The call with the maximum number of arguments is the call in call_fun_vararg1 with
five arguments (one for the fixed parameter and four for the variable parameters). The maximum
stack usages are:

• fun_vararg: 36 bytes.

This value takes into account:

• The size of the fixed parameter x (4 bytes).
• The sizes of the variable parameters from the call with the maximum number of parameters. In

that call, there are four variable arguments: three int and one long long int variable (3
times 4 + 1 times 8 = 20 bytes).

• The sizes of the local variables i, j and ap (12 bytes). The size of the va_list variable uses
the pointer size defined in the target (in this case, 4 bytes).

• call_fun_vararg1: 44 bytes.

This value takes into account:

• The stack size usage of fun_vararg with five arguments (36 bytes).
• The size of local variable l (8 bytes).

• call_fun_vararg2: 20 bytes.

Since call_fun_vararg2 has no local variables, this value is the same as the stack size usage of
fun_vararg with two arguments (20 bytes, of which 12 bytes are for the local variables and 8
bytes are for the two parameters of fun_vararg).

Metric Information
Group: Function
Acronym: MAX_STACK
HIS Metric: No

 Maximum Stack Usage

8-25

See Also
Minimum Stack Usage | Program Maximum Stack Usage | Higher Estimate of Local
Variable Size | Calculate code metrics (-code-metrics)

Topics
“Determination of Program Stack Usage” on page 4-37

Introduced in R2017b

8 Code Metrics

8-26

Minimum Stack Usage
Total size of local variables in function taking nested scopes into account plus maximum stack usage
from callees

Description
This metric is reported in a Code Prover analysis only.

This metric provides an optimistic estimate of the stack usage by a function. Unlike the metric
Maximum Stack Usage, this metric takes nested scopes into account. For instance, if variables are
defined in two mutually exclusive branches of a conditional statement, the metric considers that the
stack space allocated to the variables in one branch can be reused in the other branch.

The metric is the sum of these sizes in bytes:

• Lower Estimate of Local Variable Size.
• Maximum value from the stack usages of the function callees. The computation uses the minimum

stack usage of each callee.

For instance, in this example, the minimum stack usage of func is the same as the minimum stack
usage of func1 or func2, whichever is greater.

void func(void) {
 func1();
 func2();
}

If the function calls are in different branches of a conditional statement, this metric considers the
branch with the least stack usage.

The analysis does the stack size estimation later on when it has resolved which function calls
actually occur. For instance, if a function call occurs in unreachable code, the stack size does not
take the call into account. The analysis can also take into account calls through function pointers.

Your actual stack usage can be different from the metric value.

• Some of the variables are stored in registers instead of on the stack.
• Your compiler performs variable liveness analysis to enable certain memory optimizations. When

estimating this metric, Polyspace does not consider these optimizations.
• Your compiler uses additional memory during a function call. For instance, compilers store the

address to which the execution returns following the function call. When estimating this metric,
Polyspace does not consider this hidden memory usage.

However, the metric provides a reasonable estimate of the stack usage.

To determine the sizes of basic types, the software uses your specifications for Target processor
type (-target). The metric takes into account #pragma pack directives in your code.

 Minimum Stack Usage

8-27

Examples
Function with One Callee

double func2(int);

double func(int status) {
 double res = func2(status);
 return res;
}

double func2(int status) {
 double res;
 if(status == 0) {
 int temp;
 res = 0.0;
 }
 else {
 double temp;
 res = 1.0;
 }
 return res;
}

In this example, assuming four bytes for int and eight bytes for double, the minimum stack usages
are:

• func2: 28 bytes

This value includes the sizes of its parameter (4 bytes), local variable res (8 bytes), one of the two
local variables temp (8 bytes), and return value (8 bytes).

The metric takes into account that the first temp is no longer live when the second temp is
defined. It uses the variable temp with data type double because its size is greater.

• func: 48 bytes

This value includes the sizes of its parameter, local variable res, and return value, a total of 20
bytes. This value includes the 28 bytes of minimum stack usage by its callee, func2.

Function with Multiple Callees

void func1(int);
void func2(void);

void func(int status) {
 func1(status);
 func2();
}

void func1(int status) {
 if(status == 0) {
 int val;

8 Code Metrics

8-28

 }
 else {
 double val2;
 }
}

void func2(void) {
 double val;
}

In this example, assuming four bytes for int and eight bytes for double, the minimum stack usages
are:

• func1: 12 bytes

This value includes the sizes of its parameter (4 bytes) and the larger of the two local variables, in
this case, val2 (8 bytes).

• func2: 8 bytes
• func: 16 bytes

This value includes the sizes of its parameter (4 bytes) and the maximum of stack usages of func1
and func2 (12 bytes).

Function with Multiple Callees in Different Branches

void func1(void);
void func2(void);

void func(int status) {
 if(status==0)
 func1();
 else
 func2();
}

void func1(void) {
 double val;
}

void func2(void) {
 int val;
}

In this example, assuming four bytes for int and eight bytes for double, the minimum stack usages
are:

• func1: 8 bytes
• func2: 4 bytes
• func: 8 bytes

 Minimum Stack Usage

8-29

This value includes the sizes of its parameter (4 bytes) and the minimum stack usage from the two
branches (4 bytes).

Functions with Variable Number of Parameters (Variadic Functions)

#include <stdarg.h>

void fun_vararg(int x, ...) {
 va_list ap;
 va_start(ap, x);
 int i;
 for (i=0; i<x; i++) {
 int j = va_arg(ap, int);
 }
 va_end(ap);
}

void call_fun_vararg1(void) {
 long long int l = 0;
 fun_vararg(3, 4, 5, 6, l);
}

void call_fun_vararg2(void) {
 fun_vararg(1,0);
}

In this function, fun_vararg is a function with variable number of parameters. The minimum stack
usage of fun_vararg takes into account the call to fun_vararg with the minimum number of
arguments. The call with the minimum number of arguments is the call in call_fun_vararg2 with
two arguments (one for the fixed parameter and one for the variable parameter). The minimum stack
usages are:

• fun_vararg: 20 bytes.

This value takes into account:

• The size of the fixed parameter x (4 bytes).
• The sizes of the variable parameters from the call with the minimum number of parameters. In

that call, there is only one variable argument of type int (4 bytes).
• The sizes of the local variables i, j and ap (12 bytes). The size of the va_list variable uses

the pointer size defined in the target (in this case, 4 bytes).
• call_fun_vararg1: 44 bytes.

This value takes into account:

• The stack size usage of fun_vararg with five arguments (36 bytes, of which 12 bytes are for
the local variable sizes and 20 bytes are for the fixed and variable parameters of fun_vararg).

• The size of local variable l (8 bytes).
• call_fun_vararg2: 20 bytes.

8 Code Metrics

8-30

Since call_fun_vararg2 has no local variables, this value is the same as the stack size usage of
fun_vararg with two arguments (20 bytes).

Metric Information
Group: Function
Acronym: MIN_STACK
HIS Metric: No

See Also
Program Minimum Stack Usage | Lower Estimate of Local Variable Size | Maximum
Stack Usage | Calculate code metrics (-code-metrics)

Topics
“Determination of Program Stack Usage” on page 4-37

Introduced in R2017b

 Minimum Stack Usage

8-31

Number of Call Levels
Maximum depth of nesting of control flow structures

Description
This metric specifies the maximum nesting depth of control flow statements such as if, switch, for,
or while in a function. A function without control-flow statements has a call level 1.

The recommended upper limit for this metric is 4. For better readability of your code, try to enforce
an upper limit for this metric.

To enforce limits on metrics:

• In the Polyspace user interface, see “Compute Code Complexity Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software Quality

Objectives”.

Examples
Function with Nested if Statements

int foo(int x,int y)
{
 int flag = 0;
 if (x <= 0)
 /* Call level 1*/
 flag = 1;
 else
 {
 if (x <= y)
 /* Call level 2*/
 flag = 1;
 else
 flag = -1;
 }
 return flag;
}

In this example, the number of call levels of foo is 2.

Function with Nesting of Different Control-Flow Statements

int foo(int x,int y, int bound)
{
 int count = 0;
 if (x <= y)
 /* Call level 1*/
 count = 1;
 else
 while(x>y) {

8 Code Metrics

8-32

 /* Call level 2*/
 x--;
 if(count< bound) {
 /* Call level 3*/
 count++;
 }
 }
 return count;
}

In this example, the number of call levels of foo is 3.

Metric Information
Group: Function
Acronym: LEVEL
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

 Number of Call Levels

8-33

Number of Call Occurrences
Number of calls in function body

Description
This metric specifies the number of function calls in the body of a function.

Calls through a function pointer are not counted. Calls in unreachable code and calls to standard
library functions are counted. assert is considered as a macro and not a function, so it is not
counted.

When calculating this metric in C++ code, Polyspace ignores the implicit functions that the compiler
generates, such as default constructors and destructors. User-defined constructors and destructors
are counted as function calls. In a class hierarchy, if a base class has user-defined constructors,
Polyspace counts the corresponding constructors of the derived classes as functions.

Examples
Same Function Called Multiple Times
int func1(void);
int func2(void);

int foo() {
 return (func1() + func1()*func1() + 2*func2());
}

In this example, the number of call occurrences in foo is 4.

Function Called in a Loop
#include<stdio.h>
int getVal(void);

void fillArraySize10(int *arr) {
 for(int i=0; i<10; i++)
 arr[i]=getVal();
}

int getVal(void) {
 int val;
 printf("Enter a value:");
 scanf("%d", &val);
 return val;
}

In this example, the number of call occurrences in fillArraySize10 is 1.

Recursive Function
#include <stdio.h>
int fibonacci(int);

8 Code Metrics

8-34

void main() {
 int count;
 printf("How many numbers ?");
 scanf("%d",&count);
 fibonacci(count);
}

int fibonacci(int num)
{
 if (num == 0)
 return 0;
 else if (num == 1)
 return 1;
 else
 return (fibonacci(num-1) + fibonacci(num-2));
}

In this example, the number of call occurrences in fibonacci is 2.

Constructor Function

 #include<iostream>
class A{
 public:
 A(){
 std::cout<<"Create A\n";
 }
 ~A() = default;
 A(const A&)=default;
 A(A&&) = default;
 virtual void bar(){ std::cout<<"A";}
};
class B: public A{
 public:
 B() = default;
 void bar() override {std::cout<<"B";}
};

void func(A& a){
 a.bar();
}

int main(){
 A obj;
 A obj2 = obj;
 B objB;
 func(obj);
 return 0;
}

In this example, the number of call occurances in main is three:

1 The constructor of class A in A obj;. This user defined constructor counts as a function call.
2 The constructor of class B in B objB;. Because the constructor of the base class A is user-

defined, the constructor of B counts as a function call even though B::B() is declared as
=default.

 Number of Call Occurrences

8-35

3 The call to function func.

The class A uses the default or implicit copy constructor. The call to the copy constructor in A obj2
= obj; does not count as a function call.

Metric Information
Group: Function
Acronym: NCALLS
HIS Metric: No

See Also
Number of Called Functions | Calculate code metrics (-code-metrics)

8 Code Metrics

8-36

Number of Called Functions
Number of distinct functions called within the body of a function

Description
This metric specifies the number of distinct functions that are called by a function within its body.

Calls through a function pointer are not counted. Calls in unreachable code and calls to standard
library functions are counted. assert is considered as a macro and not a function, so it is not
counted.

When calculating this metric in C++ code, Polyspace ignores the implicit functions that the compiler
generates, such as default constructors and destructors. User-defined constructors and destructors
are counted as function calls. In a class hierarchy, if a base class has user-defined constructors,
Polyspace counts the corresponding constructors of the derived classes as functions.

The recommended upper limit for this metric is 7. For more self-contained code, try to enforce an
upper limit on this metric.

To enforce limits on metrics:

• In the Polyspace user interface, see “Compute Code Complexity Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software Quality

Objectives”.

Examples
Same Function Called Multiple Times

int func1(void);
int func2(void);

int foo() {
 return (func1() + func1()*func1() + 2*func2());
}

In this example, the number of called functions in foo is 2. The called functions are func1 and
func2.

Recursive Function

#include <stdio.h>
int fibonacci(int);

void main() {
 int count;
 printf("How many numbers ?");
 scanf("%d",&count);
 fibonacci(count);
}

int fibonacci(int num)

 Number of Called Functions

8-37

{
 if (num == 0)
 return 0;
 else if (num == 1)
 return 1;
 else
 return (fibonacci(num-1) + fibonacci(num-2));
}

In this example, the number of called functions in fibonacci is 1. The called function is fibonacci
itself.

Constructor Function

 #include<iostream>
class A{
 public:
 A(){
 std::cout<<"Create A\n";
 }
 ~A() = default;
 A(const A&)=default;
 A(A&&) = default;
 virtual void bar(){ std::cout<<"A";}
};
class B: public A{
 public:
 B() = default;
 void bar() override {std::cout<<"B";}
};

void func(A& a){
 a.bar();
}

int main(){
 A obj;
 A obj2 = obj;
 B objB;
 func(obj);
 return 0;
}

In this example, the number of called function in main is three:

1 The constructor of class A. This user defined constructor counts as a function call.
2 The constructor of class B. Because the constructor of the base class A is user-defined, the

constructor of B counts as a function call even though B::B() is declared as =default.
3 The function func.

The class A uses the default or implicit copy constructor. The call to the copy constructor in A obj2
= obj; does not count as a function call.

8 Code Metrics

8-38

Metric Information
Group: Function
Acronym: CALLS
HIS Metric: Yes

See Also
Number of Call Occurrences | Number of Calling Functions | Calculate code
metrics (-code-metrics)

 Number of Called Functions

8-39

Number of Calling Functions
Number of distinct callers of a function

Description
This metric measures the number of distinct callers of a function.

In C++ , Polyspace does not calculate this metric for virtual functions and compiler generated
implicit functions, such as default constructors and destructors. The metric is calculated for user-
defined constructors and destructors. In a class hierarchy, if a base class has user-defined
constructors, Polyspace counts this metric for corresponding constructors of the derived classes.

The recommended upper limit for this metric is 5. For more self-contained code, try to enforce an
upper limit on this metric.

To enforce limits on metrics:

• In the Polyspace user interface, see “Compute Code Complexity Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software Quality

Objectives”.

Computation Details

Note that the metric:

• Takes into account direct callers only.
• Does not consider calls through a function pointer.
• Takes into account all function calls, including ones in unreachable code.

However, if a caller calls a function more than once, the caller is counted only once when this
metric is calculated.

Examples
Same Function Calling a Function Multiple Times

#include <stdio.h>

 int getVal() {
 int myVal;
 printf("Enter a value:");
 scanf("%d", &myVal);
 return myVal;
}

int func() {
 int val=getVal();
 if(val<0)
 return 0;
 else

8 Code Metrics

8-40

 return val;
}

int func2() {
 int val=getVal();
 while(val<0)
 val=getVal();
 return val;
}

In this example, the number of calling functions for getVal is 2. The calling functions are func and
func2.

Recursive Function

#include <stdio.h>

 int fibonacci(int num)
{
 if (num == 0)
 return 0;
 else if (num == 1)
 return 1;
 else
 return (fibonacci(num-1) + fibonacci(num-2));
}

void main() {
 int count;
 printf("How many numbers ?");
 scanf("%d",&count);
 fibonacci(count);
}

In this example, the number of calling functions for fibonacci is 2. The calling functions are main
and fibonacci itself.

Constructor Function

 #include<iostream>
class A{
 public:

 A(){
 std::cout<<"Create A\n";
 }
 ~A() = default;
 A(const A&)=default;
 A(A&&) = default;
 virtual void bar(){ std::cout<<"A";}
};
class B: public A{
 public:
 B() = default;

 Number of Calling Functions

8-41

 void bar() override {std::cout<<"B";}
};

void func(A& a){
 a.bar();
}
int main(){
 A obj;
 A obj2 = obj;
 B objB;
 func(obj);
 return 0;
}

In this example:

• The number of calling functions for A::A is two. A::A is called once to create obj and again to
create objB. Similarly, the number of calling function for B:: is one.

• Because both A::bar and B::bar are virtual functions, Polyspace does not calculate their
number of calling functions.

• The number of calling function for func is one.

Metric Information
Group: Function
Acronym: CALLING
HIS Metric: Yes

See Also
Number of Called Functions | Calculate code metrics (-code-metrics)

8 Code Metrics

8-42

Number of Direct Recursions
Number of instances of a function calling itself directly

Description
This metric specifies the number of direct recursions in your project.

A direct recursion is a recursion where a function calls itself in its own body. If indirect recursions do
not occur, the number of direct recursions is equal to the number of recursive functions.

The recommended upper limit for this metric is 0. To avoid the possibility of exceeding available stack
space, do not use recursions in your code. To detect use of recursions, check for violations of MISRA
C:2012 Rule 17.2.

To enforce limits on metrics, see “Compare Metrics Against Software Quality Objectives”.

Examples
Direct Recursion

int getVal(void);
int sum(int val) {
 if(val<0)
 return 0;
 else
 return (val + sum(val-1));
}

void main() {
 int count = getVal(), total;
 assert(count > 0 && count <100);
 total = sum(count);
}

In this example, the number of direct recursions is 1.

Metric Information
Group: Project
Acronym: AP_CG_DIRECT_CYCLE
HIS Metric: Yes

See Also
MISRA C:2012 Rule 17.2 | Calculate code metrics (-code-metrics)

 Number of Direct Recursions

8-43

Number of Executable Lines
Number of executable lines in function body

Description
This metric measures the number of executable lines in a function body. When calculating the value
of this metric, Polyspace excludes declarations, comments, blank lines, braces or preprocessing
directives.

If the function body contains a #include directive, the included file source code is also calculated as
part of this metric.

This metric is not calculated for C++ templates.

Examples
Function with Declarations, Braces and Comments

void func(int, double);

 int getSign(int arg) {
 int sign; //Excluded
 static int siNumber = 0; //Excluded
 double dNumber = 5;//Excluded
 if(arg<0) {
 sign=-1;
 func(-arg,dNumber);
 ++siNumber;
 /* func takes positive first argument */ //Excluded
 }//Excluded
 else if(arg==0)
 sign=0;
 else {
 sign=1;
 func(arg,dNumber);
 ++siNumber;
 }//Excluded
 return sign;
}//Excluded

In this example, the number of executable lines of getSign is 11. The calculation excludes:

• The declarations.
• The comment /* ... */.
• The lines with braces only.

Metric Information
Group: Function
Acronym: FXLN
HIS Metric: No

8 Code Metrics

8-44

See Also
Number of Lines Within Body | Number of Instructions | Calculate code metrics (-
code-metrics)

 Number of Executable Lines

8-45

Number of Files
Number of source files

Description
This metric calculates the number of source files in your project.

Examples
Source File Calling Function in Included File

#include<iostream>
#include"pow.cpp"

double power(double, double);
//Function to calculate approximate index
 double AppxIndex(double m, double f){
 double U = (power(m,2) - 1)/(power(m,2)+2); //First term
 double V = (power(m,4) + 27*power(m,2)+38)/
 (2*power(m,2)+3);// Second term
 return (1+2*f*power(U,2)*(1+power(m,2)*U*V +
 power(m,3)/power(m,3)*(U-V)))
 /((1-2*f*power(U,2)*(1+power(m,2)*U*V
 + power(m,3)/power(m,3)*(U-V))));
 }

 int main(){
 return 0;
 }

In this example, the code calls the function power, which is defined in an included source file
pow.cpp. When analysing the code, Polyspace does not consider the included source file. Because
the included source file is not considered in the analysis, Polyspace evaluates the number of source
file to be one.

Metric Information
Group: Project
Acronym: FILES
HIS Metric: No

See Also
Number of Header Files | Calculate code metrics (-code-metrics)

8 Code Metrics

8-46

Number of Function Parameters
Number of function arguments

Description
This metric measures the number of function arguments.

If ellipsis is used to denote variable number of arguments, when calculating this metric, the ellipsis is
not counted.

The recommended upper limit for this metric is 5. For less dependency between functions and fewer
side effects, try to enforce an upper limit on this metric.

To enforce limits on metrics:

• In the Polyspace user interface, see “Compute Code Complexity Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software Quality

Objectives”.

Examples
Function with Fixed Arguments

int initializeArray(int* arr, int size) {
}

In this example, initializeArray has two parameters.

Function with Type Definition in Arguments

int getValueInLoc(struct {int* arr; int size;}myArray, int loc) {
}

In this example, getValueInLoc has two parameters.

Function with Variable Arguments

double average (int num, ...)
{
 va_list arg;
 double sum = 0;

 va_start (arg, num);

 for (int x = 0; x < num; x++)
 {
 sum += va_arg (arg, double);
 }

 Number of Function Parameters

8-47

 va_end (arg);

 return sum / num;
}

In this example, average has one parameter. The ellipsis denoting variable number of arguments is
not counted.

Metric Information
Group: Function
Acronym: PARAM
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

8 Code Metrics

8-48

Number of Goto Statements
Number of goto statements

Description
This metric measures the number of goto statements in a function.

break and continue statements are not counted.

The recommended upper limit on this metric is 0. For better readability of your code, avoid goto
statements in your code. To detect use of goto statements, check for violations of MISRA C:2012
Rule 15.1.

To enforce limits on metrics:

• In the Polyspace user interface, see “Compute Code Complexity Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software Quality

Objectives”.

Examples
Function with goto Statements

#define SIZE 10
int initialize(int **arr, int loc);
void printString(int *);
void printErrorMessage(void);
void printExecutionMessage(void);

int main()
{
 int *arrayOfStrings[SIZE],len[SIZE],i;
 for (i = 0; i < SIZE; i++)
 {
 len[i] = initialize(arrayOfStrings,i);
 }

 for (i = 0; i < SIZE; i++)
 {
 if(len[i] == 0)
 goto emptyString;
 else
 goto nonEmptyString;
 loop: printExecutionMessage();
 }

emptyString:
 printErrorMessage();
 goto loop;
nonEmptyString:
 printString(arrayOfStrings[i]);

 Number of Goto Statements

8-49

 goto loop;
}

In this example, the function main has 4 goto statements.

Metric Information
Group: Function
Acronym: GOTO
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

8 Code Metrics

8-50

Number of Header Files
Number of included header files

Description
This metric measures the number of header files in the project that is considered in an analysis. Both
directly and indirectly included header files are counted.

The metric gives a slightly different number than the actual number of header files that you use
because Polyspace® internal header files and header files included by those files are also counted.
For the same reason, the metric can vary slightly even if you do not explicitly include new header files
or remove inclusion of header files from your code. For instance, the number of Polyspace® internal
header files can vary if you change your analysis options.

Examples
Header Files Not Considered in Analysis

#include<iostream>
#include<string>
// FUnction to calculate power
 long long power(double x, int n){
 long long BN = 1;// long long
 for(int i = 0; i<n;++i){
 BN*=x;
 }
 return BN;
 }

In this example, the code does not call any of the functions defined in the iostream and string.
These headers are not considered in the analysis. Polyspace calculates this metric to be zero.

Metric Information
Group: Project
Acronym: INCLUDES
HIS Metric: No

See Also
Number of Files | Calculate code metrics (-code-metrics)

 Number of Header Files

8-51

Number of Instructions
Number of instructions per function

Description
This metric measures the number of instructions in a function body.

The recommended upper limit for this metric is 50. For more modular code, try to enforce an upper
limit for this metric.

To enforce limits on metrics:

• In the Polyspace user interface, see “Compute Code Complexity Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software Quality

Objectives”.

Computation Details

The metric is calculated using the following rules:

• A simple statement ending with a ; is one instruction.

If the statement is empty, it does not count as an instruction.
• A variable declaration counts as one instruction if both of these conditions are true:

• The variable is not static.
• The variable is initialized.

• Control flow statements such as if, for, break, goto, return, switch, while, do-while count
as one instruction.

• The following do not count as instructions by themselves:

• Beginning of a block of code

For instance, the following counts as one instruction:

{
 var = 1;
}

• Labels

For instance, the following counts as two instructions. The case labels do not count as
instructions.

switch (1) { // Instruction 1: switch
 case 0:
 case 1:
 case 2:
 default:
 break; // Instruction 2: break
 }

8 Code Metrics

8-52

Examples
Calculation of Number of Instructions

int func(int* arr, int size) {
 int i, countPos=0, countNeg=0, countZero = 0;
 for(i=0; i<size; i++) {
 if(arr[i] >0)
 countPos++;
 else if(arr[i] ==0)
 countZero++;
 else
 countNeg++;
 }
}

In this example, the number of instructions in func is 9. The instructions are:

1 countPos=0
2 countNeg=0
3 countZero=0
4 for(i=0;i<size;i++) { ... }
5 if(arr[i] >=0)
6 countPos++
7 else if(arr[i]==0)

The ending else is counted as part of the if-else instruction.
8 countZero++
9 countNeg++

Note This metric is different from the number of executable lines. For instance:

• for(i=0;i<size;i++) has 1 instruction and 1 executable line.
• The following code has 1 instruction but 3 executable lines.

for(i=0;
 i<size;
 i++)

Metric Information
Group: Function
Acronym: STMT
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

 Number of Instructions

8-53

Number of Lines
Total number of lines in a file

Description
This metric calculates the number of lines in a file. When calculating the value of this metric,
Polyspace includes comments and blank lines.

This metric is calculated for source files and header files in the same folders as source files. If you
want:

• The metric reported for other header files, change the default value of the option Generate
results for sources and (-generate-results-for).

• The metric not reported for header files at all, change the value of the option Do not generate
results for (-do-not-generate-results-for) to all-headers.

Examples
Code Containing Comments and Blank Lines

// Function to calculate power
 long long power(double x, int n){
 long long BN = 1;// long long
 for(int i = 0; i<n;++i){
 BN*=x;
 }
 return BN;
 }
//Function to calculate approximate index
 double AppxIndex(double m, double f){
 double U = (power(m,2) - 1)/(power(m,2)+2); //First term
 double V = (power(m,4) + 27*power(m,2)+38)/
 (2*power(m,2)+3);// Second term
 return (1+2*f*power(U,2)*(1+power(m,2)*U*V +
 power(m,3)/power(m,3)*(U-V)))
 /((1-2*f*power(U,2)*(1+power(m,2)*U*V
 + power(m,3)/power(m,3)*(U-V))));
 }

Because Polyspace includes comments and black lines when calculating this metric, the total number
of line in this file is 18.

Metric Information
Group: File
Acronym: TOTAL_LINES
HIS Metric: No

8 Code Metrics

8-54

See Also
Number of Lines Without Comment | Calculate code metrics (-code-metrics)

 Number of Lines

8-55

Number of Lines Within Body
Number of lines in function body

Description
This metric calculates the number of lines in function body. When calculating the value of this metric,
Polyspace includes declarations, comments, blank lines, braces and preprocessing directives.

If the function body contains a #include directive, the included file source code is also calculated as
part of this metric.

This metric is not calculated for C++ templates.

Examples
Function with Declarations, Braces and Comments

void func(int);

int getSign(int arg) {
 int sign;
 if(arg<0) {
 sign=-1;
 func(-arg);
 /* func takes positive arguments */
 }
 else if(arg==0)
 sign=0;
 else {
 sign=1;
 func(arg);
 }
 return sign;
}

In this example, the number of executable lines of getSign is 13. The calculation includes:

• The declaration int sign;.
• The comment /* ... */.
• The two lines with braces only.

Metric Information
Group: Function
Acronym: FLIN
HIS Metric: No

See Also
Number of Executable Lines | Calculate code metrics (-code-metrics)

8 Code Metrics

8-56

Number of Lines Without Comment
Number of lines of code excluding lines that are comments or blank

Description
This metric calculates the number of executable lines in a file. When calculating the value of this
metric, Polyspace excludes lines that are comments or blank.

This metric is calculated for source files and header files in the same folders as source files. If you
want:

• The metric reported for other header files, change the default value of the option Generate
results for sources and (-generate-results-for).

• The metric not reported for header files at all, change the value of the option Do not generate
results for (-do-not-generate-results-for) to all-headers.

Examples
Inline Comments

// Function to calculate power
 long long power(double x, int n){
 long long BN = 1;// long long
 for(int i = 0; i<n;++i){
 BN*=x;
 }
 return BN;
 }
//Function to calculate approximate index
 double AppxIndex(double m, double f){
 double U = (power(m,2) - 1)/(power(m,2)+2); //First term
 double V = (power(m,4) + 27*power(m,2)+38)/
 (2*power(m,2)+3);// Second term
 return (1+2*f*power(U,2)*(1+power(m,2)*U*V +
 power(m,3)/power(m,3)*(U-V)))
 /((1-2*f*power(U,2)*(1+power(m,2)*U*V
 + power(m,3)/power(m,3)*(U-V))));
 }

In this example, Polyspace calculates the number of lines in the file that are neither comment nor
blank lines. Ignoring lines that are comments, such as the line // FUnction to calculate
power, and blank lines, Polyspace evaluates the metric as 16. When evaluating this metric, the lines
of code that contain inline comments are counted as lines of code.

Metric Information
Group: File
Acronym: LINES_WITHOUT_CMT
HIS Metric: No

 Number of Lines Without Comment

8-57

See Also
Number of Lines | Calculate code metrics (-code-metrics)

8 Code Metrics

8-58

Number of Local Non-Static Variables
Total number of local variables in function

Description
This metric provides the number of local variables in a function.

The metric excludes static variables. To find number of static variables, use the metric Number of
Local Static Variables.

Examples
Non-Structured Variables

int flag();

int func(int param) {
 int var_1;
 int var_2;
 if (flag()) {
 int var_3;
 int var_4;
 } else {
 int var_5;
 }
}

In this example, the number of local non-static variables in func is 5. The number does not include
the function arguments and return value.

Arrays and Structured Variables

typedef struct myStruct{
 char arr1[50];
 char arr2[50];
 int val;
} myStruct;

void func(void) {
 myStruct var;
 char localArr[50];
}

In this example, the number of local non-static variables in func is 2: the structured variable var and
the array localArr.

Variables in Class Methods

class Rectangle {
 int width, height;

 Number of Local Non-Static Variables

8-59

 public:
 void set (int,int);
 int area (void);
} rect;

int Rectangle::area (void) {
 int temp;
 temp = width * height;
 return(temp);
}

In this example, the number of local non-static variables in Rectangle::area is 1: the variable
temp.

Metric Information
Group: Function
Acronym: LOCAL_VARS
HIS Metric: No

See Also
Number of Local Static Variables | Higher Estimate of Local Variable Size |
Lower Estimate of Local Variable Size | Calculate code metrics (-code-metrics)

Introduced in R2017a

8 Code Metrics

8-60

Number of Local Static Variables
Total number of local static variables in function

Description
This metric provides the number of local static variables in a function.

Examples
Number of Static Variables

void func(void) {
 static int var_1 = 0;
 int var_2;
}

In this example, the number of static variables in func is 1. For examples of different types of
variables, see Number of Local Non-Static Variables.

Metric Information
Group: Function
Acronym: LOCAL_STATIC_VARS
HIS Metric: No

See Also
Higher Estimate of Local Variable Size | Number of Local Non-Static Variables |
Lower Estimate of Local Variable Size | Calculate code metrics (-code-metrics)

Introduced in R2017a

 Number of Local Static Variables

8-61

Number of Paths
Estimated static path count

Description
This metric measures the number of paths in a function.

The recommended upper limit for this metric is 80. If the number of paths is high, the code is difficult
to read and can cause more orange checks. Try to limit the value of this metric.

To enforce limits on metrics:

• In the Polyspace user interface, see “Compute Code Complexity Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software Quality

Objectives”.

Computation Details

The number of paths is calculated according to these rules:

• If the statements in a function do not break the control flow, the number of paths is one.

Even an empty statement such as ; or empty block such as {} counts as one path.
• A control flow statement introduces branches and adds to the original one path.

• if-else if-else: Each if keyword introduces a new branch. The contribution from an if-
else if-else block is the number of branches plus one (the original path). If a catch-all
else is present, all paths go through the block; otherwise, one path bypasses the block.

For instance, a function with an if(..) {} else if(..) {} else {} statement has three
paths. A function with one if() {} only has two paths, one that goes through the if block
and one that bypasses the block.

• switch-case: Each case label introduces a new branch. The contribution from a switch
block is the number of case labels plus one (the original path). If a catch-all default is
present, all paths go through the block; otherwise, one path bypasses the block.

For instance, a function with a statement switch (var) { case 1: .. break; case
2: .. break; default: .. } has three paths, all going through the switch block. If you
omit the default, the function still has three paths, two going through the switch block and
one bypassing the block.

• for and while: Each loop statement introduces a new branch. The contribution from a loop is
two - a path that goes through the loop and a path that bypasses the loop.

• do-while: Each do-while statement introduces a new branch except when the condition of
the while statement is explicitly false. Statements written as do{/*..*/}while(0) do not
function as loops. Such statements are often used for enclosing multiple lines of macros within
braces. For instance, this do-while statement serves to encapsulate the multiline macro
rather than create a new path:

8 Code Metrics

8-62

#define myfunc(x) do{ ...\\
 ...\\
 ...}while(0);

Polyspace considers such statements to be a single path.

Note that a statement with a ternary operator such as

result = a > b ? a : b;

is not considered as a statement that breaks the control flow.
• If more than one control flow statement are present in a sequence without any nesting, the

number of paths is the product of the contributions from each control flow statement.

For instance, if a function has three for loops and two if-else blocks, one after another, the
number of paths is 2 × 2 × 2 × 2 × 2 = 32.

If many control flow statements are present in a function, the number of paths can be large.
Nested control flow statements reduce the number of paths at the cost of increasing the depth of
nesting. For an example, see “Function with Nested Control Flow Statements” on page 8-64.

• The software displays specific values in cases where the metric is not calculated:

• If goto statements are present in the body of the function, Polyspace cannot calculate the
number of paths and shows the number of paths as Not Computed instead.

• If the number of paths reaches an upper limit of 1,000,000,000, Polyspace stops the calculation
and displays just the upper limit. The actual value might be higher.

Examples
Function with One Path

int func(int ch) {
 return (ch * 2);
}

In this example, func has one path.

Function with Control Flow Statement Causing Multiple Paths

void func(int ch) {
 switch (ch)
 {
 case 1:
 break;
 case 2:
 break;
 case 3:
 break;
 case 4:
 break;
 default:
 }
}

 Number of Paths

8-63

In this example, func has five paths. Apart from the path that goes through the default, each case
label followed by a statement causes the creation of a new path.

Function with Nested Control Flow Statements

void func()
{
 int i = 0, j = 0, k = 0;
 for (i=0; i<10; i++)
 {
 for (j=0; j<10; j++)
 {
 for (k=0; k<10; k++)
 {
 if (i < 2)
 ;
 else
 {
 if (i > 5)
 ;
 else
 ;
 }
 }
 }
 }
}

In this example, func has six paths: three from the for statements, two from the if statements plus
the original path that bypasses all control flow statements.

Metric Information
Group: Function
Acronym: PATH
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

8 Code Metrics

8-64

Number of Potentially Unprotected Shared
Variables
Number of unprotected shared variables

Description
This metric measures the number of variables with the following properties:

• The variable is used in more than one task.
• At least one operation on the variable is not protected from interruption by operations in other

tasks.

Examples
Unprotected Shared Variables

#include <limits.h>
int shared_var;

void inc() {
 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 reset();
 inc();
 inc();
 }
}

void interrupt() {
 shared_var = INT_MAX;
}

void interrupt_handler() {
 volatile int randomValue = 0;
 while(randomValue) {
 interrupt();
 }
}

void main() {
}

 Number of Potentially Unprotected Shared Variables

8-65

In this example, Polyspace calculates the number of potentially unprotected shared variable to be
one. The shared variabel shared_var is unprotected if you specify task and interrupt_handler
as entry points and do not specify protection mechanisms.

The operation shared_var = INT_MAX can interrupt the other operations on shared_var and
cause unpredictable behavior.

Metric Information
Group: Project
Acronym: UNPSHV
HIS Metric: No

See Also
Calculate code metrics (-code-metrics)

Introduced in R2018b

8 Code Metrics

8-66

Number of Protected Shared Variables
Number of protected shared variables

Description
This metric measures the number of variables with the following properties:

• The variable is used in more than one task.
• All operations on the variable are protected from interruption through critical sections or

temporal exclusions.

Examples
Shared Variables Protected Through Temporal Exclusion

#include <limits.h>
int shared_var;

void inc() {
 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 reset();
 inc();
 inc();
 }
}

void interrupt() {
 shared_var = INT_MAX;
}

void interrupt_handler() {
 volatile int randomValue = 0;
 while(randomValue) {
 interrupt();
 }
}

void main() {
}

In this example, shared_var is a protected shared variable if you specify the following options:

 Number of Protected Shared Variables

8-67

Option Value
Tasks (-entry-points) task

interrupt_handler
Temporally exclusive
tasks (-temporal-
exclusions-file)

temporal_exclusion.txt

In the command line, specify these options to run the example:

-entry-points task,interrupt_handler -temporal-exclusions-file temporal_exclusion.txt

temporal_exclusion.txt is a text file containing the temporally exclusive tasks separated by a
space in a single line:

task interrupt_handler

The variable is shared between task and interrupt_handler. However, because task and
interrupt_handler are temporally exclusive, operations on the variable cannot interrupt each
other.

Shared Variables Protected Through Critical Sections

#include <limits.h>
int shared_var;

void inc() {
 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

void take_semaphore(void);
void give_semaphore(void);

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 take_semaphore();
 reset();
 inc();
 inc();
 give_semaphore();
 }
}

void interrupt() {
 shared_var = INT_MAX;
}

void interrupt_handler() {
 volatile int randomValue = 0;

8 Code Metrics

8-68

 while(randomValue) {
 take_semaphore();
 interrupt();
 give_semaphore();
 }
}

void main() {
}

In this example, shared_var is a protected shared variable if you specify the following:

Option Value
Entry points task

interrupt_handler
Critical section details Starting routine Ending routine

take_semaphore give_semaphore

In the command line, specify these options to run the example:

-critical-section-begin take_semaphore:cs1
-critical-section-end give_semaphore:cs1
-entry-points task,interrupt_handle

The variable is shared between task and interrupt_handler. However, because operations on the
variable are between calls to the starting and ending procedure of the same critical section, they
cannot interrupt each other.

Metric Information
Group: Project
Acronym: PSHV
HIS Metric: No

See Also
Calculate code metrics (-code-metrics) | Critical section details (-critical-
section-begin -critical-section-end) | Tasks (-entry-points) | Temporally
exclusive tasks (-temporal-exclusions-file)

Introduced in R2018b

 Number of Protected Shared Variables

8-69

Number of Recursions
Number of call graph cycles over one or more functions

Description
The metric provides a quantitative estimate of the number of recursion cycles in your project. The
metric is the sum of:

• Number of direct recursions (self recursive functions or functions calling themselves).
• Number of strongly connected components formed by the indirect recursion cycles in your project.

If you consider the recursion cycles as a directed graph, the graph is strongly connected if there is
a path between all pairs of vertices.

To compute the number of strongly connected components:

1 Draw the recursion cycles in your code.

For instance, the recursion cycles in this example are shown below.

volatile int checkStatus;
void func1() {
 if(checkStatus) {
 func2();
 }
 else {
 func3();
 }
}

func2() {
 func1();
}

func3() {
 func1();
}

8 Code Metrics

8-70

2 Identify the number of strongly connected components formed by the recursion cycles.

In the preceding example, there is one strongly connected component. You can move from any
vertex to another vertex by following the paths in the graph.

The event list below the metric shows one of the recursion cycles in the strongly connected
component.

Calls through a function pointer are not considered.

The recommended upper limit for this metric is 0. To avoid the possibility of exceeding available stack
space, do not use recursions in your code. Recursions can tend to exhaust stack space easily. See
examples of stack size growth with recursions described for this CERT-C rule that forbids recursions.

To detect use of recursions, check for violations of one of MISRA C:2012 Rule 17.2,MISRA C:
2004 Rule 16.2, MISRA C++:2008 Rule 7-5-4 or JSF Rule 119. Note that:

• The rule checkers report each function that calls itself, directly or indirectly. Even if several
functions are involved in one recursion cycle, each function is individually reported.

• The rule checkers consider explicit function calls only. For instance, in C++ code, the rule
checkers ignore implicit calls to constructors during object creation. However, the metrics
computation considers both implicit and explicit calls.

To enforce limits on metrics:

 Number of Recursions

8-71

https://wiki.sei.cmu.edu/confluence/x/ztUxBQ

• In the Polyspace user interface, see “Compute Code Complexity Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software Quality

Objectives”.

Examples
Direct Recursion

int getVal(void);
int sum(int val) {
 if(val<0)
 return 0;
 else
 return (val + sum(val-1));
}

void main() {
 int count = getVal(), total;
 assert(count > 0 && count <100);
 total = sum(count);
}

In this example, the number of recursions is 1.

A direct recursion is a recursion where a function calls itself in its own body. For direct recursions,
the number of recursions is equal to the number of recursive functions.

Indirect Recursion with One Call Graph Cycle

volatile int signal;
void operation2(void);

void operation1(void) {
 int stop = signal%2;
 if(!stop)
 operation2();
}

void operation2(void) {
 operation1();
}

void main() {
 operation1();
}

In this example, the number of recursions is one. The two functions operation1 and operation2
are involved in the call graph cycle operation1 → operation2 → operation1.

8 Code Metrics

8-72

An indirect function is a recursion where a function calls itself through other functions. For indirect
recursions, the number of recursions can be different from the number of recursive functions.

Multiple Call Graph Cycles Forming One Strongly Connected Component

volatile int checkStatus;
void func1() {
 if(checkStatus) {
 func2();
 }
 else {
 func3();
 }
}

func2() {
 func1();
}

func3() {
 func1();
}

In this example, there are two call graph cycles:

• func1 → func2 → func1
• func1 → func3 → func1

However, the cycles form one strongly connected component. You can move from any vertex to
another vertex by following the paths in the graph. Hence, the number of recursions is one.

 Number of Recursions

8-73

Indirect Recursion with Two Call Graph Cycles

volatile int signal;
void operation1_1();
void operation2_1();

void operation1() {
 int stop = signal%2;
 if(!stop)
 operation1_1();
}

void operation1_1() {
 operation1();
}

void operation2() {
 int stop = signal%2;
 if(!stop)
 operation2_1();
}

void operation2_1() {
 operation2();
}

void main(){
 operation1();
 operation2();
}

In this example, the number of recursions is two.

There are two call graph cycles:

8 Code Metrics

8-74

• operation1 → operation1_1 → operation1
• operation2 → operation2_1 → operation2

The call graph cycles form two strongly connected components.

Same Function Called in Direct and Indirect Recursion

volatile int signal;
void operation2();

void operation1() {
 int stop = signal%3;
 if(stop==1)
 operation1();
 else if(stop==2)
 operation2();
}

void operation2() {
 operation1();
}

void main() {
 operation1();
}

In this example, the number of recursions is two:

• The strongly connected component formed by the cycle operation1 → operation2 →
operation1.

• The self-recursive function operation1.

 Number of Recursions

8-75

Metric Information
Group: Project
Acronym: AP_CG_CYCLE
HIS Metric: Yes

See Also
MISRA C:2012 Rule 17.2 | Calculate code metrics (-code-metrics)

8 Code Metrics

8-76

Number of Return Statements
Number of return statements in a function

Description
This metric measures the number of return statements in a function.

The recommended upper limit for this metric is 1. If one return statement is present, when reading
the code, you can easily identify what the function returns.

To enforce limits on metrics:

• In the Polyspace user interface, see “Compute Code Complexity Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software Quality

Objectives”.

Examples
Function with Return Points

int getSign (int arg) {
 if(arg <0)
 return -1;
 else if(arg > 0)
 return 1;
 return 0;
}

In this example, getSign has 3 return statements.

Metric Information
Group: Function
Acronym: RETURN
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

Topics
“Compute Code Complexity Metrics”
“Compare Metrics Against Software Quality Objectives”

 Number of Return Statements

8-77

Program Maximum Stack Usage
Maximum stack usage in the analyzed program

Description
This metric is reported in a Code Prover analysis only.

This metric shows the maximum stack usage from your program.

The metric shows the maximum stack usage for the function with the highest stack usage. If you
provide a complete application, the function with the highest stack usage is typically the main
function because the main function is at the top of the call hierarchy. For a description of maximum
stack usage for a function, see the metric Maximum Stack Usage.

Metric Information
Group: Project
Acronym: PROG_MAX_STACK
HIS Metric: No

See Also
Higher Estimate of Local Variable Size | Maximum Stack Usage | Program Minimum
Stack Usage | Calculate code metrics (-code-metrics)

Topics
“Determination of Program Stack Usage” on page 4-37

Introduced in R2017b

8 Code Metrics

8-78

Program Minimum Stack Usage
Maximum stack usage in the analyzed program taking nested scopes into account

Description
This metric is reported in a Code Prover analysis only.

This metric shows the maximum stack usage from your program, taking nested scopes into account.

The metric shows the minimum stack usage for the function with the highest stack usage. If you
provide a complete application, the function with the highest stack usage is typically the main
function because the main function is at the top of the call hierarchy. For a description of minimum
stack usage for a function, see the metric Minimum Stack Usage.

Considering nested scopes is useful for compilers that reuse stack space for variables defined in
nested scopes. For instance, in this code, the space for var_1 is reused for var_2.

type func (type param_1, ...) {

 {
 /* Scope 1 */
 type var_1, ...;
 }
 {
 /* Scope 2 */
 type var_2, ...;
 }
}

Metric Information
Group: Project
Acronym: PROG_MIN_STACK
HIS Metric: No

See Also
Lower Estimate of Local Variable Size | Minimum Stack Usage | Program Maximum
Stack Usage | Calculate code metrics (-code-metrics)

Topics
“Determination of Program Stack Usage” on page 4-37

Introduced in R2017b

 Program Minimum Stack Usage

8-79

Custom Coding Rules

9

Group 1: Files
The custom rules 1.x in Polyspace enforce naming conventions for files and folders. For information
on how to enable these rules, see Check custom rules (-custom-rules).

Number Rule Applied Other details
1.1 All source file names must follow the

specified pattern.
Only the base name is checked. A source
file is a file that is not included.

1.2 All source folder names must follow the
specified pattern.

Only the folder name is checked. A
source file is a file that is not included.

1.3 All include file names must follow the
specified pattern.

Only the base name is checked. An
include file is a file that is included.

1.4 All include folder names must follow the
specified pattern.

Only the folder name is checked. An
include file is a file that is included.

9 Custom Coding Rules

9-2

Group 2: Preprocessing
The custom rules 2.x in Polyspace enforce naming conventions for macros. For information on how to
enable these rules, see Check custom rules (-custom-rules).

Number Rule Applied Other details
2.1 All macros must follow the specified

pattern.
Macro names are checked before
preprocessing.

2.2 All macro parameters must follow the
specified pattern.

Macro parameters are checked before
preprocessing.

 Group 2: Preprocessing

9-3

Group 3: Type definitions
The custom rules 3.x in Polyspace enforce naming conventions for fundamental data types. For
information on how to enable these rules, see Check custom rules (-custom-rules).

Number Rule Applied Other details
3.1 All integer types must follow the

specified pattern.
Applies to integer and boolean types
specified by typedef statements. Does
not apply to enumeration types. For
example: typedef signed int
int32_t;

3.2 All float types must follow the specified
pattern.

Applies to double and float types
specified by typedef statements. For
example: typedef float f32_t;

3.3 All pointer types must follow the
specified pattern.

Applies to pointer types specified by
typedef statements. For example:
typedef int* p_int;

3.4 All array types must follow the specified
pattern.

Applies to array types specified by
typedef statements. For example:
typedef int a_int_3[3];

3.5 All function pointer types must follow
the specified pattern.

Applies to function pointer types
specified by typedef statements. For
example: typedef void
(*pf_callback) (int);

9 Custom Coding Rules

9-4

Group 4: Structures
The custom rules 4.x in Polyspace enforce naming conventions for structured data types. For
information on how to enable these rules, see Check custom rules (-custom-rules).

Number Rule Applied Other details
4.1 All struct tags must follow the

specified pattern.

4.2 All struct types must follow the
specified pattern.

struct types are aliases for previously
defined structures (defined with the
typedef or using keyword).

4.3 All struct fields must follow the
specified pattern.

4.4 All struct bit fields must follow the
specified pattern.

 Group 4: Structures

9-5

Group 5: Classes (C++)
The custom rules 5.x in Polyspace enforce naming conventions for classes and class members. For
information on how to enable these rules, see Check custom rules (-custom-rules).

Number Rule Applied Other details
5.1 All class names must follow the specified

pattern.

5.2 All class types must follow the specified
pattern.

Class types are aliases for previously
defined classes (defined with the
typedef or using keyword).

5.3 All data members must follow the
specified pattern.

5.4 All function members must follow the
specified pattern.

5.5 All static data members must follow the
specified pattern.

5.6 All static function members must follow
the specified pattern.

5.7 All bitfield members must follow the
specified pattern.

9 Custom Coding Rules

9-6

Group 6: Enumerations
The custom rules 6.x in Polyspace enforce naming conventions for enumerations. For information on
how to enable these rules, see Check custom rules (-custom-rules).

Number Rule Applied Other details
6.1 All enumeration tags must follow the

specified pattern.

6.2 All enumeration types must follow the
specified pattern.

Enumeration types are aliases for
previously defined enumerations
(defined with the typedef or using
keyword).

6.3 All enumeration constants must follow
the specified pattern.

 Group 6: Enumerations

9-7

Group 7: Functions
The custom rules 7.x in Polyspace enforce naming conventions for functions and function parameters.
For information on how to enable these rules, see Check custom rules (-custom-rules).

Number Rule Applied Other details
7.1 All global functions must follow the

specified pattern.
A global function is a function with
external linkage.

7.2 All static functions must follow the
specified pattern.

A static function is a function with
internal linkage. This rule does not
apply to class member functions.

7.3 All function parameters must follow the
specified pattern.

In C++, applies to non-member
functions.

9 Custom Coding Rules

9-8

Group 8: Constants
The custom rules 8.x in Polyspace enforce naming conventions for constants. For information on how
to enable these rules, see Check custom rules (-custom-rules). These rules do not apply to
constants that are defined within a class or to constants that are function parameters.

Number Rule Applied Other details
8.1 All global nonstatic constants must

follow the specified pattern.
A global nonstatic constant is a constant
with external linkage.

8.2 All global static constants must follow
the specified pattern.

A global static constant is a constant
with internal linkage.

8.3 All local nonstatic constants must follow
the specified pattern.

A local nonstatic constant is a constant
without linkage.

8.4 All local static constants must follow the
specified pattern.

A local static constant is a constant
declared static in a function.

 Group 8: Constants

9-9

Group 9: Variables
The custom rules 9.x in Polyspace enforce naming conventions for variables. For information on how
to enable these rules, see Check custom rules (-custom-rules). These rules do not apply to
variables that are defined within a class or to variables that are function parameters.

Number Rule Applied Other details
9.1 All global nonstatic variables must

follow the specified pattern.
A global nonstatic variable is a variable
with external linkage.

9.2 All global static variables must follow
the specified pattern.

A global static variable is a variable with
internal linkage.

9.3 All local nonstatic variables must follow
the specified pattern.

A local nonstatic variable is a variable
without linkage.

9.4 All local static variables must follow the
specified pattern.

A local static variable is a variable
declared static in a function.

9 Custom Coding Rules

9-10

Group 10: Name spaces (C++)
The custom rules 10.x in Polyspace enforce naming conventions for namespaces. For information on
how to enable these rules, see Check custom rules (-custom-rules).

Number Rule Applied
10.1 All names spaces must follow the specified pattern.

 Group 10: Name spaces (C++)

9-11

Group 11: Class templates (C++)
The custom rules 11.x in Polyspace enforce naming conventions for class templates. For information
on how to enable these rules, see Check custom rules (-custom-rules).

Number Rule Applied Other details
11.1 All class templates must follow the

specified pattern.

11.2 All class template parameters must
follow the specified pattern.

9 Custom Coding Rules

9-12

Group 12: Function templates (C++)
The custom rules 12.x in Polyspace enforce naming conventions for function templates. For
information on how to enable these rules, see Check custom rules (-custom-rules).

Number Rule Applied Other details
12.1 All function templates must follow the

specified pattern.
Applies to nonmember function
templates.

12.2 All function template parameters must
follow the specified pattern.

Applies to member and nonmember
function templates.

12.3 All function template members must
follow the specified pattern.

 Group 12: Function templates (C++)

9-13

Group 20: Style
The custom rules 20.x in Polyspace enforce coding style conventions such as number of characters
per line. For information on how to enable these rules, see Check custom rules (-custom-
rules).

Number Rule Applied Other details
20.1 Source line

length must not
exceed specified
number of
characters.

When configuring the checker, specify:

• A number for the character limit. Use the Pattern column on the
configuration or the pattern= line in the custom rules text file.

• A violation message such as:

Line exceeds n characters.

Use the Convention column on the configuration or the
convention= line in the custom rules xml file.

9 Custom Coding Rules

9-14

Global Variables

10

Potentially unprotected variable
Global variables shared between multiple tasks but not protected from concurrent access by the tasks

Description
A shared unprotected global variable has the following properties:

• The variable is used in more than one task.
• Polyspace determines that at least one operation on the variable is not protected from interruption

by operations in other tasks.

In code that is not intended for multitasking, all global variables are non-shared.

In your verification results, these variables are colored orange on the Source, Results List and
Variable Access panes. On the Source pane, the coloring is applied to the variable only during
declaration.

Examples
Unprotected Shared Variables

#include <limits.h>
int shared_var;

void inc() {
 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 reset();
 inc();
 inc();
 }
}

void interrupt() {
 shared_var = INT_MAX;
}

void interrupt_handler() {
 volatile int randomValue = 0;
 while(randomValue) {
 interrupt();
 }
}

10 Global Variables

10-2

void main() {
}

In this example, shared_var is an unprotected shared variable if you specify the following
multitasking options:

Option Value
Configure multitasking manually
on page 1-116
Tasks on page 1-118 task

interrupt_handler

You do not specify protection mechanisms such as critical sections.

The operation shared_var = INT_MAX can interrupt the other operations on shared_var and
cause unpredictable behavior.

If you click the (graph) icon on the Result Details pane, you see the two concurrent tasks
(threads).

 Potentially unprotected variable

10-3

The first graph shows how the tasks access the variable. For instance, the task interrupt_handler
calls a function interrupt that writes to the shared variable shared_var.

The second graph shows how the tasks are created. In this example, both tasks are created after
main completes. In other cases, tasks might be created within functions called from main.

Check Information
Language: C | C++

10 Global Variables

10-4

See Also
Critical section details (-critical-section-begin -critical-section-end) |
Multitasking | Shared variable | Show global variable sharing and usage only (-
shared-variables-mode) | Tasks (-entry-points) | Temporally exclusive tasks (-
temporal-exclusions-file) | Unused variable | Used non-shared variable

Topics
“Analyze Multitasking Programs in Polyspace”
“Protections for Shared Variables in Multitasking Code”

 Potentially unprotected variable

10-5

Shared variable
Global variables shared between multiple tasks and protected from concurrent access by the tasks

Description
A shared protected global variable has the following properties:

• The variable is used in more than one task.
• All operations on the variable are protected from interruption through critical sections or

temporal exclusion. The calls to functions beginning and ending a critical section must be
reachable.

In code that is not intended for multitasking, all global variables are non-shared.

In your verification results, these variables are colored green on the Source, Results List and
Variable Access panes. On the Source pane, the coloring is applied to the variable only during
declaration.

Examples
Shared Variables Protected Through Temporal Exclusion

#include <limits.h>
int shared_var;

void inc() {
 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 reset();
 inc();
 inc();
 }
}

void interrupt() {
 shared_var = INT_MAX;
}

void interrupt_handler() {
 volatile int randomValue = 0;
 while(randomValue) {
 interrupt();
 }
}

10 Global Variables

10-6

void main() {
}

In this example, shared_var is a protected shared variable if you specify the following multitasking
options:

Option Value
Configure multitasking manually
on page 1-116
Tasks on page 1-118 task

interrupt_handler
Temporally exclusive tasks on
page 1-129

task interrupt_handler

On the command-line, you can use the following:

 polyspace-code-prover
 -entry-points task,interrupt_handler
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

task interrupt_handler

The variable is shared between task and interrupt_handler. However, because task and
interrupt_handler are temporally exclusive, operations on the variable cannot interrupt each
other.

Shared Variables Protected Through Critical Sections

#include <limits.h>
int shared_var;

void inc() {
 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

void take_semaphore(void);
void give_semaphore(void);

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 take_semaphore();
 reset();
 inc();
 inc();
 give_semaphore();
 }
}

 Shared variable

10-7

void interrupt() {
 shared_var = INT_MAX;
}

void interrupt_handler() {
 volatile int randomValue = 0;
 while(randomValue) {
 take_semaphore();
 interrupt();
 give_semaphore();
 }
}

void main() {
}

In this example, shared_var is a protected shared variable if you specify the following:

Option Value
Configure multitasking manually
on page 1-116
Tasks on page 1-118 task

interrupt_handler
Critical section details on page
1-126

Starting routine Ending routine
take_semaphore give_semaphore

On the command-line, you can use the following:

 polyspace-code-prover
 -entry-points task,interrupt_handler
 -critical-section-begin take_semaphore:cs1
 -critical-section-end give_semaphore:cs1

The variable is shared between task and interrupt_handler. However, because operations on the
variable are between calls to the starting and ending procedure of the same critical section, they
cannot interrupt each other.

Shared Structure Variables Protected Through Access Pattern

struct S {
 unsigned int var_1;
 unsigned int var_2;
};

volatile int randomVal;

struct S sharedStruct;

void task1(void) {
 while(randomVal)
 operation1();
}

10 Global Variables

10-8

void task2(void) {
 while(randomVal)
 operation2();
}

void operation1(void) {
 sharedStruct.var_1++;
}

void operation2(void) {
 sharedStruct.var_2++;
}

int main(void) {
 return 0;
}

In this example, sharedStruct is a protected shared variable if you specify the following:

Option Value
Configure multitasking manually
on page 1-116
Tasks on page 1-118 task1

task2

On the command-line, you can use the following:

 polyspace-code-prover
 -entry-points task1,task2

The software determines that sharedStruct is protected because:

• task1 operates only on sharedStruct.var_1.
• task2 operates only on sharedStruct.var_2.

If you select the result, the Result Details pane indicates that the access pattern protects all
operations on the variable. On the Variable Access pane, the row for variable sharedStruct lists
Access pattern as the protection type.

Shared Variables Protected Through Design Pattern and Mutex

#include <pthread.h>
#include <stdlib.h>

pthread_mutex_t lock;
pthread_t id1, id2;

int var;

void * t1(void* b) {
 pthread_mutex_lock(&lock);
 var++;
 pthread_mutex_unlock(&lock);
}

 Shared variable

10-9

void * t2(void* a) {
 pthread_mutex_lock(&lock);
 var = 1;
 pthread_mutex_unlock(&lock);
}

int main(void) {
 pthread_create(&id1, NULL, t1, NULL);
 pthread_create(&id2, NULL, t2, NULL);

 return 0;
}

var is a shared, protected variable if you specify the following options:

Option Name Value
Enable automatic concurrency detection on page 1-105

On the command-line, you can use the following:

 polyspace-code-prover
 -enable-concurrency-detection

In this example, if you specify the concurrency detection option, Polyspace Code Prover detects that
your program uses multitasking. Two task, lock and var, share two variables. lock is a pthread
mutex variable, which pthread_mutex_lock and pthread_mutex_unlock use to lock and unlock
their mutexes. The inherent pthread design patterns protect lock. The Results Details pane and
Variable Access pane list Design Pattern as the protection type.

The mutex locking and unlocking mechanisms protect var, the other shared variable. The Results
Details pane and Variable Access pane list Mutex as the protection type.

Check Information
Language: C | C++

See Also
Critical section details (-critical-section-begin -critical-section-end) |
Potentially unprotected variable | Show global variable sharing and usage only
(-shared-variables-mode) | Tasks (-entry-points) | Temporally exclusive tasks (-
temporal-exclusions-file) | Unused variable | Used non-shared variable

Topics
“Analyze Multitasking Programs in Polyspace”
“Protections for Shared Variables in Multitasking Code”

10 Global Variables

10-10

Non-shared unused global variable
Global variables declared but not used

Description
A non-shared unused global variable has the following properties:

• The variable is declared in the code.
• Polyspace cannot detect a read or write operation on the variable.

In your verification results, these variables are colored gray on the Source, Results List and
Variable Access panes. On the Source pane, the coloring is applied to the variable only during
declaration. In the Result Details pane, the variable name appears along with the name of the file
where it is defined (for extern variables where the definition is not available, ?extern is used for
file name.)

Note The software does not display a complete list of unused global variables. Especially, in C++
projects, unused global variables can be suppressed from display.

Examples
Used and Unused Global Variables
int var1;
int var2;
int var3;
int var4;

int input(void);

void main() {
 int loc_var = input(), flag=0;

 var1 = loc_var;
 if(0) {
 var3 = loc_var;
 }
 if(flag!=0) {
 var4 =loc_var;
 }

}

If you verify the above code in a C project, the software lists var2, var3 and var4 as non-shared
unused variables, and var1 as a non-shared used variable.

var3 and var4 are used in unreachable code and are therefore marked as unused.

Note In a C++ project, the software does not list the unused variable var2.

 Non-shared unused global variable

10-11

Check Information
Language: C | C++

See Also
Potentially unprotected variable | Shared variable | Show global variable
sharing and usage only (-shared-variables-mode) | Used non-shared variable

Topics
“Interpret Code Prover Results in Polyspace Desktop User Interface”

10 Global Variables

10-12

Used non-shared variable
Global variables used in a single task

Description
A non-shared used global variable has the following properties:

• The variable is used only in a single task.
• Polyspace detects at least one read or write operation on the variable.

In code that is not intended for multitasking, all global variables are non-shared.

In your verification results, these variables are colored black on the Results List and Variable
Access panes.

Examples
Used and Unused Global Variables
int var1;
int var2;
int var3;
int var4;

int input(void);

void main() {
 int loc_var = input(), flag=0;

 var1 = loc_var;
 if(0) {
 var3 = loc_var;
 }
 if(flag!=0) {
 var4 =loc_var;
 }

}

If you verify the above code in a C project, the software lists var2, var3 and var4 as non-shared
unused variables, and var1 as a non-shared used variable.

var3 and var4 are used in unreachable code and are therefore marked as unused.

Note In a C++ project, the software does not list the unused variable var2.

Non-shared variables in multitasking code
unsigned int var_1;
unsigned int var_2;

 Used non-shared variable

10-13

volatile int randomVal;

void task1(void) {
 while(randomVal)
 operation(1);
}

void task2(void) {
 while(randomVal)
 operation(2);
}

void operation(int i) {
 if(i==1) {
 var_1++;
 }
 else {
 var_2++;
 }
}

int main(void) {
 return 0;
}

In this example, even when you specify task1 and task2 for the option Tasks (-entry-points),
the software determines that var_1 and var_2 are non-shared.

Even though both task1 and task2 call the function operation, because of the if statement in
operation, task1 can operate only on var_1 and task2 only on var_2.

Check Information
Language: C | C++

See Also
Potentially unprotected variable | Shared variable | Show global variable
sharing and usage only (-shared-variables-mode) | Unused variable

10 Global Variables

10-14

Report Components

11

Acronym Definitions
Create table of Polyspace acronyms used in report and their full forms

Description
This component creates a table containing the acronyms used in the report and their full forms.
Acronyms are used for Polyspace checks and result status.

See Also
Topics
“Customize Existing Code Prover Report Template”

11 Report Components

11-2

Call Hierarchy
Create table showing call graph in source code

Description
This component creates a table showing the call hierarchy in your source code. For each function call
in your source code, the table displays the following information:

• Level of call hierarchy, where the function is called.

Each level is denoted by |. If a function call appears in the table as |||->
file_name.function_name, the function call occurs at the third level of the hierarchy.
Beginning from main or an entry point, there are three function calls leading to the current call.

• File containing the function call.

In Code Prover, the line and column is also displayed.
• File containing the function definition.

In Code Prover, the line and column where the function definition begins is also displayed.

In addition, the table also displays uncalled functions.

This table captures the information available on the Call Hierarchy pane in the Polyspace user
interface.

See Also
Topics
“Customize Existing Code Prover Report Template”

 Call Hierarchy

11-3

Code and Verification Information
Create table of verification times and code characteristics

Description
This component creates tables containing verification times and code characteristics such as number
of lines.

Properties
Include Verification Time Information

If you select this option, the report contains verification times broken down by phase.

• For Polyspace Bug Finder, the phases are compilation, pass0, pass1, etc.
• For Polyspace Code Prover, the phases are compilation, global, function, etc.

Include Code Details

If you select this option, the report contains the following code characteristics:

• Number of files
• Number of lines
• Number of lines without comment

See Also
Topics
“Customize Existing Code Prover Report Template”

11 Report Components

11-4

Code Metrics Details
Create table of Polyspace metrics broken down by file and function

Description
This component creates a table containing metrics from a Polyspace project. The metrics appear
broken down by file and function.

Properties
Project Metrics

If you select this option, the report contains the following metrics about the project:

• Number of direct recursions
• Number of files
• Number of headers
• Number of protected and unprotected shared variables

File Metrics

If you select this option, the report contains the following metrics about each file in the project:

• Estimated function coupling
• Lines without comment
• Comment density
• Total lines

Function Metrics

If you select this option, the report contains the following metrics about each function in the project:

• Cyclomatic complexity
• Language scope
• Lower and higher estimates of local variable size
• Number of lines within body
• Number of executable lines
• Number of goto statements
• Number of call levels
• Number of called functions
• Number of call occurrences
• Number of function parameters
• Number of paths
• Number of return statements

 Code Metrics Details

11-5

• Number of instructions
• Number of calling functions

See Also
Topics
“Customize Existing Code Prover Report Template”

11 Report Components

11-6

Code Metrics Summary
Create table of Polyspace metrics

Description
This component creates a table containing metrics from a Polyspace project. The metrics are the
same as those displayed under Code Metrics Details. However, the file and function metrics are
not broken down by individual files and functions. Instead, the table provides the minimum and
maximum value of a file metric over all files and a function metric over all functions.

See Also
Topics
“Customize Existing Code Prover Report Template”

 Code Metrics Summary

11-7

Code Verification Summary
Create table of Polyspace analysis results

Description
This component creates tables containing the following results:

• Number of results
• Number of coding rule violations for each coding rule type such as MISRA C
• Number of defects, for Polyspace Bug Finder results
• Number of checks of each color, for Polyspace Code Prover results
• Whether the project passed or failed the software quality objective

Properties
Include Checks from Polyspace Standard Library Stub Functions

Unless you deselect this option, the tables contain Polyspace Code Prover checks that appear in
Polyspace stubs for the standard library functions.

See Also
Topics
“Customize Existing Code Prover Report Template”

11 Report Components

11-8

Coding Rules Details
Create table of coding rule violations broken down by file

Description
This component creates tables containing coding rule violations broken down by each file in the
Polyspace project. For each rule violation, the table contains the following information:

• Rule number
• Rule description
• Function containing the violation
• (Code Prover only) Line and column number
• Review information such as classification, status and comments

Properties
Select Coding Rules Type

Using this option, you can choose which coding rule violations to display. You can display violations
for the following set of coding rules:

• MISRA C rules
• MISRA AC AGC rules
• MISRA C++ rules
• JSF C++ rules
• Custom coding rules

Display by

Using this option, you can break down the display of coding rule violations by file.

See Also
Topics
“Customize Existing Code Prover Report Template”

 Coding Rules Details

11-9

Coding Rules Summary
Create table with number of coding rule violations

Description
This component creates a table containing the number of coding rule violations. You can choose
whether to break this information down by rule number or file.

Properties
Select Coding Rules Type

Using this option, you can choose which coding rule violations to display. You can display violations
for the following set of coding rules:

• MISRA C rules
• MISRA AC AGC rules
• MISRA C++ rules
• JSF C++ rules
• Custom coding rules

Include Files/Rules with No Problems Detected

If you select this option, the table displays:

• Files that do not contain coding rule violations
• Rules that your code does not violate

Display by

Using this option, you can break down the display of coding rule violations by:

• Rule number
• File

See Also
Topics
“Customize Existing Code Prover Report Template”

11 Report Components

11-10

Configuration Parameters
Create table of analysis options, assumptions and coding rules configuration

Description
This component creates the following tables:

• Polyspace settings: The analysis options that you used to obtain your results. The table lists
command-line version of the options along with their values.

• Analysis assumptions: The assumptions used to obtain your Code Prover results. The table lists
only the modifiable assumptions. For assumptions that you cannot change, see the Polyspace
documentation.

• Coding rules configuration: The coding rules whose violations you checked for. The table lists the
rule number, rule description and other information about the rules.

• Files with compilation errors: If your project has source files with compilation errors, these files
are listed.

See Also
Topics
“Customize Existing Code Prover Report Template”

 Configuration Parameters

11-11

Defects Summary
Create table of defects (Bug Finder only)

Description
This component creates a table of Polyspace Bug Finder defects. From this table, you can see the
number of defects of each type.

Properties
Include Checkers with No Defects Detected

If you select this option, the table includes all defect types that Polyspace Bug Finder can detect,
including those that do not occur in your code.

See Also
Topics
“Customize Existing Code Prover Report Template”

11 Report Components

11-12

Global Variable Checks
Create table of global variables (Code Prover only)

Description
This component creates a table of Polyspace Code Prover global variables. From this table, you can
see the number of global variables of each type.

See Also
Topics
“Customize Existing Code Prover Report Template”

 Global Variable Checks

11-13

Recursive Functions
Create table of recursive functions

Description
This component creates a table containing the recursive functions in your source code (along with the
files containing the functions).

• For each direct recursion (function calling itself directly), the table lists the recursive function.
• For each indirect recursion cycle (function calling itself through other functions), the table lists

one function in the cycle.

For instance, the following code contains two indirect recursion cycles.

volatile int signal;

void operation1() {
 int stop = signal%2;
 if(!stop)
 operation1_1();
}

void operation1_1() {
 operation1();
}

void operation2() {
 int stop = signal%2;
 if(!stop)
 operation2_1();
}

void operation2_1() {
 operation2();
}

void main(){
 operation1();
 operation2();
}

The two call graph cycles are:

• operation1 → operation1_1 → operation1
• operation2 → operation2_1 → operation2

11 Report Components

11-14

This report component shows one function from each of the two cycles: operation1 and
operation2. To see the full cycle, open the results in the Polyspace user interface.

See Also
Topics
“Customize Existing Code Prover Report Template”

 Recursive Functions

11-15

Report Customization (Filtering)
Create filters that apply to your Polyspace reports

Description
This component allows you to filter unwanted information from existing Polyspace report templates.
To apply global filters, place this component immediately below the node representing the report
name.

Properties
Code Metrics Filters

The properties in table below apply to the inclusion of code metrics in your report.

Property Purpose User Action
Include Project Metrics Choose whether to include

metrics about your Polyspace
project.

Select the check box to include
project metrics.

Project metrics to include Specify project metrics to
include or exclude from report.

Enter a MATLAB regular
expression.

Include File Metrics Choose whether to include per
file metrics in report.

Select the check box to include
per file metrics.

File Metrics > Files to
include

Specify files to include or
exclude when reporting file
metrics.

Enter a MATLAB regular
expression.

File metrics to include Specify file metrics to include or
exclude from report.

Enter a MATLAB regular
expression.

Include Function Metrics Choose whether to include per
function metrics in report.

Select the check box to include
per function metrics.

Function Metrics > Files to
include

Specify files to include or
exclude when reporting function
metrics.

Enter a MATLAB regular
expression.

Functions to include Specify functions to include or
exclude when reporting function
metrics.

Enter a MATLAB regular
expression.

Function metrics to include Specify function metrics to
include or exclude from report.

Enter a MATLAB regular
expression.

Coding Rules Filters

The properties in table below apply to the inclusion of coding rule violations in your report.

11 Report Components

11-16

Property Purpose User Action
Files to include Specify files to include or

exclude when reporting coding
rule violations.

Enter a MATLAB regular
expression.

Coding rule numbers to
include

Specify coding rules to include
or exclude when reporting
coding rule violations.

Enter a MATLAB regular
expression.

Classifications to include Specify classifications to include
or exclude when reporting
coding rule violations.

Enter a MATLAB regular
expression.

Status types to include Specify statuses to include or
exclude when reporting coding
rule violations.

Enter a MATLAB regular
expression.

Run-time Check Filters

The properties in table below apply to the inclusion of Polyspace Code Prover checks in your report.

Property Purpose
Red Checks Specify whether to include red checks in your

report. Red checks indicate proven run-time
errors.

Gray Checks Specify whether to include gray checks in your
report. Gray checks indicate unreachable code.

Orange Checks Specify whether to include orange checks in your
report. Orange checks indicate possible run-time
errors.

Green Checks Specify whether to include green checks in your
report. Green checks indicate that an operation
does not contain a specific run-time error.

Inspection Point Checks Specify whether to include inspection point
checks in your report. These checks allow an user
to find the values that a variable can take at a
certain point in the code.

Unreachable Functions Specify whether to include unreachable functions
in your report.

Advanced Filters

The properties in table below apply to the inclusion of metrics, coding rule violations and Polyspace
Code Prover checks in your report.

Property Purpose User Action
Justification status Choose whether to report only

justified checks, only unjustified
checks or all checks.

Choose an option from the
dropdown list.

 Report Customization (Filtering)

11-17

Property Purpose User Action
Files to include Specify files to include or

exclude from your report.
Enter a MATLAB regular
expression.

Check types to include Specify Polyspace Code Prover
checks to include in your report.

Enter a MATLAB regular
expression.

Function names to include Specify functions to include or
exclude from your report.

Enter a MATLAB regular
expression.

Classification types to
include

Specify classifications to include
or exclude from your report.

Enter a MATLAB regular
expression.

Status types to include Specify statuses to include or
exclude from your report.

Enter a MATLAB regular
expression.

Comments to include Specify comments to include or
exclude from your report.

Enter a MATLAB regular
expression.

See Also
Topics
“Customize Existing Code Prover Report Template”
“Regular Expressions”

11 Report Components

11-18

Run-time Checks Details Ordered by Color/File
Create overrides for global filters in Polyspace reports (Code Prover only)

Description
This component adds detailed information about the run-time checks to your report. This component
can also be used to override global filters in specific chapters of your report. Use the following
workflow when using filters in your report:

1 To create filters that apply to all chapters of your report, use the Report Customization
(Filtering) component. For more information, see Report Customization (Filtering).

2 To override some of the filters in individual chapters, use the Run-time Checks Details
Ordered by Color/File component. Select the Override Global Report filter box.

Properties
Categories To Include

The properties in table below apply to the inclusion of Polyspace Code Prover checks in your report.

Property Purpose
Red Checks Specify whether to include red checks in your

report. Red checks indicate proven run-time
errors.

Gray Checks Specify whether to include gray checks in your
report. Gray checks indicate unreachable code.

Orange Checks Specify whether to include orange checks in your
report. Orange checks indicate possible run-time
errors.

Green Checks Specify whether to include green checks in your
report. Green checks indicate that an operation
does not contain a specific run-time error.

Inspection Point Checks Specify whether to include inspection point
checks in your report. These checks allow an user
to find the values that a variable can take at a
certain point in the code.

Unreachable Functions Specify whether to include unreachable functions
in your report.

Advanced Filters

The properties in table below apply to the inclusion of metrics, coding rule violations and Polyspace
Code Prover checks in your report.

 Run-time Checks Details Ordered by Color/File

11-19

Property Purpose User Action
Justification status Choose whether to report only

justified checks, only unjustified
checks or all checks.

Choose an option from the
dropdown list.

Files to include Specify files to include or
exclude from your report.

Enter a regular MATLAB
expression.

Check types to include Specify Polyspace Code Prover
checks to include in your report.

Enter a regular MATLAB
expression.

Function names to include Specify functions to include or
exclude from your report.

Enter a regular MATLAB
expression.

Classification types to
include

Specify classifications to include
or exclude from your report.

Enter a regular MATLAB
expression.

Status types to include Specify statuses to include or
exclude from your report.

Enter a regular MATLAB
expression.

Comments to include Specify comments to include or
exclude from your report.

Enter a regular MATLAB
expression.

See Also
Topics
“Customize Existing Code Prover Report Template”

11 Report Components

11-20

Run-time Checks Details Ordered by Review
Information
Create table with run-time checks ordered by review information (Code Prover only)

Description
This component creates tables displaying the Polyspace Code Prover checks in your code. All checks
with same combination of Severity and Status appear in the same table.

See Also
Topics
“Customize Existing Code Prover Report Template”

 Run-time Checks Details Ordered by Review Information

11-21

Run-time Checks Summary Ordered by File
Create table with run-time checks ordered by file (Code Prover only)

Description
This component creates a table displaying the number of Polyspace Code Prover checks per file in
your code.

Properties
Sort the data

Use this option to sort the rows in the table alphabetically by filename or by percentage of unproven
code.

Display as

Use this option to display the number of checks in a table or in bar charts.

Display ratio of checks in a file

Select this option to display the number of checks of a certain color as a ratio of total number of
checks in the file.

Include checks from Polyspace standard library stub functions

Select this option to include the checks from Polyspace standard library stub functions in your
display.

See Also
Topics
“Customize Existing Code Prover Report Template”

11 Report Components

11-22

Software Quality Objectives - Coding Rules
Summary
Create table of coding rule violations in results downloaded from Polyspace Metrics

Description
This component creates a table containing coding rule violations in results downloaded from
Polyspace Metrics.

See Also
Topics
“Customize Existing Code Prover Report Template”

 Software Quality Objectives - Coding Rules Summary

11-23

Software Quality Objectives - Run-time Checks
Details
Create table of result details for results downloaded from Polyspace Metrics

Description
This component creates tables showing results downloaded from Polyspace Metrics.

The component Software Quality Objectives - Run-time Checks Summary shows the
distribution of results. This component shows individual instances of results. Each file has a dedicated
table showing the findings in the file.

See Also
Topics
“Customize Existing Code Prover Report Template”

11 Report Components

11-24

Software Quality Objectives - Run-time Checks
Summary
Create table of results summary for results downloaded from Polyspace Metrics

Description
This component creates a table showing the distribution of run-time checks in results downloaded
from Polyspace Metrics.

This component shows the distribution of run-time checks. The component Software Quality
Objectives - Run-time Checks Details shows the individual instances of run-time checks.

See Also
Topics
“Customize Existing Code Prover Report Template”

 Software Quality Objectives - Run-time Checks Summary

11-25

Summary By File
Create table showing summary of Polyspace results by file

Description
This component creates a table showing a breakdown of Polyspace results by file.

See Also
Topics
“Customize Existing Code Prover Report Template”

11 Report Components

11-26

Variable Access
Create table showing global variable access in source code (Code Prover only)

Description
This component creates a table showing the global variable access in your source code. For each
global variable, the table displays the following information:

• Variable name.

The entry for each variable is denoted by |.
• Type of the variable.
• Number of read and write operations on the variable.
• Details of read and write operations. For each read or write operation, the table displays the

following information:

• File and function containing the operation in the form file_name.function_name.

The entry for each read or write operation is denoted by ||. Write operations are denoted by <
and read operations by >.

• Line and column number of the operation.

This table captures the information available on the Variable Access pane in the Polyspace user
interface.

The table showing variable access contains only the names of files. Below this table, a second table
shows the full paths to files (in two columns, Filename and Full filename). If a variable access
occurs in a Standard library function, the two columns contain this information:

• Filename: __polyspace__stdstubs.c (the file containing Polyspace implementation of
Standard Library functions)

• Full filename: Std library

See Also
Topics
“Customize Existing Code Prover Report Template”

 Variable Access

11-27

Variable Checks Details Ordered By Review
Information
Create table with global variable results ordered by review information (Code Prover only)

Description
This component creates tables displaying the Polyspace Code Prover global variable results in your
code. All checks with same combination of Severity and Status appear in the same table.

See Also
Topics
“Customize Existing Code Prover Report Template”

11 Report Components

11-28

Configuration Parameters

• “Settings from (C)” on page 12-2
• “Settings from (C++)” on page 12-4
• “Use custom project file” on page 12-6
• “Project configuration” on page 12-7
• “Enable additional file list” on page 12-8
• “Stub lookup tables” on page 12-9
• “Input” on page 12-11
• “Tunable parameters” on page 12-12
• “Output” on page 12-13
• “Model reference verification depth” on page 12-14
• “Model by model verification” on page 12-15
• “Output folder” on page 12-16
• “Make output folder name unique by adding a suffix” on page 12-17
• “Add results to current Simulink project” on page 12-18
• “Open results automatically after verification” on page 12-19
• “Check configuration before verification” on page 12-20
• “Verify all S-function occurrences” on page 12-21

12

Settings from (C)
Select settings for the analysis configuration. You can quickly activate coding rules checking for
generated C code

Model Configuration Parameters Category: Polyspace

Settings
Default: Project configuration

Project configuration
Run Polyspace with the options specified in the “Project configuration” on page 12-7 or “Use
custom project file” on page 12-6.

You do not check coding rules unless you select a rule set in the configuration.
Project configuration and MISRA AC AGC checking

Run Polyspace with the options specified in the Project configuration plus MISRA AC-AGC
obligatory and recommended rules.

Project configuration and MISRA C 2004 checking
Run Polyspace with the options specified in the Project configuration plus all MISRA C 2004
rules.

Project configuration and MISRA C 2012 checking
Run Polyspace with the options specified in the Project configuration plus all MISRA C 2012
rules. This option automatically applies the rule categories for generated code. See Use
generated code requirements (-misra3-agc-mode).

MISRA AC AGC checking
Check compliance with the MISRA AC-AGC obligatory and recommended rules. After rules
checking, Polyspace stops.

MISRA C 2004 checking
Check compliance with all MISRA C 2004 rules. After rules checking, Polyspace stops.

MISRA C 2012 checking
Check compliance with all MISRA C 2012 rules. This option automatically applies the rule
categories for generated code. See Use generated code requirements (-misra3-agc-
mode). After rules checking, Polyspace stops.

Dependency
This setting overrides custom configuration settings in “Project configuration” on page 12-7 and
“Use custom project file” on page 12-6. If you want to use your custom coding rule settings, select
the Project configuration option.

Command-Line Information
Use the pslinkoptions property VerificationSettings.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.

12 Configuration Parameters

12-2

Use the parameter PSVerificationSettings with the same value as for the pslinkoptions
property VerificationSettings. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Settings from (C)

12-3

Settings from (C++)
Select settings for the analysis configuration. This option allows you to quickly activate coding rules
checking for generated C++ code.

Model Configuration Parameters Category: Polyspace

Settings
Default: Project configuration

Project configuration
Run Polyspace with the options specified in the “Project configuration” on page 12-7 or “Use
custom project file” on page 12-6.

You do not check coding rules unless you select a rule set in the configuration.
Project configuration and MISRA C++ checking

Run Polyspace with the options specified in the Project configuration plus MISRA C++
required rules.

Project configuration and JSF C++ checking
Run Polyspace with the options specified in the Project configuration plus JSF C++ shall rules.

MISRA C++ checking
Check compliance with the MISRA C++: 2008 required rules. After rules checking, Polyspace
stops.

JSF C++ checking
Check compliance with the JSF C++ shall rules. After rules checking, Polyspace stops.

Dependency
This setting overrides custom configuration settings in “Project configuration” on page 12-7 and
“Use custom project file” on page 12-6. If you want to use your custom coding rule settings, select
the Project configuration option.

Command-Line Information
Use the pslinkoptions property CxxVerificationSettings.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSCxxVerificationSettings with the same value as for the pslinkoptions
property CxxVerificationSettings. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

12 Configuration Parameters

12-4

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Settings from (C++)

12-5

Use custom project file
Set Polyspace configuration options with a custom .psprj file

Model Configuration Parameters Category: Polyspace

Settings
Default: Off

Off
Analysis uses configuration options from Project configuration on page 12-7 parameters.

On
Analysis uses configuration options from the specified .psprj project file.

Dependency
The Settings from parameter overrides custom configuration settings for coding rules. If you want
to use your custom coding rule settings, set Settings from > Project configuration.

Command-Line Information
Use the pslinkoptions properties EnablePrjConfigFile and PrjConfigFile.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameters PSEnablePrjConfigFile and PSPrjConfigFile with the same values as for
the pslinkoptions properties EnablePrjConfigFile and PrjConfigFile. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

12 Configuration Parameters

12-6

Project configuration
Set advanced configuration options to customize the analysis.

Settings
Open the Polyspace Configuration window by using the Configure button. Customize additional
settings in this window and save your project configuration. If you added a custom project file in the
parameter “Use custom project file” on page 12-6, that project file configuration is shown. Otherwise,
the default project template is used.

For details about the advanced options, see “Analysis Options in Polyspace Code Prover”.

Dependency
The Settings from parameter overrides custom configuration settings for coding rules. If you want
to use your custom coding rule settings, set Settings from > Project configuration.

Command-Line Information
Use a Polyspace project (.psprj file) with the pslinkoptions properties EnablePrjConfigFile
and PrjConfigFile.

See Also
polyspace.ModelLinkOptions | pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Project configuration

12-7

Enable additional file list
Add additional supporting code files to the analysis.

For instance, suppose you use C files for testing results from the generated code or providing inputs
to the generated code. The analysis of generated code only considers files generated from the
Simulink model. If you want the analysis to consider the C files that you use for testing or inputs,
provide them as additional files.

Model Configuration Parameters Category: Polyspace

Settings
Default: Off

Off
The analysis includes no additional files.

On
Polyspace analyzes the specified C/C++ files with the generated code. Use the Select files
button to specify these additional files.

Command-Line Information
Use the pslinkoptions properties EnableAdditionalFileList and AdditionalFileList.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameters PSEnableAdditionalFileList and PSAdditionalFileList with the same
values as for the pslinkoptions properties EnableAdditionalFileList and
AdditionalFileList. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

12 Configuration Parameters

12-8

Stub lookup tables
Specify that the verification must stub auto-generated functions that use certain kinds of lookup
tables in their body. The lookup tables in these functions use linear interpolation and do not allow
extrapolation. That is, the result of using the lookup table always lies between the lower and upper
bounds of the table.

If you use this option, the verification is more precise and has fewer orange checks. The verification
of lookup table functions is usually imprecise. The software has to make certain assumptions about
these functions. To avoid missing a run-time error, the verification assumes that the result of using
the lookup table is within the full range allowed by the result data type. This assumption can cause
many unproven results (orange checks) when a lookup table function is called. By using this option,
you narrow down the assumption. For functions using lookup tables with linear interpolation and no
extrapolation, the result is at least within the bounds of the table.

The option is relevant only if your model uses Lookup Table blocks.

Model Configuration Parameters Category: Polyspace

Settings
Default: On

On
For autogenerated functions that use lookup tables with linear interpolation and no extrapolation,
the verification:

• Does not check for run-time errors in the function body.
• Calls a function stub instead of the actual function at the function call sites. The stub ensures

that the result of using the lookup table is within the bounds of the table.

To identify if the lookup table in the function uses linear interpolation and no extrapolation, the
verification uses information provided by the code generation product. For instance, if you use
Embedded Coder to generate code, the lookup table functions with linear interpolation and no
extrapolation follow specific naming conventions.

Off
The verification does not stub autogenerated functions that use lookup tables.

Tips
• The option applies only to autogenerated functions. If you integrate your own C/C++ S-Function

using lookup tables with the model, the option does not cause them to be stubbed.
• The option is on by default. For certification purposes, if you want your verification tool to be

independent of the code generation tool, turn off the option.

Command-Line Information
Use the pslinkoptions property AutoStubLUT.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.

 Stub lookup tables

12-9

Use the parameter PSAutoStubLUT with the same value as for the pslinkoptions property
AutoStubLUT. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

12 Configuration Parameters

12-10

Input
Choose whether to constrain Inport block variables.

Model Configuration Parameters Category: Polyspace

Settings
Default: Use specified minimum and maximum values

Use specified minimum and maximum values
Analysis assumes minimum and maximum values for input variables. These values are specified in
the Inport block dialog box. Use this value to reduce the number of orange results.

Unbounded inputs
Analysis assumes full range for input variables. Use this value to run a robust analysis that
includes values outside the expected range.

Command-Line Information
Use the pslinkoptions property InputRangeMode.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSInputRangeMode with the same value as for the pslinkoptions property
InputRangeMode. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”
• “External Constraints on Polyspace Analysis of Generated Code”

 Input

12-11

Tunable parameters
Choose how to treat tunable parameter values during the analysis. Treat values as either constants or
a range of values.

Model Configuration Parameters Category: Polyspace

Settings
Default: Use calibration data

Use calibration data
Analysis assumes constant values for tunable parameters. Use this value to run a contextual
analysis. This option can reduce the number of orange results.

Use specified minimum and maximum values
Analysis assumes a range of values for the tunable parameter variables. Specify maximum and
minimum values in the model. Use this option to run a robust analysis that includes values
outside the expected parameter value.

Command-Line Information
Use the pslinkoptions property ParamRangeMode.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSParamRangeMode with the same value as for the pslinkoptions property
ParamRangeMode. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”
• “External Constraints on Polyspace Analysis of Generated Code”

12 Configuration Parameters

12-12

Output
Choose whether to verify output values.

Code Prover option only. Bug Finder cannot check output values.

Model Configuration Parameters Category: Polyspace

Settings
Default: No verification

No verification
Polyspace does not verify output values.

Verify outputs are within minimum and maximum values
Polyspace checks to see if the output variable values are within the expected minimum and
maximum values. Specify the minimum and maximum values in the output block dialog boxes.

Command-Line Information
Use the pslinkoptions property OutputRangeMode.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSOutputRangeMode with the same value as for the pslinkoptions property
OutputRangeMode. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”
• “External Constraints on Polyspace Analysis of Generated Code”

 Output

12-13

Model reference verification depth
Only for models that use Embedded Coder generated code. Indicate how deep into the model
hierarchy to analyze.

Model Configuration Parameters Category: Polyspace

Settings
Default: Current model only

Current model only
Polyspace analyzes only the current model

1
Polyspace analyzes the current model and the referenced models that are one level below the
current model.

2
Polyspace analyzes the current model and the referenced models that are up to two levels below
the current model.

3
Polyspace analyzes the current model and the referenced models that are up to three levels below
the current model.

All
Polyspace analyzes the current model and all referenced models.

Command-Line Information
Use the pslinkoptions property ModelRefVerifDepth.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSModelRefVerifDepth with the same value as for the pslinkoptions
property ModelRefVerifDepth. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

12 Configuration Parameters

12-14

Model by model verification
Only for models that use Embedded Coder generated code. Analyze each model or referenced model
individually. If you have a large project, this option can help modularize your analysis .

Model Configuration Parameters Category: Polyspace

Settings
Default: Off

Off
Polyspace analyzes your models together. Model interactions are analyzed.

On
Polyspace analyzes your model and each of its referenced models in isolation. This option does
not analyze model interactions.

Command-Line Information
Use the pslinkoptions property ModelRefByModelRefVerif.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSModelRefByModelRefVerif with the same value as for the pslinkoptions
property ModelRefByModelRefVerif. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Model by model verification

12-15

Output folder
Specify the location and folder name for your analysis results.

Model Configuration Parameters Category: Polyspace

Settings
Default: results_$ModelName$

Enter a path for your results folder. If you do not use a full path, the results folder is relative to your
current MATLAB folder.

If you select “Add results to current Simulink project” on page 12-18, the results folder is relative to
the Simulink project folder.

By default, the software stores your results in Current Folder\results_model_name.

Command-Line Information
Use the pslinkoptions property ResultDir.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSResultDir with the same value as for the pslinkoptions property
ResultDir. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

12 Configuration Parameters

12-16

Make output folder name unique by adding a suffix
Add a unique suffix to the results folder for every run to avoid overwriting previous results.

Model Configuration Parameters Category: Polyspace

Settings
Default: Off

Off
Every time you rerun your analysis, your results are overwritten.

On
For each run of the analysis, Polyspace specifies a new location for the results folder by
appending a unique number to the folder name.

Command-Line Information
Use the pslinkoptions property AddSuffixToResultDir.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSAddSuffixToResultDir with the same value as for the pslinkoptions
property AddSuffixToResultDir. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Make output folder name unique by adding a suffix

12-17

Add results to current Simulink project
Add your Polyspace results to the current Simulink project. To use this option, you must have a
Simulink project open.

Model Configuration Parameters Category: Polyspace

Settings
Default: Off

Off
Results are saved to the current folder.

On
Results are saved to the currently open Simulink project.

Dependencies
You must have a Simulink project open to use this option.

Command-Line Information
Use the pslinkoptions property AddToSimulinkProject.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSAddToSimulinkProject with the same value as for the pslinkoptions
property AddToSimulinkProject. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

12 Configuration Parameters

12-18

Open results automatically after verification
Decide whether to open your results in the Polyspace interface after running analysis from Simulink.

Model Configuration Parameters Category: Polyspace

Settings
Default: On

On
After you run an analysis, your results open automatically in the Polyspace interface.

Off
You must manually open your results after running an analysis.

Command-Line Information
Use the pslinkoptions property OpenProjectManager.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSOpenProjectManager with the same value as for the pslinkoptions
property OpenProjectManager. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Open results automatically after verification

12-19

Check configuration before verification
Check whether model and code configurations are optimal for code analysis.

Model Configuration Parameters Category: Polyspace

Settings
Default: On (proceed with warnings)

On (proceed with warnings)
The process stops for errors, but continues the code analysis if the configuration has only
warnings.

On (stop for warnings)
If the configuration has errors or warnings, the process stops.

Off
The software does not check the configuration.

Command-Line Information
Use the pslinkoptions property CheckConfigBeforeAnalysis. For details, see pslinkoptions.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSVerifALLSFcnInstances with the same value as for the pslinkoptions
property VerifALLSFcnInstances. See pslinkoptions.

See Also
pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

12 Configuration Parameters

12-20

Verify all S-function occurrences
For S-Function analyses only. Run an analysis on all instances of the selected S-Function.

Model Configuration Parameters Category: Polyspace

Settings
Default: Off

Off
Analyze only the selected S-Function block. The analysis includes only information from the
selected S-Function block.

On
Analyze all occurrences of the S-function in the model. If the S-Function is included in the model
multiple times, information from all occurrences is included in the analysis.

Command-Line Information
Use the pslinkoptions property VerifALLSFcnInstances.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSVerifALLSFcnInstances with the same value as for the pslinkoptions
property VerifALLSFcnInstances. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Verify all S-function occurrences

12-21

	Analysis Options
	Source code language (-lang)
	C standard version (-c-version)
	C++ standard version (-cpp-version)
	Target processor type (-target)
	Generic target options
	Compiler (-compiler)
	ARM v5 Compiler (-compiler armcc)
	ARM v6 Compiler (-compiler armclang)
	NXP CodeWarrior Compiler (-compiler codewarrior)
	Cosmic Compiler (-compiler cosmic)
	Diab Compiler (-compiler diab)
	Green Hills Compiler (-compiler greenhills)
	IAR Embedded Workbench Compiler (-compiler iar-ew)
	MPLAB XC8 C Compiler (-compiler microchip)
	Renesas Compiler (-compiler renesas)
	TASKING Compiler (-compiler tasking)
	Texas Instruments Compiler (-compiler ti)
	Sfr type support (-sfr-types)
	Division round down (-div-round-down)
	Enum type definition (-enum-type-definition)
	Block char16/32_t types (-no-uliterals)
	Pack alignment value (-pack-alignment-value)
	Ignore pragma pack directives (-ignore-pragma-pack)
	Management of size_t (-size-t-type-is)
	Management of wchar_t (-wchar-t-type-is)
	Signed right shift (-logical-signed-right-shift)
	Preprocessor definitions (-D)
	Disabled preprocessor definitions (-U)
	Source code encoding (-sources-encoding)
	Code from DOS or Windows file system (-dos)
	Stop analysis if a file does not compile (-stop-if-compile-error)
	Command/script to apply to preprocessed files (-post-preprocessing-command)
	Include (-include)
	Include folders (-I)
	Ignore link errors (-no-extern-c)
	Constraint setup (-data-range-specifications)
	Ignore default initialization of global variables (-no-def-init-glob)
	Functions to stub (-functions-to-stub)
	Libraries used (-library)
	Generate stubs for Embedded Coder lookup tables (-stub-embedded-coder-lookup-table-functions)
	Generate results for sources and (-generate-results-for)
	Do not generate results for (-do-not-generate-results-for)
	No STL stubs (-no-stl-stubs)
	Enable automatic concurrency detection for Code Prover (-enable-concurrency-detection)
	External multitasking configuration
	OIL files selection (-osek-multitasking)
	ARXML files selection (-autosar-multitasking)
	Configure multitasking manually
	Tasks (-entry-points)
	Cyclic tasks (-cyclic-tasks)
	Interrupts (-interrupts)
	Critical section details (-critical-section-begin -critical-section-end)
	Temporally exclusive tasks (-temporal-exclusions-file)
	Set checkers by file (-checkers-selection-file)
	Check MISRA C:2004 (-misra2)
	Check MISRA AC AGC (-misra-ac-agc)
	Check MISRA C:2012 (-misra3)
	Use generated code requirements (-misra3-agc-mode)
	Check custom rules (-custom-rules)
	Effective boolean types (-boolean-types)
	Allowed pragmas (-allowed-pragmas)
	Calculate code metrics (-code-metrics)
	Check MISRA C++:2008 (-misra-cpp)
	Check JSF AV C++ rules (-jsf-coding-rules)
	Verify whole application
	Show global variable sharing and usage only (-shared-variables-mode)
	Verify initialization section of code only (-init-only-mode)
	Verify module or library (-main-generator)
	Main entry point (-main)
	Variables to initialize (-main-generator-writes-variables)
	Initialization functions (-functions-called-before-main)
	Functions to call (-main-generator-calls)
	Verify files independently (-unit-by-unit)
	Common source files (-unit-by-unit-common-source)
	Verify model generated code (-main-generator)
	Parameters (-variables-written-before-loop)
	Inputs (-variables-written-in-loop)
	Initialization functions (-functions-called-before-loop)
	Step functions (-functions-called-in-loop)
	Termination functions (-functions-called-after-loop)
	Class (-class-analyzer)
	Functions to call within the specified classes (-class-analyzer-calls)
	Analyze class contents only (-class-only)
	Skip member initialization check (-no-constructors-init-check)
	Respect types in fields (-respect-types-in-fields)
	Respect types in global variables (-respect-types-in-globals)
	Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)
	Consider volatile qualifier on fields (-consider-volatile-qualifier-on-fields)
	Float rounding mode (-float-rounding-mode)
	Allow negative operand for left shifts (-allow-negative-operand-in-shift)
	Overflow mode for signed integer (-signed-integer-overflows)
	Overflow mode for unsigned integer (-unsigned-integer-overflows)
	Disable checks for non-initialization (-disable-initialization-checks)
	Check that global variables are initialized after warm reboot (-check-globals-init)
	Detect stack pointer dereference outside scope (-detect-pointer-escape)
	Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct)
	Allow incomplete or partial allocation of structures (-size-in-bytes)
	Permissive function pointer calls (-permissive-function-pointer)
	Consider non finite floats (-allow-non-finite-floats)
	Infinities (-check-infinite)
	NaNs (-check-nan)
	Subnormal detection mode (-check-subnormal)
	Detect uncalled functions (-uncalled-function-checks)
	Precision level (-O)
	Verification level (-to)
	Verification time limit (-timeout)
	Sensitivity context (-context-sensitivity)
	Improve precision of interprocedural analysis (-path-sensitivity-delta)
	Specific precision (-modules-precision)
	Inline (-inline)
	Depth of verification inside structures (-k-limiting)
	Generate report
	Bug Finder and Code Prover report (-report-template)
	Output format (-report-output-format)
	Run Bug Finder or Code Prover analysis on a remote cluster (-batch)
	Upload results to Polyspace Metrics (-add-to-results-repository)
	Command/script to apply after the end of the code verification (-post-analysis-command)
	Automatic Orange Tester (-automatic-orange-tester)
	Number of automatic tests (-automatic-orange-tester-tests-number)
	Maximum loop iterations (-automatic-orange-tester-loop-max-iteration)
	Maximum test time (-automatic-orange-tester-timeout)
	Other

	Analysis Options, Command-Line Only
	-asm-begin -asm-end
	-author
	-code-behavior-specifications
	-consider-external-array-access-unsafe
	-custom-target
	-date
	-doc | -documentation
	-dump-preprocessing-info
	-generate-launching-script-for
	-h | -help
	-I
	-import-comments
	-list-all-values
	-max-processes
	-no-assumption-on-absolute-addresses
	-non-preemptable-tasks
	-options-for-sources
	-preemptable-interrupts
	-options-file
	-prog
	-regex-replace-rgx -regex-replace-fmt
	-report-output-name
	-results-dir
	-scheduler
	-show-similar-overflows
	-sources
	-sources-list-file
	-submit-job-from-previous-compilation-results
	-tmp-dir-in-results-dir
	-v | -version
	-verif-version
	-xml-annotations-description

	Run-Time Checks
	Absolute address usage
	Non-compliance with AUTOSAR specification
	Invalid result of AUTOSAR runnable implementation
	AUTOSAR runnable not implemented
	Invalid use of AUTOSAR runtime environment function
	Correctness condition
	Division by zero
	Function not called
	Function not reachable
	Function not returning value
	Global variable not assigned a value in initialization code
	Illegally dereferenced pointer
	Incorrect object oriented programming
	Invalid C++ specific operations
	Invalid operation on floats
	Invalid shift operations
	Invalid use of standard library routine
	Non-initialized local variable
	Non-initialized pointer
	Non-initialized variable
	Non-terminating call
	Non-terminating loop
	Null this-pointer calling method
	Out of bounds array index
	Overflow
	Return value not initialized
	Subnormal float
	Uncaught exception
	Unreachable code
	User assertion

	Approximations Used During Verification
	Why Polyspace Verification Uses Approximations
	Sources of Orange Checks
	Constrain Orange Sources

	Assumptions About Variable Ranges
	Assumptions About Stubbed Functions
	Function Return Value
	Function Arguments That are Pointers
	Global Variables

	Assumptions About main Function
	main Function as Top of Call Hierarchy
	main Function Arguments

	Assumptions About Global Variable Initialization
	Global Variable Initialization When main Function Exists
	Global Variable Initialization When main Function Does Not Exist
	How Code Prover Implements Assumption About Global Variable Initialization
	What Initialization Means for Complex Data Types

	Assumptions About Volatile Variables
	Assumptions About Variable and Function Definitions and Declarations
	Definition
	Declaration

	Assumptions About Implicit Data Type Conversions
	Implicit Conversion When Operands Have Same Data Type
	Implicit Conversion When Operands Have Different Data Types

	Assumptions About memset and memcpy
	Polyspace Specifications for memcpy
	Polyspace Specifications for memset

	Assumptions About #pragma Directives
	Assumptions About Standard Library Float Routines
	Assumptions About Unions
	Assumptions About Variables Cast as Void Pointers
	Assumptions About Assembly Code
	Recognized Inline Assemblers
	Single Function Containing Assembly Code
	Multiple Functions Containing Assembly Code
	Local Variables in Functions with Assembly Code

	Determination of Program Stack Usage
	Investigate Possible Stack Overflow
	Stack Usage Not Computed
	Stack Usage Assumptions

	Limitations of Polyspace Verification

	Functions, Classes, Methods, Properties, and Apps
	polyspace-autosar
	polyspace-code-prover
	polyspace-configure
	polyspace-report-generator
	polyspace-results-export
	polyspace-results-repository
	polyspace-comments-import
	pslinkfun
	pslinkoptions
	polyspacesetup
	polyspacePackNGo
	pslinkrun
	pslinkrunCrossRelease
	polyspaceAutosar
	polyspaceCodeProver
	polyspaceConfigure
	polyspaceJobsManager
	polyspaceroot
	polyspace_report
	polyspace.Project
	polyspace.Options
	polyspace.ModelLinkOptions
	polyspace.CodeProverOptions
	polyspace.ModelLinkCodeProverOptions
	polyspace.GenericTargetOptions
	polyspace.CodingRulesOptions
	polyspace.CodeProverResults
	polyspace.Options.copyTo
	polyspace.Options.generateProject
	polyspace.Options.toScript
	polyspace.Project.run
	getSummary
	getResults
	variableAccess
	pslinkoptions
	polyspace.Project.Configuration
	polyspace.ModelLinkOptions

	MISRA C 2012
	MISRA C:2012 Dir 1.1
	MISRA C:2012 Dir 2.1
	MISRA C:2012 Dir 4.1
	MISRA C:2012 Dir 4.3
	MISRA C:2012 Dir 4.4
	MISRA C:2012 Dir 4.5
	MISRA C:2012 Dir 4.6
	MISRA C:2012 Dir 4.8
	MISRA C:2012 Dir 4.9
	MISRA C:2012 Dir 4.12
	MISRA C:2012 Dir 4.10
	MISRA C:2012 Dir 4.11
	MISRA C:2012 Rule 1.1
	MISRA C:2012 Rule 1.2
	MISRA C:2012 Rule 1.3
	MISRA C:2012 Rule 1.4
	MISRA C:2012 Rule 2.1
	MISRA C:2012 Rule 2.2
	MISRA C:2012 Rule 2.3
	MISRA C:2012 Rule 2.4
	MISRA C:2012 Rule 2.5
	MISRA C:2012 Rule 2.6
	MISRA C:2012 Rule 2.7
	MISRA C:2012 Rule 3.1
	MISRA C:2012 Rule 3.2
	MISRA C:2012 Rule 4.1
	MISRA C:2012 Rule 4.2
	MISRA C:2012 Rule 5.1
	MISRA C:2012 Rule 5.2
	MISRA C:2012 Rule 5.3
	MISRA C:2012 Rule 5.4
	MISRA C:2012 Rule 5.5
	MISRA C:2012 Rule 5.6
	MISRA C:2012 Rule 5.7
	MISRA C:2012 Rule 5.8
	MISRA C:2012 Rule 5.9
	MISRA C:2012 Rule 6.1
	MISRA C:2012 Rule 6.2
	MISRA C:2012 Rule 7.1
	MISRA C:2012 Rule 7.2
	MISRA C:2012 Rule 7.3
	MISRA C:2012 Rule 7.4
	MISRA C:2012 Rule 8.1
	MISRA C:2012 Rule 8.2
	MISRA C:2012 Rule 8.3
	MISRA C:2012 Rule 8.4
	MISRA C:2012 Rule 8.5
	MISRA C:2012 Rule 8.6
	MISRA C:2012 Rule 8.7
	MISRA C:2012 Rule 8.8
	MISRA C:2012 Rule 8.9
	MISRA C:2012 Rule 8.10
	MISRA C:2012 Rule 8.11
	MISRA C:2012 Rule 8.12
	MISRA C:2012 Rule 8.13
	MISRA C:2012 Rule 8.14
	MISRA C:2012 Rule 9.1
	MISRA C:2012 Rule 9.2
	MISRA C:2012 Rule 9.3
	MISRA C:2012 Rule 9.4
	MISRA C:2012 Rule 9.5
	MISRA C:2012 Rule 10.1
	MISRA C:2012 Rule 10.2
	MISRA C:2012 Rule 10.3
	MISRA C:2012 Rule 10.4
	MISRA C:2012 Rule 10.5
	MISRA C:2012 Rule 10.6
	MISRA C:2012 Rule 10.7
	MISRA C:2012 Rule 10.8
	MISRA C:2012 Rule 11.1
	MISRA C:2012 Rule 11.2
	MISRA C:2012 Rule 11.3
	MISRA C:2012 Rule 11.4
	MISRA C:2012 Rule 11.5
	MISRA C:2012 Rule 11.6
	MISRA C:2012 Rule 11.7
	MISRA C:2012 Rule 11.8
	MISRA C:2012 Rule 11.9
	MISRA C:2012 Rule 12.1
	MISRA C:2012 Rule 12.2
	MISRA C:2012 Rule 12.3
	MISRA C:2012 Rule 12.4
	MISRA C:2012 Rule 12.5
	MISRA C:2012 Rule 13.1
	MISRA C:2012 Rule 13.2
	MISRA C:2012 Rule 13.3
	MISRA C:2012 Rule 13.4
	MISRA C:2012 Rule 13.5
	MISRA C:2012 Rule 13.6
	MISRA C:2012 Rule 14.1
	MISRA C:2012 Rule 14.2
	MISRA C:2012 Rule 14.3
	MISRA C:2012 Rule 14.4
	MISRA C:2012 Rule 15.1
	MISRA C:2012 Rule 15.2
	MISRA C:2012 Rule 15.3
	MISRA C:2012 Rule 15.4
	MISRA C:2012 Rule 15.5
	MISRA C:2012 Rule 15.6
	MISRA C:2012 Rule 15.7
	MISRA C:2012 Rule 16.1
	MISRA C:2012 Rule 16.2
	MISRA C:2012 Rule 16.3
	MISRA C:2012 Rule 16.4
	MISRA C:2012 Rule 16.5
	MISRA C:2012 Rule 16.6
	MISRA C:2012 Rule 16.7
	MISRA C:2012 Rule 17.1
	MISRA C:2012 Rule 17.2
	MISRA C:2012 Rule 17.3
	MISRA C:2012 Rule 17.4
	MISRA C:2012 Rule 17.5
	MISRA C:2012 Rule 17.6
	MISRA C:2012 Rule 17.7
	MISRA C:2012 Rule 17.8
	MISRA C:2012 Rule 18.1
	MISRA C:2012 Rule 18.2
	MISRA C:2012 Rule 18.3
	MISRA C:2012 Rule 18.4
	MISRA C:2012 Rule 18.5
	MISRA C:2012 Rule 18.6
	MISRA C:2012 Rule 18.7
	MISRA C:2012 Rule 18.8
	MISRA C:2012 Rule 19.1
	MISRA C:2012 Rule 19.2
	MISRA C:2012 Rule 20.1
	MISRA C:2012 Rule 20.2
	MISRA C:2012 Rule 20.3
	MISRA C:2012 Rule 20.4
	MISRA C:2012 Rule 20.5
	MISRA C:2012 Rule 20.6
	MISRA C:2012 Rule 20.7
	MISRA C:2012 Rule 20.8
	MISRA C:2012 Rule 20.9
	MISRA C:2012 Rule 20.10
	MISRA C:2012 Rule 20.11
	MISRA C:2012 Rule 20.12
	MISRA C:2012 Rule 20.13
	MISRA C:2012 Rule 20.14
	MISRA C:2012 Rule 21.1
	MISRA C:2012 Rule 21.2
	MISRA C:2012 Rule 21.3
	MISRA C:2012 Rule 21.4
	MISRA C:2012 Rule 21.5
	MISRA C:2012 Rule 21.6
	MISRA C:2012 Rule 21.7
	MISRA C:2012 Rule 21.8
	MISRA C:2012 Rule 21.9
	MISRA C:2012 Rule 21.10
	MISRA C:2012 Rule 21.11
	MISRA C:2012 Rule 21.12
	MISRA C:2012 Rule 21.15
	MISRA C:2012 Rule 21.16
	MISRA C:2012 Rule 22.5

	MISRA C++: 2008
	MISRA C++:2008 Rule 0-1-1
	MISRA C++:2008 Rule 0-1-2
	MISRA C++:2008 Rule 0-1-3
	MISRA C++:2008 Rule 0-1-4
	MISRA C++:2008 Rule 0-1-5
	MISRA C++:2008 Rule 0-1-7
	MISRA C++:2008 Rule 0-1-9
	MISRA C++:2008 Rule 0-1-10
	MISRA C++:2008 Rule 0-1-11
	MISRA C++:2008 Rule 0-1-12
	MISRA C++:2008 Rule 0-2-1
	MISRA C++:2008 Rule 0-3-2
	MISRA C++:2008 Rule 1-0-1
	MISRA C++:2008 Rule 2-3-1
	MISRA C++:2008 Rule 2-5-1
	MISRA C++:2008 Rule 2-7-1
	MISRA C++:2008 Rule 2-7-2
	MISRA C++:2008 Rule 2-7-3
	MISRA C++:2008 Rule 2-10-1
	MISRA C++:2008 Rule 2-10-2
	MISRA C++:2008 Rule 2-10-3
	MISRA C++:2008 Rule 2-10-4
	MISRA C++:2008 Rule 2-10-5
	MISRA C++:2008 Rule 2-10-6
	MISRA C++:2008 Rule 2-13-1
	MISRA C++:2008 Rule 2-13-2
	MISRA C++:2008 Rule 2-13-3
	MISRA C++:2008 Rule 2-13-4
	MISRA C++:2008 Rule 2-13-5
	MISRA C++:2008 Rule 3-1-1
	MISRA C++:2008 Rule 3-1-2
	MISRA C++:2008 Rule 3-1-3
	MISRA C++:2008 Rule 3-2-1
	MISRA C++:2008 Rule 3-2-2
	MISRA C++:2008 Rule 3-2-3
	MISRA C++:2008 Rule 3-2-4
	MISRA C++:2008 Rule 3-3-1
	MISRA C++:2008 Rule 3-3-2
	MISRA C++:2008 Rule 3-4-1
	MISRA C++:2008 Rule 3-9-1
	MISRA C++:2008 Rule 3-9-2
	MISRA C++:2008 Rule 3-9-3
	MISRA C++:2008 Rule 4-5-1
	MISRA C++:2008 Rule 4-5-2
	MISRA C++:2008 Rule 4-5-3
	MISRA C++:2008 Rule 4-10-1
	MISRA C++:2008 Rule 4-10-2
	MISRA C++:2008 Rule 5-0-1
	MISRA C++:2008 Rule 5-0-2
	MISRA C++:2008 Rule 5-0-3
	MISRA C++:2008 Rule 5-0-4
	MISRA C++:2008 Rule 5-0-5
	MISRA C++:2008 Rule 5-0-6
	MISRA C++:2008 Rule 5-0-7
	MISRA C++:2008 Rule 5-0-8
	MISRA C++:2008 Rule 5-0-9
	MISRA C++:2008 Rule 5-0-10
	MISRA C++:2008 Rule 5-0-11
	MISRA C++:2008 Rule 5-0-12
	MISRA C++:2008 Rule 5-0-13
	MISRA C++:2008 Rule 5-0-14
	MISRA C++:2008 Rule 5-0-15
	MISRA C++:2008 Rule 5-0-16
	MISRA C++:2008 Rule 5-0-17
	MISRA C++:2008 Rule 5-0-18
	MISRA C++:2008 Rule 5-0-19
	MISRA C++:2008 Rule 5-0-20
	MISRA C++:2008 Rule 5-0-21
	MISRA C++:2008 Rule 5-2-1
	MISRA C++:2008 Rule 5-2-2
	MISRA C++:2008 Rule 5-2-3
	MISRA C++:2008 Rule 5-2-4
	MISRA C++:2008 Rule 5-2-5
	MISRA C++:2008 Rule 5-2-6
	MISRA C++:2008 Rule 5-2-7
	MISRA C++:2008 Rule 5-2-8
	MISRA C++:2008 Rule 5-2-9
	MISRA C++:2008 Rule 5-2-10
	MISRA C++:2008 Rule 5-2-11
	MISRA C++:2008 Rule 5-2-12
	MISRA C++:2008 Rule 5-3-1
	MISRA C++:2008 Rule 5-3-2
	MISRA C++:2008 Rule 5-3-3
	MISRA C++:2008 Rule 5-3-4
	MISRA C++:2008 Rule 5-8-1
	MISRA C++:2008 Rule 5-14-1
	MISRA C++:2008 Rule 5-18-1
	MISRA C++:2008 Rule 5-19-1
	MISRA C++:2008 Rule 6-2-1
	MISRA C++:2008 Rule 6-2-2
	MISRA C++:2008 Rule 6-2-3
	MISRA C++:2008 Rule 6-3-1
	MISRA C++:2008 Rule 6-4-1
	MISRA C++:2008 Rule 6-4-2
	MISRA C++:2008 Rule 6-4-3
	MISRA C++:2008 Rule 6-4-4
	MISRA C++:2008 Rule 6-4-5
	MISRA C++:2008 Rule 6-4-6
	MISRA C++:2008 Rule 6-4-7
	MISRA C++:2008 Rule 6-4-8
	MISRA C++:2008 Rule 6-5-1
	MISRA C++:2008 Rule 6-5-2
	MISRA C++:2008 Rule 6-5-3
	MISRA C++:2008 Rule 6-5-4
	MISRA C++:2008 Rule 6-5-5
	MISRA C++:2008 Rule 6-5-6
	MISRA C++:2008 Rule 6-6-1
	MISRA C++:2008 Rule 6-6-2
	MISRA C++:2008 Rule 6-6-3
	MISRA C++:2008 Rule 6-6-4
	MISRA C++:2008 Rule 6-6-5
	MISRA C++:2008 Rule 7-1-1
	MISRA C++:2008 Rule 7-1-2
	MISRA C++:2008 Rule 7-3-1
	MISRA C++:2008 Rule 7-3-2
	MISRA C++:2008 Rule 7-3-3
	MISRA C++:2008 Rule 7-3-4
	MISRA C++:2008 Rule 7-3-5
	MISRA C++:2008 Rule 7-3-6
	MISRA C++:2008 Rule 7-4-2
	MISRA C++:2008 Rule 7-4-3
	MISRA C++:2008 Rule 7-5-1
	MISRA C++:2008 Rule 7-5-2
	MISRA C++:2008 Rule 7-5-3
	MISRA C++:2008 Rule 7-5-4
	MISRA C++:2008 Rule 8-0-1
	MISRA C++:2008 Rule 8-3-1
	MISRA C++:2008 Rule 8-4-1
	MISRA C++:2008 Rule 8-4-2
	MISRA C++:2008 Rule 8-4-3
	MISRA C++:2008 Rule 8-4-4
	MISRA C++:2008 Rule 8-5-1
	MISRA C++:2008 Rule 8-5-2
	MISRA C++:2008 Rule 8-5-3
	MISRA C++:2008 Rule 9-3-1
	MISRA C++:2008 Rule 9-3-2
	MISRA C++:2008 Rule 9-3-3
	MISRA C++:2008 Rule 9-5-1
	MISRA C++:2008 Rule 9-6-2
	MISRA C++:2008 Rule 9-6-3
	MISRA C++:2008 Rule 9-6-4
	MISRA C++:2008 Rule 10-1-1
	MISRA C++:2008 Rule 10-1-2
	MISRA C++:2008 Rule 10-1-3
	MISRA C++:2008 Rule 10-2-1
	MISRA C++:2008 Rule 10-3-1
	MISRA C++:2008 Rule 10-3-2
	MISRA C++:2008 Rule 10-3-3
	MISRA C++:2008 Rule 11-0-1
	MISRA C++:2008 Rule 12-1-1
	MISRA C++:2008 Rule 12-1-2
	MISRA C++:2008 Rule 12-1-3
	MISRA C++:2008 Rule 12-8-1
	MISRA C++:2008 Rule 12-8-2
	MISRA C++:2008 Rule 14-5-1
	MISRA C++:2008 Rule 14-5-2
	MISRA C++:2008 Rule 14-5-3
	MISRA C++:2008 Rule 14-6-1
	MISRA C++:2008 Rule 14-6-2
	MISRA C++:2008 Rule 14-7-3
	MISRA C++:2008 Rule 14-8-1
	MISRA C++:2008 Rule 14-8-2
	MISRA C++:2008 Rule 15-0-2
	MISRA C++:2008 Rule 15-0-3
	MISRA C++:2008 Rule 15-1-1
	MISRA C++:2008 Rule 15-1-2
	MISRA C++:2008 Rule 15-1-3
	MISRA C++:2008 Rule 15-3-1
	MISRA C++:2008 Rule 15-3-2
	MISRA C++:2008 Rule 15-3-3
	MISRA C++:2008 Rule 15-3-4
	MISRA C++:2008 Rule 15-3-5
	MISRA C++:2008 Rule 15-3-6
	MISRA C++:2008 Rule 15-3-7
	MISRA C++:2008 Rule 15-4-1
	MISRA C++:2008 Rule 15-5-1
	MISRA C++:2008 Rule 15-5-2
	MISRA C++:2008 Rule 15-5-3
	MISRA C++:2008 Rule 16-0-1
	MISRA C++:2008 Rule 16-0-2
	MISRA C++:2008 Rule 16-0-3
	MISRA C++:2008 Rule 16-0-4
	MISRA C++:2008 Rule 16-0-5
	MISRA C++:2008 Rule 16-0-6
	MISRA C++:2008 Rule 16-0-7
	MISRA C++:2008 Rule 16-0-8
	MISRA C++:2008 Rule 16-1-1
	MISRA C++:2008 Rule 16-1-2
	MISRA C++:2008 Rule 16-2-1
	MISRA C++:2008 Rule 16-2-2
	MISRA C++:2008 Rule 16-2-3
	MISRA C++:2008 Rule 16-2-4
	MISRA C++:2008 Rule 16-2-5
	MISRA C++:2008 Rule 16-2-6
	MISRA C++:2008 Rule 16-3-1
	MISRA C++:2008 Rule 16-3-2
	MISRA C++:2008 Rule 16-6-1
	MISRA C++:2008 Rule 17-0-1
	MISRA C++:2008 Rule 17-0-2
	MISRA C++:2008 Rule 17-0-3
	MISRA C++:2008 Rule 17-0-5
	MISRA C++:2008 Rule 18-0-1
	MISRA C++:2008 Rule 18-0-2
	MISRA C++:2008 Rule 18-0-3
	MISRA C++:2008 Rule 18-0-4
	MISRA C++:2008 Rule 18-0-5
	MISRA C++:2008 Rule 18-2-1
	MISRA C++:2008 Rule 18-4-1
	MISRA C++:2008 Rule 18-7-1
	MISRA C++:2008 Rule 19-3-1
	MISRA C++:2008 Rule 27-0-1

	Code Metrics
	Comment Density
	Cyclomatic Complexity
	Estimated Function Coupling
	Higher Estimate of Local Variable Size
	Language Scope
	Lower Estimate of Local Variable Size
	Maximum Stack Usage
	Minimum Stack Usage
	Number of Call Levels
	Number of Call Occurrences
	Number of Called Functions
	Number of Calling Functions
	Number of Direct Recursions
	Number of Executable Lines
	Number of Files
	Number of Function Parameters
	Number of Goto Statements
	Number of Header Files
	Number of Instructions
	Number of Lines
	Number of Lines Within Body
	Number of Lines Without Comment
	Number of Local Non-Static Variables
	Number of Local Static Variables
	Number of Paths
	Number of Potentially Unprotected Shared Variables
	Number of Protected Shared Variables
	Number of Recursions
	Number of Return Statements
	Program Maximum Stack Usage
	Program Minimum Stack Usage

	Custom Coding Rules
	Group 1: Files
	Group 2: Preprocessing
	Group 3: Type definitions
	Group 4: Structures
	Group 5: Classes (C++)
	Group 6: Enumerations
	Group 7: Functions
	Group 8: Constants
	Group 9: Variables
	Group 10: Name spaces (C++)
	Group 11: Class templates (C++)
	Group 12: Function templates (C++)
	Group 20: Style

	Global Variables
	Potentially unprotected variable
	Shared variable
	Non-shared unused global variable
	Used non-shared variable

	Report Components
	Acronym Definitions
	Call Hierarchy
	Code and Verification Information
	Code Metrics Details
	Code Metrics Summary
	Code Verification Summary
	Coding Rules Details
	Coding Rules Summary
	Configuration Parameters
	Defects Summary
	Global Variable Checks
	Recursive Functions
	Report Customization (Filtering)
	Run-time Checks Details Ordered by Color/File
	Run-time Checks Details Ordered by Review Information
	Run-time Checks Summary Ordered by File
	Software Quality Objectives - Coding Rules Summary
	Software Quality Objectives - Run-time Checks Details
	Software Quality Objectives - Run-time Checks Summary
	Summary By File
	Variable Access
	Variable Checks Details Ordered By Review Information

	Configuration Parameters
	Settings from (C)
	Settings
	Dependency
	Command-Line Information

	Settings from (C++)
	Settings
	Dependency
	Command-Line Information

	Use custom project file
	Settings
	Dependency
	Command-Line Information

	Project configuration
	Settings
	Dependency
	Command-Line Information

	Enable additional file list
	Settings
	Command-Line Information

	Stub lookup tables
	Settings
	Tips
	Command-Line Information

	Input
	Settings
	Command-Line Information

	Tunable parameters
	Settings
	Command-Line Information

	Output
	Settings
	Command-Line Information

	Model reference verification depth
	Settings
	Command-Line Information

	Model by model verification
	Settings
	Command-Line Information

	Output folder
	Settings
	Command-Line Information

	Make output folder name unique by adding a suffix
	Settings
	Command-Line Information

	Add results to current Simulink project
	Settings
	Dependencies
	Command-Line Information

	Open results automatically after verification
	Settings
	Command-Line Information

	Check configuration before verification
	Settings
	Command-Line Information

	Verify all S-function occurrences
	Settings
	Command-Line Information

